$Nil$-closed Noetherian sub-algebras of $H^*(W)$ and their centres
Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 2, pp. 185-220

For $\mathcal{G}_{}$ some groupoid whose objects are the sub-vector spaces of a $\mathbb{F}_p$-vector space $W$, we define $H^*(W)^{\mathcal{G}_{}}$ a $nil$-closed, noetherian, unstable sub-algebra of $H^*(W)$ over the Steenrod algebra. The application on the appropriate ordered set of groupoids, that maps $\mathcal{G}_{}$ to $H^*(W)^{\mathcal{G}_{}}$ defines an isomorphism of posets to the set of noetherian, $nil$-closed, unstable sub-algebras of $H^*(W)$ of transcendence degree $\dim (W)$, ordered by inclusion.

Since any noetherian and integral unstable algebra of transcendence degree $\dim (W)$ admits an injection into $H^*(W)$, any such $nil$-closed unstable algebra is isomorphic to some $H^*(W)^{\mathcal{G}_{}}$.

We prove that $\mathcal{G}_{}$ encodes the centre, in the sense of Heard, of $H^*(W)^{\mathcal{G}_{}}$. Also, there is a $H^*(C)$-comodule structure on $K$ that is associated with the centre of $K$. For $K=H^*(W)^{\mathcal{G}_{}}$, we explain how the sub-algebra of primitive elements of $H^*(W)^{\mathcal{G}_{}}$ for this comodule structure is also encoded in $\mathcal{G}_{}$. Along the way, we prove that this algebra of primitive elements is also noetherian.

Publié le :
DOI : 10.5802/ambp.437
Classification : 55S10, 18AXX
Keywords: Steenrod algebra, Unstable modules, Unstable algebras, Functors

Ouriel Blœdé  1

1 École Polytechnique de Nantes Université, Bâtiment IHT, Campus Chantrerie, Rue Christian Pauc CS 50609, 44306 Nantes cedex 3, FRANCE
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2025__32_2_185_0,
     author = {Ouriel Bl{\oe}d\'e},
     title = {$Nil$-closed {Noetherian} sub-algebras of $H^*(W)$ and their centres},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {185--220},
     year = {2025},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {32},
     number = {2},
     doi = {10.5802/ambp.437},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.437/}
}
TY  - JOUR
AU  - Ouriel Blœdé
TI  - $Nil$-closed Noetherian sub-algebras of $H^*(W)$ and their centres
JO  - Annales mathématiques Blaise Pascal
PY  - 2025
SP  - 185
EP  - 220
VL  - 32
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.437/
DO  - 10.5802/ambp.437
LA  - en
ID  - AMBP_2025__32_2_185_0
ER  - 
%0 Journal Article
%A Ouriel Blœdé
%T $Nil$-closed Noetherian sub-algebras of $H^*(W)$ and their centres
%J Annales mathématiques Blaise Pascal
%D 2025
%P 185-220
%V 32
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.437/
%R 10.5802/ambp.437
%G en
%F AMBP_2025__32_2_185_0
Ouriel Blœdé. $Nil$-closed Noetherian sub-algebras of $H^*(W)$ and their centres. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 2, pp. 185-220. doi: 10.5802/ambp.437

[1] John Adams; Clarence W. Wilkerson Finite H-spaces and algebras over the Steenrod algebra, Ann. Math., Volume 111 (1980), pp. 95-143 | Zbl | DOI

[2] William G. Dwyer; Clarence W. Wilkerson Spaces of null homotopic maps, Théorie de l’homotopie (H.-R. Miller; J.-M. Lemaire; L. Schwartz; M. Zisman, eds.) (Astérisque), Société Mathématique de France, 1990 no. 191, pp. 97-108 | Numdam | Zbl

[3] William G. Dwyer; Clarence W. Wilkerson A cohomology decomposition theorem, Topology, Volume 31 (1992), pp. 433-443 | DOI | Zbl | MR

[4] William G. Dwyer; Clarence W. Wilkerson A New Finite Loop Space at the Prime Two, J. Am. Math. Soc., Volume 6 (1992) no. 1, pp. 37-64 | Zbl | DOI | MR

[5] J. Gunawardena; Jean Lannes; Saïd Zarati Cohomologie des groupes symétriques et application de Quillen, Advances In Homotopy Theory (London Mathematical Society Lecture Note Series), Volume 139, Cambridge University Press, 1989, pp. 61-68 | Zbl | DOI

[6] Drew Heard Depth and detection for Noetherian unstable algebras, Trans. Am. Math. Soc., Volume 373 (2020) no. 10, pp. 7429-7454 | Zbl | DOI | MR

[7] Drew Heard The topological nilpotence degree of a Noetherian unstable algebra, Sel. Math., New Ser., Volume 27 (2021) no. 2, 17, 56 pages | Zbl | MR

[8] Hans-Werner Henn; Jean Lannes; Lionel Schwartz The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, Math. Ann., Volume 115 (1993) no. 5, pp. 1053-1106 | Zbl

[9] Hans-Werner Henn; Jean Lannes; Lionel Schwartz Localizations of unstable A-modules and equivariant mod p cohomology, Am. J. Math., Volume 301 (1995) no. 1, pp. 23-68 | Zbl | MR

[10] Mazaki Kashiwara; Pierre Schapira Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006 | DOI | MR | Zbl

[11] Nicholas J. Kuhn Primitives and central detection numbers in group cohomology, Adv. Math., Volume 216 (2007) no. 1, pp. 387-442 | Zbl | DOI | MR

[12] Nicholas J. Kuhn Nilpotence in group cohomology, Proc. Edinb. Math. Soc., Volume 56 (2013) no. 1, pp. 151-175 | MR | DOI | Zbl

[13] Jean Lannes; Saïd Zarati Sur les 𝒰-injectifs, Ann. Sci. Éc. Norm. Supér. (4), Volume 19 (1986) no. 2, pp. 303-333 | Zbl | DOI | MR

[14] David L. Rector Noetherian cohomology rings and finite loop spaces with torsion, J. Pure Appl. Algebra, Volume 32 (1984) no. 2, pp. 191-217 | Zbl | DOI | MR

[15] Lionel Schwartz Unstable modules over the Steenrod Algebra and Sullivan’s fixed point set conjecture, Chicago Lectures in Mathematics, Univ. of Chicago Press, 1994 | Zbl | MR

Cité par Sources :