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𝑁𝑖𝑙-closed Noetherian sub-algebras of 𝐻∗(𝑊) and their centres

Ouriel Blœdé

Abstract

For G some groupoid whose objects are the sub-vector spaces of a F𝑝-vector space 𝑊 , we define
𝐻∗ (𝑊 )G a 𝑛𝑖𝑙-closed, noetherian, unstable sub-algebra of 𝐻∗ (𝑊 ) over the Steenrod algebra. The
application on the appropriate ordered set of groupoids, that maps G to 𝐻∗ (𝑊 )G defines an isomorphism
of posets to the set of noetherian, 𝑛𝑖𝑙-closed, unstable sub-algebras of 𝐻∗ (𝑊 ) of transcendence degree
dim(𝑊 ) , ordered by inclusion.

Since any noetherian and integral unstable algebra of transcendence degree dim(𝑊 ) admits an
injection into 𝐻∗ (𝑊 ) , any such 𝑛𝑖𝑙-closed unstable algebra is isomorphic to some 𝐻∗ (𝑊 )G .

We prove that G encodes the centre, in the sense of Heard, of 𝐻∗ (𝑊 )G . Also, there is a 𝐻∗ (𝐶 )-
comodule structure on 𝐾 that is associated with the centre of 𝐾 . For 𝐾 = 𝐻∗ (𝑊 )G , we explain how the
sub-algebra of primitive elements of 𝐻∗ (𝑊 )G for this comodule structure is also encoded in G. Along
the way, we prove that this algebra of primitive elements is also noetherian.

1. Introduction

1.1. The two theorems of Adams–Wilkerson

We consider 𝑝 a prime number and 𝑊 a F𝑝-vector space. The F𝑝-algebra 𝐻∗ (𝑊) :=
𝐻∗ (𝐵𝑊), where 𝐵𝑊 is the classifying space of𝑊 and 𝐻∗ denote the singular cohomology
with F𝑝-coefficients, is an unstable algebra over A, the Steenrod algebra over F𝑝. The
category U of unstable modules over A admits a localizing sub-category N il and an
unstable module 𝑀 is called 𝑛𝑖𝑙-closed if its localization away fromN il is an isomorphism.

The first theorem of Adams–Wilkerson [1, Theorem 1.1] states that any integral and
noetherian unstable algebra 𝐾 is isomorphic to some sub-algebra of 𝐻∗ (𝑊), with dim(𝑊)
equal to the transcendence degree of 𝐾. The first aim of this article is to describe the
poset of unstable sub-algebras of 𝐻∗ (𝑊) which are noetherian, 𝑛𝑖𝑙-closed and whose
transcendence degree is the dimension of 𝑊 . Combined with the theorem of Adams–
Wilkerson, this would give us a description of any 𝑛𝑖𝑙-closed, integral and noetherian
unstable algebra.

We define Groupoid(𝑊), a poset of groupoids G, whose objects are the sub-vector
spaces of𝑊 and whose morphisms are isomorphisms, and with G satisfying a so-called
restriction property.

This work was partially supported by the ANR Project ChroK, ANR-16-CE40-0003.
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Theorem 1.1. For all finite dimensional F𝑝-vector space 𝑊 , there is an isomorphism
of posets between the poset of 𝑛𝑖𝑙-closed and noetherian sub-algebras of 𝐻∗ (𝑊) whose
transcendence degree is dim(𝑊) and Groupoid(𝑊).

This isomorphism is given by G ↦→ 𝐻∗ (𝑊)G, where the sub-algebra 𝐻∗ (𝑊)G is a
generalisation of the algebra of invariants 𝐻∗ (𝑊)𝐺 in the case where 𝐺 is a sub-group
of Gl(𝑊). Theorem 1.1 therefore generalizes the second theorem of Adams–Wilkerson,
which states that a noetherian, 𝑛𝑖𝑙-closed sub-algebra of 𝐻∗ (𝑊) whose transcendance
degree is dim(𝑊) and which is integrally closed in its field of fraction is some 𝐻∗ (𝑊)𝐺
for some sub-group 𝐺 of Gl(𝑊).

1.2. The centre of an unstable algebra

In [3], Dwyer and Wilkerson introduced the notion of a central element of an unstable
algebra; this notion allowed them to exhibit the only exotic finite loop space at prime 2
in [4]. In the case where 𝐾 is noetherian and connected, the set of central elements of 𝐾
coincides with the set of pairs (𝑉, 𝜙) such that

(1) 𝜙 ∈ HomK (𝐾, 𝐻∗ (𝑉)),

(2) 𝐾 admits a structure 𝜅 of 𝐻∗ (𝑉)-comodule in K , such that the following diagram
commutes:

𝐾
𝜅 //

𝜙
((

𝐾 ⊗ 𝐻∗ (𝑉)

𝜖𝐾⊗id
��

𝐻∗ (𝑉),
where 𝜖𝐾 denotes the augmentation of 𝐾 (which is uniquely defined because of
the connectedness of 𝐾).

In [7], Heard showed that for 𝐾 noetherian, 𝐾 admits a unique (up to isomorphism)
central element (𝐶, 𝛾) such that 𝛾 induces a structure of finitely generated 𝐾-module on
𝐻∗ (𝐶) and dim(𝐶) is maximal among such central elements. Heard called this central
element the centre of 𝐾. The centre of an unstable algebra has been shown to be an
important invariant. In [11] and [12], Kuhn used it to approximate the depth of 𝐾 as
well as invariants 𝑑0 (𝐾) and 𝑑1 (𝐾) introduced by Henn, Lannes, and Schwartz in [9], in
the case where 𝐾 is the cohomology of a group. Heard generalised those results for 𝐾
noetherian in [6] and [7].

For 𝐾 noetherian, since a central element of 𝐾 is associated with a 𝐻∗ (𝑉)-comodule
structure on 𝐾 , it gives rise to a second invariant: the sub-algebra of primitive elements
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of 𝐾 under this 𝐻∗ (𝑉)-comodule structure. The second objective of this article is to
explain how central elements of 𝐻∗ (𝑊)G and their associated sub-algebra of primitive
elements are determined by G. We prove the following theorem, which gives a complete
description of central elements of 𝐻∗ (𝑊)G , since any morphism from 𝐻∗ (𝑊)G to 𝐻∗ (𝑇)
in 𝐾 factors through the inclusion of 𝐻∗ (𝑊)G in 𝐻∗ (𝑊).

Theorem 1.2. For G ∈ Groupoid(𝑊) and 𝛿 a morphism from some vector space 𝑇 to𝑊 ,
the induced morphism in K from 𝐻∗ (𝑊)G to 𝐻∗ (𝑇) is central if and only if 𝑉 := 𝛿(𝑇)
satisfies the two following conditions:

(1) for any𝑈 and𝑈′ subspaces of𝑊 , 𝛼 ∈ G(𝑈,𝑈′) and 𝑣 ∈ 𝑉 ∩𝑈, we have 𝑣 ∈ 𝑈′

and 𝛼(𝑣) = 𝑣,

(2) for any𝑈 and𝑈′ subspaces of𝑊 and 𝛼 an isomorphism from𝑈 to𝑈′ such that
𝛼(𝑣) = 𝑣 for all 𝑣 ∈ 𝑉 ∩𝑈, 𝛼 ∈ G(𝑈,𝑈′) if and only if 𝛼̄ ∈ G(𝑉 +𝑈,𝑉 +𝑈′),
where 𝛼̄ is the morphism that maps 𝑣 ∈ 𝑉 to itself and 𝑢 ∈ 𝑈 to 𝛼(𝑢).

1.3. The algebra of primitive elements associated with a central element

We prove the following theorem, for G ∈ Groupoid(𝑊), 𝜙 being a central element of
𝐻∗ (𝑊)G , and 𝑃(𝐻∗ (𝑊)G, 𝜙) denoting the sub-algebra of primitive elements of 𝐻∗ (𝑊)G
with respect to the comodule structure associated to 𝜙.

Theorem 1.3. 𝑃(𝐻∗ (𝑊)G, 𝜙) is 𝑛𝑖𝑙-closed and noetherian.

Furthermore, taking 𝛿 a morphism of vector spaces with codomain𝑊 , such that 𝜙 is the
restriction of 𝛿∗ to𝐻∗ (𝑊)G , 𝑃(𝐻∗ (𝑊)G, 𝜙) identifies with a sub-algebra of𝐻∗ (𝑊/Im(𝛿))
with transcendence degree dim(𝑊/Im(𝛿)). Therefore, by Theorem 1.1, there is G′ ∈
Groupoid(𝑊/Im(𝛿)) such that 𝑃(𝐻∗ (𝑊)G, 𝜙) identifies with 𝐻∗ (𝑊/Im(𝛿))G′ . In Theo-
rem 5.29, we will explain how to compute G′ from G.

1.4. Organisation of the paper

In Section 2, we recall some known facts about unstable algebras and their centres.
In [8], the authors described an equivalence of categories between K/N il, which is

the localization of K in morphisms whose kernels and cokernels are nilpotent, and some
category of functors, given by 𝐾 ↦→ HomK (𝐾, 𝐻∗ (_)). The main idea of this article is to
classify the categories of elements of functors of the form𝑊 ↦→ HomK (𝐾, 𝐻∗ (𝑊)). In
Section 3, we define the notion of a formal category of elements and characterize those
that can be obtained as the category of elements of a functor HomK (𝐾, 𝐻∗ (_)) with 𝐾
noetherian. Then, we study the properties of such formal categories of elements.
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In Section 4, we define and study the notion of a central element in a formal category of
elements. We show that, for 𝔖𝐾 the category of elements of the functor HomK (𝐾, 𝐻∗ (_))
with 𝐾 𝑛𝑖𝑙-closed and noetherian, the central elements of 𝔖𝐾 are the central elements
of 𝐾 .

Finally, in Section 5, we define the sub-algebras 𝐻∗ (𝑊)G and prove our different
classification results.

Acknowledgements

I am thankful to Geoffrey Powell for his careful proofreading and his continued support
during and after my PhD. I also want to thank Antoine Boivin for his help in computing
the 𝐻∗ (𝑊)G of the last section.

2. Recollections on unstable algebras over the Steenrod algebra

In the following, A denotes the Steenrod algebra over F𝑝 with 𝑝 a prime number, U
and K denote the categories of unstable modules and unstable algebras over A, and N il
denotes the Serre class of nilpotent objects in U. Recollections about unstable algebras,
unstable modules, and nilpotent objects can be found in [15].

We start this section, by recalling some known facts about the localization K/N il,
which is the localization of K by morphisms whose kernel and cokernel are nilpotent.

Then, we recall a definition of central elements of a noetherian unstable algebra 𝐾
over A.

2.1. N il-localisation of unstable algebras

In [8], Henn, Lannes, and Schwartz constructed a localized category K/N il with respect
to the morphisms whose kernels and cokernels are in N il, in the sense of [10]. Then, they
described an equivalence of categories between K/N il and some category whose objects
are contravariant functors from V 𝑓 , the category of finite dimensional vector spaces, to
Pfin(V 𝑓 )op

, the category of profinite sets.

Notation 2.1. We denote by 𝑟 : K → K/N il the localization functor. It admits a right-
adjoint (cf [8]) that we denote by 𝑚. Finally, we denote by 𝑙1 the composition 𝑚 ◦ 𝑟 from
K to itself.

Definition 2.2. An unstable algebra 𝐾 is called 𝑛𝑖𝑙-closed if the unit of the adjunction
𝐾 → 𝑙1 (𝐾) is an isomorphism.
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Proposition 2.3 ([8, Proposition 4.4]). An unstable algebra 𝐾 is 𝑛𝑖𝑙-closed if and only if
Ext0U (𝑁, 𝐾) � Ext1U (𝑁, 𝐾) � 0 for any nilpotent module 𝑁 , where the Ext-groups are
computed in the abelian category U of unstable modules over the Steenrod algebra.

Theorem 2.4. For 𝑉 ∈ V 𝑓 , 𝐻∗ (𝑉) is 𝑛𝑖𝑙-closed.

Proof. It is a direct consequence of Proposition 2.3 and the injectivity of𝐻∗ (𝑉) ([13]). □

Proposition 2.5. For 𝐾 ∈ K 𝑛𝑖𝑙-closed and for 𝑉 ∈ V 𝑓 , 𝐾 ⊗ 𝐻∗ (𝑉) is also 𝑛𝑖𝑙-closed.

Proof. The tensor product of 𝑛𝑖𝑙-closed modules is 𝑛𝑖𝑙-closed (see [5, Proposition 3.4]).
Therefore, this result follows from Theorem 2.4. □

For 𝐾 ∈ K, HomK (𝐾, 𝐻∗ (𝑉)) has a structure of profinite set which comes from
the fact that 𝐾 is the direct limit of the unstable sub-algebras of 𝐾 which are finitely
generated as A-algebras. In particular, if 𝐾 is noetherian, the profinite set structure of
HomK (𝐾, 𝐻∗ (𝑉)) is that of a finite set.

Definition 2.6. Let Pfin(V 𝑓 )op
be the category of functors from (V 𝑓 )op to Pfin(V 𝑓 )op

and
𝑔 : K → Pfin(V 𝑓 )op

be the contravariant functor that maps 𝐾 to 𝑉 ↦→ HomK (𝐾, 𝐻∗ (𝑉)).

We denote by Pfin(V 𝑓 )op

𝜔 the essential image of 𝑔 in Pfin(V 𝑓 )op
.

Theorem 2.7 ([8, Theorem 1.5 of Part II]). The functor 𝑔 induces an equivalence of
categories between K/N il and (Pfin(V 𝑓 )op

𝜔 )𝑜𝑝 .

Remark 2.8. The category Pfin(V 𝑓 )op

𝜔 is described in more detail in [8], and F in(V 𝑓 )op
,

the full subcategory of Pfin(V 𝑓 )op
of contravariant functors with values in finite sets, is

included in Pfin(V 𝑓 )op

𝜔 .

Notation 2.9. We denote by 𝑚1 the composition of 𝑚 with the equivalence of categories
from Pfin(V 𝑓 )op

𝜔 to K/N il.

The following lemma will be of importance in the following.

Lemma 2.10. The functor 𝑔 turns injections into surjections and finite inverse limits into
direct limits.

Proof. There is an exact functor 𝑓 from the category U to the category of functors from
V 𝑓 to the category V of vector spaces of any dimension (cf [8]). For 𝐾 ∈ K, it satisfies
𝑓 (𝐾) � F𝑔 (𝐾 )

𝑝 , where F𝑔 (𝐾 ) (𝑉 )
𝑝 denote the set of continuous maps from the profinite

set 𝑔(𝐾) (𝑉) to the discrete topological space F𝑝. Since 𝑓 is exact it sends injections to
injections and commutes with finite inverse limits, which concludes the proof. □
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2.2. Central elements of a noetherian unstable algebra

The notion of a central element of an unstable algebra 𝐾 is defined by Dwyer and
Wilkerson in [3] and they used it in [4] to exhibit the only exotic finite loop space at the
prime 2. The centre of 𝐾 has been studied in detail in [6] and [7].

For 𝐾 an unstable algebra over the Steenrod algebra, a central element is a pair (𝑉, 𝜙),
with 𝑉 ∈ V 𝑓 and 𝜙 : 𝐾 → 𝐻∗ (𝑉) a morphism in K that satisfies some property that we
do not wish to recall in full generality. We will only recall the easier characterization of a
central element of 𝐾 from [3], in the case where 𝐾 is connected and noetherian.

Definition 2.11. Let 𝐾 be an unstable algebra, 𝐾 is connected if 𝐾 has an augmentation
𝜖𝐾 : 𝐾 → F𝑝 which induces an isomorphism 𝐾0 �→ F𝑝 .

Notation 2.12. We denote by 𝜖𝐾,𝑉 or 𝜖𝑉 , when there is no ambiguity on𝐾 , the composition
of 𝜖𝐾 with the injection from F𝑝 to 𝐻∗ (𝑉).

The following propositions in Dwyer and Wilkerson’s articles use less restrictive
hypotheses. However, the hypothesis that 𝐾 is noetherian will be sufficient for this article.

Proposition 2.13 ([2, Proof of Theorem 3.2]). Let 𝐾 be a connected, noetherian, unstable
algebra, then (𝑉, 𝜖𝑉 ) is central for all 𝑉 ∈ V 𝑓 .

We recall the following results of [3].

Proposition 2.14 ([3, Proposition 3.4]). Let 𝐾 be a connected, noetherian, unstable
algebra. Then, for 𝜙 ∈ HomK (𝐾, 𝐻∗ (𝑉)), (𝑉, 𝜙) is central if and only if there exists a
morphism from 𝐾 to 𝐾 ⊗ 𝐻∗ (𝑉) such that the following diagram commutes:

𝐾

𝐾

id

66

//

𝜙
((

𝐾 ⊗ 𝐻∗ (𝑉)

id ⊗𝜖𝐻∗ (𝑉 )

OO

𝜖𝐾⊗id
��

𝐻∗ (𝑉).

Notation 2.15. We denote by C(𝐾) the class of central elements of 𝐾 .

Corollary 2.16 ([7]). Let 𝐾 be a connected, noetherian, unstable algebra. For 𝜙 ∈
HomK (𝐾, 𝐻∗ (𝑉)), (𝑉, 𝜙) is central if and only if 𝐾 has a structure of 𝐻∗ (𝑉)-comodule

190



Sub-algebras of 𝐻∗ (𝑊 )

𝜅 in K, such that the following diagram commutes:

𝐾
𝜅 //

𝜙
((

𝐾 ⊗ 𝐻∗ (𝑉)

𝜖𝐾⊗id
��

𝐻∗ (𝑉).

In particular, this implies:

Proposition 2.17. Let 𝐾 be a connected, noetherian, unstable algebra, then for 𝜙 ∈ C(𝐾)
and 𝛼 : 𝑉 → 𝐸 a morphism in V 𝑓 , (𝑉, 𝛼∗ ◦ 𝜙) ∈ C(𝐾).

Example 2.18. For 𝑊 ∈ V 𝑓 , the addition in 𝑊 , ∇𝑊 , induces on 𝐻∗ (𝑊) a coalgebra
structure in K. Then, for every morphism of unstable modules 𝜙 from 𝐻∗ (𝑊) to 𝐻∗ (𝑉),
one can take the composition of ∇∗

𝑊
with id𝐻∗ (𝑊 ) ⊗𝜙 to define a 𝐻∗ (𝑉)-comodule

structure on 𝐻∗ (𝑊) satisfying the hypothesis of Corollary 2.16. Therefore (𝑉, 𝜙) is
central.

Theorem 2.19 ([7]). For 𝐾 noetherian and connected, there exists, up to isomorphism,
a unique central element (𝐶, 𝛾), such that 𝛾 makes 𝐻∗ (𝐶) into a finitely generated
𝐾-module and dim(𝐶) is maximal. It is called the centre of 𝐾 .

For (𝐶, 𝛾) the centre of 𝐾, any central element of 𝐾 has the form (𝑉, 𝛼∗𝛾) for some
𝑉 ∈ V 𝑓 and 𝛼 ∈ Hom(𝑉,𝐶).

We end this section by giving a characterization of central elements of a noetherian,
connected, 𝑛𝑖𝑙-closed unstable algebra 𝐾 , using only properties of the functor 𝑔(𝐾).

Notation 2.20. When there is no ambiguity on 𝐾, we denote by 𝜖𝑊 the following
composition

𝐾
𝜖𝐾−→ F𝑝 ↩→ 𝐻∗ (𝑊).

Lemma 2.21. For 𝐾 ∈ K connected, noetherian and for 𝜙 from 𝐾 to 𝐻∗ (𝑉) central,
there is a natural group action of (HomF𝑝 (𝑊,𝑉), +) on HomK (𝐾, 𝐻∗ (𝑊)) that satisfies
𝛼 · 𝜖𝑊 = 𝛼∗𝜙.

Proof. Since 𝐾 is connected, it admits a unit 1𝐾 . We have an isomorphism be-
tween HomK (𝐾, 𝐻∗ (𝑊)) × HomK (𝐻∗ (𝑉), 𝐻∗ (𝑊)) and HomK (𝐾 ⊗ 𝐻∗ (𝑉), 𝐻∗ (𝑊))
that maps (𝜙, 𝜓) to the unique morphism 𝛾 in K such that 𝛾(1𝐾 ⊗ ℎ) = 𝜓(ℎ) and
𝛾(𝑘 ⊗ 1𝐻∗ (𝑊 ) ) = 𝜙(𝑘) for all 𝑘 ∈ 𝐾 and ℎ ∈ 𝐻∗ (𝑊). The result is a direct con-
sequence of Corollary 2.16 and of the isomorphism HomK (𝐾 ⊗ 𝐻∗ (𝑉), 𝐻∗ (𝑊)) �
HomK (𝐾, 𝐻∗ (𝑊)) ×HomK (𝐻∗ (𝑉), 𝐻∗ (𝑊)) �HomK (𝐾, 𝐻∗ (𝑊)) ×HomF𝑝 (𝑊,𝑉). □
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Proposition 2.22. If 𝐾 is connected, noetherian and 𝑛𝑖𝑙-closed, 𝜙 ∈ HomK (𝐾, 𝐻∗ (𝑉))
is central if and only if, for any 𝑊 ∈ V 𝑓 and any 𝜓 ∈ HomK (𝐾, 𝐻∗ (𝑊)), there is a
unique element 𝜙 ⊞ 𝜓 ∈ HomK (𝐾, 𝐻∗ (𝑉 ⊕𝑊)) such that

𝜙 = 𝜄∗𝑉 (𝜙 ⊞ 𝜓) : 𝐾 −→ 𝐻∗ (𝑉 ⊕𝑊)
𝜄∗
𝑉−→ 𝐻∗ (𝑉),

and
𝜓 = 𝜄∗𝑊 (𝜙 ⊞ 𝜓) : 𝐾 −→ 𝐻∗ (𝑉 ⊕𝑊)

𝜄∗
𝑊−→ 𝐻∗ (𝑊).

Proof. If, for any 𝑊 ∈ V 𝑓 and any 𝜓 ∈ HomK (𝐾, 𝐻∗ (𝑊)), there is a unique element
𝜙⊞𝜓 that satisfies both conditions, one can define a morphism 𝜅 from HomK (𝐾, 𝐻∗ (𝑊))×
HomF𝑝 (𝑊,𝑉) to HomK (𝐾, 𝐻∗ (𝑊)) that maps (𝜓, 𝛼) to (𝛼 ⊕ id𝑊 )∗ (𝜙 ⊞𝜓). It is natural
and maps (𝜓, 0) to 𝜓 and (𝜖𝑊 , 𝛼) to 𝛼∗𝜙. By Proposition 2.5, since 𝐾 is 𝑛𝑖𝑙-closed,
𝑚1 (HomK (𝐾, 𝐻∗ (𝑊)) ×HomF𝑝 (𝑊,𝑉)) � 𝐾 ⊗𝐻∗ (𝑉). Therefore, 𝑚1 (𝜅) is a morphism
from 𝐾 to 𝐾 ⊗ 𝐻∗ (𝑉) that satisfies the hypothesis of Proposition 2.14 and (𝑉, 𝜙) is
central.

The converse is proven in [3, Lemma 4.6]. □

3. Formal categories of elements

In Section 5, we want to classify noetherian, 𝑛𝑖𝑙-closed, unstable sub-algebras 𝐾 of
𝐻∗ (𝑊), for some vector space 𝑊 , and describe their central elements. To do so, we
consider the category of elements of functors of the form HomK (𝐾, 𝐻∗ (_)) for such
sub-algebras 𝐾 .

In this section, we start by describing such categories of elements and their properties
in the case where 𝐾 is noetherian and a sub-algebra of 𝐻∗ (𝑊). Then, we describe central
elements of 𝐾 in terms of the category of elements of HomK (𝐾, 𝐻∗ (_)).

3.1. Category of elements : an intrinsic characterisation

We recall that, for 𝑆 ∈ Set(V
𝑓 )op

, the category of elements of 𝑆 is the category 𝔖𝑆 , whose
objects are the pairs (𝑉, 𝜙) with 𝑉 ∈ V 𝑓 and 𝜙 ∈ 𝑆(𝑉) and whose morphisms from
(𝑉, 𝜙) to (𝑊, 𝜓) are the linear morphisms 𝛼 from 𝑉 to 𝑊 , such that 𝛼∗𝜓 = 𝜙. There
exists a functor from 𝔖𝑆 to V 𝑓 that maps (𝑉, 𝜙) to 𝑉 .

We give an intrinsic description of such categories.

Definition 3.1. A formal category of elements is a pair (C,S) where C is a category and
S is a functor from C to V 𝑓 , which satisfies:

(1) S is faithful,
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(2) for all 𝑉 ∈ V 𝑓 , S−1 ({𝑉}) is a set,

(3) for 𝛼 a linear morphism from 𝑉 to𝑊 and for 𝑐 ∈ C such that S(𝑐) = 𝑊 , there
exists a unique element 𝛼∗𝑐 ∈ C and a unique morphism 𝛾 from 𝛼∗𝑐 to 𝑐 in C
such that S(𝛾) = 𝛼.

We denote by 𝔉 the category whose objects are the formal categories of elements
and whose morphisms from (C,S) to (C′,S′) are the functors 𝐹 from C to C′

such that S = S′ ◦ 𝐹.

Example 3.2. For 𝑆 ∈ Set(V
𝑓 )op

and S the functor from 𝔖𝑆 to V 𝑓 that maps (𝑉, 𝜙) onto
𝑉 , (𝔖𝑆 ,S) is a formal category of element.

Lemma 3.3. For 𝑐 ∈ C and two composable morphisms 𝛼 and 𝛽 in V 𝑓 with S(𝑐) the
codomain of 𝛽 we have:

(1) id∗S(𝑐) 𝑐 = 𝑐,

(2) 𝛼∗ (𝛽∗𝑐) = (𝛽 ◦ 𝛼)∗𝑐.

Proof. For the first statement, we just have to notice that id𝑐 is a morphism from 𝑐 to 𝑐
that satisfies S(id𝑐) = idS(𝑐) . For the second statement, we have morphisms 𝛾 from 𝛽∗𝑐

to 𝑐 and 𝛿 from 𝛼∗ (𝛽∗𝑐) to 𝛽∗𝑐 such that S(𝛾) = 𝛽 and S(𝛿) = 𝛼, therefore 𝛾 ◦ 𝛿 is a
morphism from 𝛼∗ (𝛽∗𝑐) to 𝑐 that satisfies S(𝛾 ◦ 𝛿) = 𝛽 ◦ 𝛼. □

We take the opportunity to prove the following lemma, which we will use on many
occasions in this article.

Lemma 3.4.

(1) Given 𝑎, 𝑏, 𝑐 and 𝑑 objects in C and morphisms 𝛼 from 𝑎 to 𝑐, 𝛽 from 𝑏 to 𝑑 and
𝛾 from 𝑐 to 𝑑 and given a linear morphism 𝜆 such that the following diagram is a
commutative square in V 𝑓 :

S(𝑎)

S(𝛼)
��

𝜆 // S(𝑏),

S(𝛽)
��

S(𝑐)
S(𝛾)

// S(𝑑)
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there exists a unique morphism 𝜆 from 𝑎 to 𝑏 such thatS(𝜆) = 𝜆 and the following
diagram commutes:

𝑎

𝛼

��

𝜆̃ // 𝑏

𝛽

��

𝑐
𝛾
// 𝑑.

(2) Given 𝑎, 𝑏, 𝑐 and 𝑑 objects in C and morphisms 𝛼 from 𝑎 to 𝑐, 𝛽 from 𝑏 to 𝑑 and
𝛾 from 𝑎 to 𝑏 with S(𝛼) surjective, and given a linear morphism 𝜆 such that the
following diagram is a commutative square in V 𝑓 :

S(𝑎)

S(𝛼)
��

S(𝛾)
// S(𝑏),

S(𝛽)
��

S(𝑐)
𝜆

// S(𝑑)

there exists a unique morphism 𝜆 from 𝑐 to 𝑑 such thatS(𝜆) = 𝜆 and the following
diagram commutes:

𝑎

𝛼

��

𝛾
// 𝑏

𝛽

��

𝑐
𝜆̃

// 𝑑.

Proof. For the first statement, we consider 𝜆 the map from 𝜆∗𝑏 to 𝑏, by construction,
S(𝛽 ◦ 𝜆) = S(𝛾 ◦ 𝛼), therefore, by Lemma 3.3, 𝑎 = S(𝛾 ◦ 𝛼)∗𝑑 = 𝜆∗𝑏 and 𝛽 ◦ 𝜆 = 𝛾 ◦ 𝛼.

For the second statement, since S(𝛼) is surjective, we can consider a right inverse 𝜄
from S(𝑐) to S(𝑎). Then, using Lemma 3.3, 𝜄∗𝑎 = 𝜄∗S(𝛼)∗𝑐 = id∗S(𝑐) 𝑐 = 𝑐. For 𝜄̃ the
induced morphism from 𝑐 to 𝑎, we have 𝛼 ◦ 𝜄 = id𝑐 and the unique valid choice for 𝜆 is
𝜆 = 𝛽 ◦ 𝛾 ◦ 𝜄̃. □

Theorem 3.5. The categories Set(V
𝑓 )op

and 𝔉 are equivalent.

Proof. We have a functor
Set(V

𝑓 )op −→ 𝔉

𝑆 ↦−→ (𝔖𝑆 ,S),
with S defined as in Example 3.2. And a functor

𝔉 −→ Set(V
𝑓 )op

(C,S) ↦−→ (𝑉 ↦→ S−1 ({𝑉})),
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that maps the morphism 𝛼 from 𝑉 to𝑊 to the application from S−1 ({𝑊}) to S−1 ({𝑉})
that maps 𝑐 ∈ S−1 (𝑊) to the unique 𝛼∗𝑐.

Those two functors are quasi-inverses. □

Definition 3.6. We say that (C,S) is connected if there is a unique element 𝜖 in C such
that S(𝜖) = 0. In this case, we denote by 𝜖𝑉 the elements of the form 0∗𝜖 where 0 denotes
the trivial morphism in V 𝑓 from 𝑉 to 0.

3.2. Noetherian formal categories of elements

In [8], the authors described the functors in Pfin(V 𝑓 )op
that arise from a noetherian

unstable algebra. Such functors have values in (discrete profinite) sets.

Notation 3.7. For 𝐾 a noetherian unstable algebra, we will denote by 𝔖𝐾 the category of
elements of the functor HomK (𝐾, 𝐻∗ (_)).

We describe the formal categories of elements of the form 𝔖𝐾 , with 𝐾 noetherian.

Proposition 3.8. Let (C,S) ∈ 𝔉 and 𝑐 ∈ C. Then, there exists a unique sub-vector space
𝑈 of S(𝑐), denoted by ker(𝑐), such that:

(1) For all 𝑐′ ∈ C and all morphisms 𝛾 : 𝑐 → 𝑐′, ker(S(𝛾)) ⊂ 𝑈.

(2) There exists 𝑐′ ∈ C and 𝛾 : 𝑐 → 𝑐′ such that ker(S(𝛾)) = 𝑈.

(3) There exists 𝑐0 ∈ C and 𝛾0 : 𝑐 → 𝑐0 such that S(𝛾0) is the projection from S(𝑐)
to S(𝑐)/𝑈.

Proof. This is a direct consequence of Theorem 3.5 and Proposition-Definition 5.1
in [8]. □

Definition 3.9. For (C,S) ∈ 𝔉 and 𝑐 ∈ C, we say that 𝑐 is regular if ker(𝑐) = 0.

We can now define a notion of a noetherian formal category of elements, such that
(C,S) is noetherian if and only if there exists 𝐾 ∈ K noetherian such that (C,S) � 𝔖𝐾 .

Definition 3.10. A formal category of elements (C,S) is noetherian if the following
conditions are satisfied:

(1) for all 𝑉 ∈ V 𝑓 , S−1 (𝑉) is finite,

(2) there exists 𝑑 ∈N such thatC contains no regular object 𝑐 such that dim(S(𝑐)) > 𝑑,

(3) for all 𝛾 : 𝑐 → 𝑐′ in C, ker(𝑐) = S(𝛾)−1 (ker(𝑐′)).
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Notation 3.11. For (C,S) ∈ 𝔉 which satisfies the two first conditions in Definition 3.10,
S−1 ∈ Pfin(V 𝑓 )op

𝜔 (see [8]). We denote by𝔏(C,S) the image ofS−1 by𝑚1 : Pfin(V 𝑓 )op

𝜔 �

K/N il 𝑚→ K.

Proposition 3.12.

(1) If 𝐾 ∈ K is noetherian, 𝔖𝐾 is noetherian.

(2) If (C,S) ∈ 𝔉 is noetherian, then 𝔏(C,S) ∈ K is noetherian.

Proof. It is a direct consequence of Theorem 3.5 and Theorem 7.1 in [8]. □

3.3. Rector’s Category

Definition 3.13. For (C,S) ∈ 𝔉, ℜC is the full subcategory of C of regular objects.

Remark 3.14. In the case where 𝐾 is a noetherian unstable algebra, ℜ𝐾 := ℜ𝔖𝐾 is
Rector’s category of 𝐾 . Rector’s category of 𝐾 is defined in [14] as the full subcategory
of 𝔖𝐾 whose objects are the pairs (𝑉, 𝜙) such that 𝐻∗ (𝑉) is finitely generated as a
𝐾-module. It is a result from [8] that this condition is equivalent to (𝑉, 𝜙) being regular.

For (C,S) noetherian, the category ℜC behaves nicely and, furthermore, one can
“reconstruct” (C,S) from ℜC . This fact will be the main ingredient in the classification
problem that we are addressing in this article.

Remark 3.15. For (C,S) in 𝔉, S|ℜC is a faithful functor from ℜC to V 𝑓 but it does
not satisfy that, for any 𝛼 a linear morphism from 𝑉 to 𝑊 , and for 𝑐 ∈ ℜC such that
S(𝑐) = 𝑊 , there exists uniques 𝑐′ ∈ ℜC and 𝛾 from 𝑐′ to 𝑐 such that S(𝛾) = 𝛼. Indeed,
if 𝛼 is not injective 𝛼∗𝑐 ∈ C is the unique object that satisfies that condition and it is not
regular. Yet, if (C,S) is noetherian, that condition is satisfied if and only if 𝛼 is injective.

Notation 3.16. We denote by VI the wide subcategory of V 𝑓 that contains all injective
morphisms.

Definition 3.17. A formal category of elements on VI is a pair (R,S) where R is a
category and S is a functor from R to VI, which satisfies:

(1) S is faithful,

(2) for all 𝑉 ∈ V 𝑓 , S−1 ({𝑉}) is a set
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(3) for 𝛼 an injective morphisms from 𝑉 to 𝑊 and for 𝑐 ∈ R such that S(𝑐) = 𝑊 ,
there exists a unique 𝛼∗𝑐 ∈ R and a unique 𝛾 from 𝛼∗𝑐 to 𝑐 in R such that
S(𝛾) = 𝛼.

We denote by 𝔉ℑ the category whose objects are the formal categories of
elements on VI and whose morphisms from (R,S) to (R′,S′) are the functors
𝐹 from R to R′ such that 𝐹 ◦ S = S′.

Lemma 3.18. For (C,S) in 𝔉 noetherian, (ℜC ,S|ℜC ) is formal on VI.

Proof. It is straightforward from the definition of a noetherian object in 𝔉. □

We explain now how to reconstruct a noetherian object (C,S) in 𝔉 from (ℜC ,S|ℜC ).

Definition 3.19. For (R,S) ∈ 𝔉ℑ, let (R̃, S̃) be the following formal category of
elements. The objects of R̃ are triples (𝑉,𝑈, 𝑐) with 𝑉 ∈ V 𝑓 ,𝑈 a sub-vector space of 𝑉
and 𝑐 ∈ R such that S(𝑐) = 𝑉/𝑈. The morphisms from (𝑉 ′,𝑈′, 𝑐′) to (𝑉,𝑈, 𝑐) are pairs
(𝛼, 𝛾) with 𝛼 a linear map from 𝑉 ′ to 𝑉 and 𝛾 ∈ R(𝑐′, 𝑐) that satisfies:

(1) 𝛼−1 (𝑈) = 𝑈′,

(2) S(𝛾) is the map induced by 𝛼 from 𝑉 ′/𝑈′ to 𝑉/𝑈.

Finally, S̃ is the functor that maps (𝑉,𝑈, 𝑐) to 𝑉 and (𝛼, 𝛾) to 𝛼.

Theorem 3.20.

(1) For (C,S) ∈ 𝔉 noetherian, (C,S) � (ℜ̃C , S̃ |ℜC ).

(2) For (R,S) ∈ 𝔉ℑ, (R,S) � (ℜR̃ , S̃ |ℜR̃
). Also (R̃, S̃) is noetherian if and only if

S−1 ({𝑉}) is finite for every 𝑉 ∈ V 𝑓 and there exists 𝑑 ∈ N such that S−1 ({𝑉})
is empty for dim(𝑉) > 𝑑.

Proof. For the first statement, the functor in the first direction maps 𝑐 to (𝑉, ker(𝑐), 𝑐0),
where 𝑐0 is defined as in Proposition 3.8. Since (C,S) is noetherian, 𝑐0 is indeed regular.
For 𝛽 from 𝑐′ to 𝑐 in C, by Proposition 3.8, we have the following diagram in C:

𝑐′
𝛽
//

𝛾′0
��

𝑐

𝛾0

��
𝑐′0 𝑐0,

197



O. Blœdé

with S(𝑐′0) = S(𝑐′)/ker(𝑐′) and S(𝑐0) = S(𝑐)/ker(𝑐). ker(𝑐′) = S(𝛽)−1 (ker(𝑐)) so
S(𝛽) induces a morphism from S(𝑐′0) to S(𝑐0). By Lemma 3.4, this morphism can be
obtained in a unique way as a morphism S(𝛽) with 𝛽 from 𝑐′0 to 𝑐0. The morphism 𝛽 is
mapped to (S(𝛽), 𝛽).

The functor in the other direction is the one that maps (𝑉,𝑈, 𝑐0) to the unique 𝑐 for
which there is a 𝛾0 from 𝑐 to 𝑐0 such that S(𝛾0) is the projection from 𝑉 to 𝑉/𝑈. For
(𝛼, 𝛽) a morphism in ℜ̃C , we have the following diagram:

𝑐′

𝛾′0
��

𝑐

𝛾0

��
𝑐′0

𝛽
// 𝑐0.

By Lemma 3.4, there is a unique 𝛼̃, from 𝑐′ to 𝑐, such that S(𝛼̃) = 𝛼, (𝛼, 𝛽) is mapped
to 𝛼̃.

It is easy to check that the descriptions above define morphisms in 𝔉 and that they are
inverses.

For the second statement, it is enough to check that (𝑉,𝑈, 𝑐) is regular in R̃ if and
only if𝑈 = 0. On the one hand, for𝑈 ≠ 0 there is the morphism (𝜋, id𝑐) from (𝑉,𝑈, 𝑐)
to (𝑉/𝑈, 0, 𝑐), with 𝜋 the projection from 𝑉 to 𝑉/𝑈, therefore (𝑉,𝑈, 𝑐) is not regular.
On the other hand, morphisms (𝛼, 𝛾) in R̃ from (𝑉, 0, 𝑐) satisfy 𝛼 = S(𝛾). Since 𝛾 is a
morphism in R, 𝛼 is injective, therefore (𝑉, 0, 𝑐) is regular. □

3.4. Some classification problems

In Section 5, we will consider the following problem: can we classify the sub-unstable
algebras 𝐾 of 𝐻∗ (𝑊) that are 𝑛𝑖𝑙-closed, noetherian and such that the injection 𝜙 : 𝐾 ↩→
𝐻∗ (𝑊) is regular?

Notation 3.21. For𝑊 ∈ V 𝑓 and 𝐾 ∈ K , we denote by W the category of elements of the
functor HomF𝑝 (_,𝑊) � HomK (𝐻∗ (𝑊), 𝐻∗ (_)).

An injection 𝜙 from 𝐾 to 𝐻∗ (𝑊) induces a surjection of formal categories of elements
from W to 𝔖𝐾 (by surjection, we mean a functor that is a surjection on objects but not on
morphisms), this surjection maps (𝑊, id𝑊 ) onto (𝑊, 𝜙).

We consider (C,S) a noetherian formal category of elements, and 𝜙 a surjection from
W to (C,S). Since 𝜙 is a surjection, any object of C has the form 𝛼∗𝑐 for some morphism
𝛼 from some vector space 𝑉 to𝑊 , and since (C,S) is noetherian, 𝛼∗𝑐 is regular if and
only if 𝛼 is injective. We get the following lemma.
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Lemma 3.22. For (C,S) ∈ 𝔉 noetherian and 𝜙 : W↠ (C,S) such that 𝜙(𝑊, id𝑊 ) is
regular, 𝜙 is induced by a surjection of formal categories of elements on VI from ℜW
to ℜC .

In this subsection, we address the following problem: how to classify formal categories
(R,S) on VI with a fixed surjection 𝜙 : ℜW ↠ (R,S).

Definition 3.23. Let ℜW

↠

𝔉ℑ be the category whose objects are formal categories of
elements (R,S) on VI with a fixed surjection 𝜙 : ℜW ↠ (R,S), where a surjection
means a map in 𝔉ℑ that is a surjection on objects, and whose morphisms are morphisms
in 𝔉ℑ compatible with the surjections from ℜW.

The category ℜW (where we forget the structure of formal category of elements on
VI) admits the following skeleton. The objects of S𝑘 are given by (𝑊, id𝑊 ) and the
pairs of the form (𝑈, 𝜄𝑈) with 𝑈 a sub-vector space of 𝑊 and 𝜄𝑈 the inclusion of 𝑈 in
𝑊 , and the morphisms of S𝑘 are the identities and the inclusions of sub-spaces. Since a
morphism from (𝑈, 𝜄𝑈) to (𝑅, 𝜄𝑅) correspond to a factorisation of 𝜄𝑈 by 𝜄𝑅, S𝑘 is full,
and since for any objects (𝑉, 𝛼) in ℜW there is a unique isomorphism from (𝑉, 𝛼) to an
element of S𝑘 , which is (Im(𝛼), 𝜄Im(𝛼) ), the inclusion of S𝑘 in ℜW is an equivalence of
categories.

For 𝜙 : ℜW ↠ (R,S) an object in ℜW

↠

𝔉ℑ, the image of S𝑘 by 𝜙 is not in general
a skeleton of R. Since 𝜙 is a surjection, it contains an element in each isomorphism
class of object in R, but this element might not be unique, and also it might not be a
full subcategory of R. Indeed, for 𝑈 and 𝑈′ two sub-vector spaces of 𝑊 , there might
be morphisms 𝛾 from𝑈 to𝑈′ such that 𝜄𝑈 ≠ 𝜄𝑈′ ◦ 𝛾 but 𝜙(𝑈, 𝜄𝑈) = 𝜙(𝑈′, 𝜄𝑈′ ◦ 𝛾). We
define a groupoid G(R,S,𝜙) (denoted only GR when there is no ambiguity) with objects
the images of objects in S𝑘 that will capture all the informations of (R,S, 𝜙).

Definition 3.24. For (R,S) a formal category of elements on VI and for 𝜙 a surjection
from ℜW to (R,S), let G(R,S,𝜙) be the groupoid whose objects are the sub-vector spaces
𝑈 of𝑊 , and such that G(R,S,𝜙) (𝑈,𝑈′) is the set of isomorphisms 𝛼 from𝑈 to𝑈′ such
that there exists 𝛾 from 𝜙(𝑈, 𝜄𝑈) to 𝜙(𝑈′, 𝜄𝑈′ ) in R with S(𝛾) = 𝛼.

Lemma 3.25. Let (R,S, 𝜙) be an object in ℜW

↠

𝔉ℑ. Then, G(R,S,𝜙) satisfies the
following property. For 𝛼 ∈ G(R,S,𝜙) , for 𝑀 a sub-space of𝑈, and for 𝛼𝑀 : 𝑀 → 𝛼(𝑀)
the restriction of 𝛼 to 𝑀 corestricted to 𝛼(𝑀), 𝛼𝑀 ∈ G(R,S,𝜙) (𝑀, 𝛼(𝑀)).

Proof. If 𝛾 from 𝜙(𝑈, 𝜄𝑈) to 𝜙(𝑈′, 𝜄′
𝑈
) satisfies S(𝛾) = 𝛼, then, for 𝜄𝑈

𝑀
the inclusion of

𝑀 in𝑈, 𝛾 ◦ 𝜙(𝜄𝑈
𝑀
) is a morphism from 𝜙(𝑀, 𝜄𝑀 ) to 𝜙(𝑈′, 𝜄𝑈′ ) in R. One checks that it

factorises as 𝜙(𝜄𝑈′

𝛼(𝑀 ) ) ◦ 𝛾
′ for some 𝛾′ that satisfies S(𝛾′) = 𝛼𝑀 . □
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Definition 3.26. For G a groupoid whose objects are the sub-vector spaces of 𝑊 , and
whose morphisms are isomorphisms of vector spaces, we say that G has the restriction
property if, for all𝑈,𝑈′ and 𝛼 ∈ G(𝑈,𝑈′), 𝛼𝑀 is in G(𝑀, 𝛼(𝑀)).

A morphism 𝐹 in ℜW

↠

𝔉ℑ from (R,S, 𝜙) to (R′,S′, 𝜙′) induces an inclusion of
groupoids from G(R,S,𝜙) to G(R′ ,S,𝜙′ ) , indeed for all 𝑈 and 𝑈′ subspaces of 𝑊 , and
for all 𝛼 ∈ G(R,S,𝜙) (𝑈,𝑈′), for 𝛾 between 𝜙(𝑈, 𝜄𝑈) and 𝜙(𝑈′, 𝜄𝑈′ ) such that S(𝛾) = 𝛼,
𝐹 (𝛾) is an isomorphism from 𝜙′ (𝑈, 𝜄𝑈) to 𝜙′ (𝑈′, 𝜄𝑈′ ) in R′ and S(𝛾) = S′ (𝐹 (𝛾)) = 𝛼.

Definition 3.27. Let Groupoid(𝑊) be the category whose objects are groupoids with the
restriction property and with objects the subspaces of𝑊 , and whose morphisms are the
inclusions of groupoids.

We want to prove that the categories ℜW

↠

𝔉ℑ and Groupoid(𝑊) are equivalent. Let
us first explain how G(R,S,𝜙) captures all the information about morphisms in R.

Lemma 3.28. For (R,S, 𝜙) ∈ ℜW

↠

𝔉ℑ and for (𝑈, 𝛾) and (𝑉, 𝜈) two objects in ℜW,
we have

HomR (𝜙(𝑈, 𝛾), 𝜙(𝑉, 𝜈)) �
⊔

𝑈′◁𝑉 ; dim(𝑈′ )=dim(𝑈)
GR (𝛾(𝑈), 𝜈(𝑈′)).

Proof. Let 𝛼 be a morphism from 𝜙(𝑈, 𝛾) to 𝜙(𝑉, 𝜈) in R. Then, S(𝛼) ∈ VI factorises
uniquely as 𝜄 ◦ 𝛼̃ with 𝛼̃ an isomorphism from 𝑈 to 𝑈′ = S(𝛼) (𝑈) and 𝜄 the inclusion
of 𝑈′ in 𝑉 . Then 𝜈 |𝑈′ ◦ 𝛼̃ ◦ (𝛾 |𝛾 (𝑈) )−1 is an element of GR (𝛾(𝑈), 𝜈(𝑈′)). It is easy to
check that 𝛼 ↦→ 𝜈 |𝑈′ ◦ 𝛼̃ ◦ (𝛾 |𝛾 (𝑈) )−1 defines a bĳection. □

We construct a quasi-inverse to the functor from ℜW

↠

𝔉ℑ to Groupoid(𝑊) that maps
(R,S, 𝜙) to G(R,S,𝜙) .

Definition 3.29. For G ∈ Groupoid(𝑊), ∼G is the following equivalence relation on
objects of ℜW. For 𝛽 and 𝛾 from𝑉 to𝑊 , (𝑉, 𝛽) ∼G (𝑉, 𝛾) if there is 𝛼 in G(𝛽(𝑉), 𝛾(𝑉))
such that 𝛾̃ = 𝛼 ◦ 𝛽, for 𝛾̃ and 𝛽 the corestrictions of 𝛾 and 𝛽 to their images.

We denote by [𝑉, 𝛽]G, or simply [𝑉, 𝛽] when there is no ambiguity, the equivalence
class of (𝑉, 𝛽).

Since G has the restriction property, for 𝛽 and 𝛾 from 𝑉 to𝑊 with (𝑉, 𝛽) ∼G (𝑉, 𝛾),
and for 𝛿 from some vector space 𝐻 to 𝑉 , (𝐻, 𝛽 ◦ 𝛿) ∼G (𝐻, 𝛾 ◦ 𝛿). The following
category is therefore well defined and it is in an obvious way an element of ℜW

↠

𝔉ℑ.

Definition 3.30. We defined ℜW/∼G ∈ ℜW

↠

𝔉ℑ as the category whose objects are
the equivalence classes [𝑉, 𝛽] and whose morphisms from [𝐻, 𝜂] to [𝑉, 𝛽] is the set of
morphisms 𝛿 from 𝐻 to 𝑉 such that (𝐻, 𝛽 ◦ 𝛿) ∼G (𝐻, 𝜂). The functor from ℜW/∼G to
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VI is the one that map [𝑉, 𝜙] to 𝑉 and the morphism 𝛼 to itself and the surjection from
ℜW is given by (𝑉, 𝛽) ↦→ [𝑉, 𝛽].

Finally, if G is included in G′, the surjection from ℜW to ℜW/∼G′ factorises through
ℜW ↠ ℜW/∼G , G ↦→ ℜW/∼G is therefore a functor from Groupoid(𝑊) to ℜW

↠

𝔉ℑ.

Example 3.31. We consider 𝐺 a subgroup of Gl(𝑊). We define 𝔤(𝐺) ∈ Groupoid(𝑊)
by 𝔤(𝐺) (𝑈,𝑈′) is the set of restriction to 𝑈 of morphisms in 𝐺 such that 𝑔(𝑈) = 𝑈′.
Then, (𝑉, 𝛾) ∼𝔤(𝐺) (𝑉, 𝛽) if and only if there is 𝑔 ∈ 𝐺 such that 𝛽 = 𝑔 ◦ 𝛾. Since
HomK (𝐻∗ (𝑊)𝐺 , 𝐻∗ (𝑈)) � Hom(𝑈,𝑊)/∼ with 𝛼 ∼ 𝛽 if and only if there is 𝑔 ∈ 𝐺 such
that 𝛽 = 𝑔 ◦ 𝛼, ℜ𝐻∗ (𝑊 )𝐺 and ℜW/∼𝔤(𝐺) are isomorphic in ℜW

↠

𝔉ℑ.

Theorem 3.32. The categories ℜW

↠

𝔉ℑ and Groupoid(𝑊) are equivalent.

Proof. The equivalence is given by the functors G ↦→ ℜW/∼G and (R,S, 𝜙) ↦→ GR . We
have to prove that they are quasi-inverses. We consider GℜW/∼G

(𝑈,𝑈′) for 𝑈 and 𝑈′

isomorphic subspaces of 𝑊 . It is the set of isomorphisms 𝛼 from 𝑈 to 𝑈′ such that
𝜄𝑈′ ◦ 𝛼 ∼G 𝜄𝑈 and, by definition, this is the case if and only if 𝛼 ∈ G(𝑈,𝑈′). Therefore
GℜW/∼G

= G.
In the other direction, for (R,S, 𝜙) ∈ ℜW

↠

𝔉ℑ, if (𝑉, 𝛽) ∼GR (𝑉, 𝛾) there is
𝛼 ∈ GR (𝛽(𝑉), 𝛾(𝑉)) such that 𝛾̃ = 𝛼 ◦ 𝛽, for 𝛾̃ and 𝛽 the corestriction of 𝛾 and 𝛽

to their images. Then, 𝜙(𝑉, 𝛾) = 𝛾̃∗𝜙(𝛾(𝑉), 𝜄𝛾 (𝑉 ) ) = 𝛽∗ (𝛼∗𝜙(𝛾(𝑉), 𝜄𝛾 (𝑉 ) )). But since
𝛼 ∈ GR (𝛽(𝑉), 𝛾(𝑉)), 𝛼∗𝜙(𝛾(𝑉), 𝜄𝛾 (𝑉 ) ) = 𝜙(𝛽(𝑉), 𝜄𝛽 (𝑉 ) ). Therefore, 𝜙(𝑉, 𝛾) = 𝜙(𝑉, 𝛽).
We can therefore define a surjective map Λ from objects of ℜW/∼GR

to objects of R
defined by [𝑉, 𝛾] ↦→ 𝜙(𝑉, 𝛾).

We prove that Λ is injective. If 𝜙(𝑉, 𝛾) = 𝜙(𝑉, 𝛽), since 𝛾 and 𝛽 are injective
morphisms, there is a unique 𝛼 from 𝛽(𝑉) to 𝛾(𝑉) such that 𝛾̃ = 𝛼 ◦ 𝛽. Therefore,

𝛽∗𝜙(𝛽(𝑉), 𝜄𝛽 (𝑉 ) ) = 𝛾̃∗𝜙(𝛾(𝑉), 𝜄𝛾 (𝑉 ) ) = 𝛽∗ (𝛼∗𝜙(𝛾(𝑉), 𝜄𝛾 (𝑉 ) )).

Since 𝛽 is an isomorphism, we get 𝜙(𝛽(𝑉), 𝜄𝛽 (𝑉 ) ) = 𝛼∗𝜙(𝛾(𝑉), 𝜄𝛾 (𝑉 ) ). Hence, 𝛼 ∈
GR (𝛽(𝑉), 𝛾(𝑉)) and therefore (𝑉, 𝛾) ∼GR (𝑉, 𝛽).

Finally, the functoriality of Λ is straightforward and the fact that it is an isomorphism
of categories is a consequence of Lemma 3.28. It is clear that Λ defines an isomorphism
in ℜW

↠

𝔉ℑ. □

4. Central elements

In this section, we start by defining central elements of a formal category of elements in
such a way that for 𝐾 ∈ K noetherian, connected and 𝑛𝑖𝑙-closed, central elements of 𝐾
coincide with central elements of 𝔖𝐾 . Then, for (C,S) ∈ 𝔉, we explain why it is enough
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to determine regular central elements of (C,S). Finally, we characterise central elements
of (R,S, 𝜙) ∈ 𝔉ℑ using G(R,S,𝜙) .

4.1. Central elements in a formal category of elements

We define central elements of a formal category of elements in such a way that for 𝐾
noetherian, (𝑉, 𝜙) is central for 𝐾 if and only if it is central as an element of 𝔖𝐾 .

Definition 4.1. For (C,S) ∈ 𝔉 and 𝑐 ∈ C, we say that 𝑐 is central if for any 𝑐′ ∈ C, 𝑐
and 𝑐′ have a coproduct.

Lemma 4.2. For (C,S) a formal category of elements, 𝑐 and 𝑐′ have a coproduct in C, if
and only if there exists a unique object 𝑐 ⊞ 𝑐′ that satisfies S(𝑐 ⊞ 𝑐′) = S(𝑐) ⊕ S(𝑐′) and
such that there exists morphisms 𝜄 and 𝛾 from 𝑐 and 𝑐′ to 𝑐 ⊞ 𝑐′ with S(𝜄) the inclusion of
S(𝑐) in S(𝑐) ⊕ S(𝑐′) and S(𝛾) the inclusion of S(𝑐′). In this case, 𝑐 ⊞ 𝑐′ is a coproduct.

Proof. For any 𝑑 in C with maps 𝜄 and 𝛾 from 𝑐 and 𝑐′ to 𝑑, S(𝜄) and S(𝛾) factorises
through S(𝜄) ⊕ S(𝛾) from S(𝑐) ⊕ S(𝑐′) to S(𝑑). Therefore, since (C,S) is a formal
category of elements, there exists 𝑐′′ ∈ C such that S(𝑐′′) = S(𝑐) ⊕ S(𝑐′) and 𝛿 from 𝑐′′

to 𝑑 such that 𝜄 and 𝛾 factorises through 𝛿. Furthermore, the induced maps 𝜄̃ and 𝛾̃ satisfy
that S(̃𝜄) is the inclusion of S(𝑐) in S(𝑐) ⊕ S(𝑐′) and S(𝛾̃) is the inclusion of S(𝑐′).

Therefore, if there is a unique 𝑐 ⊞ 𝑐′ that satisfies the required conditions, it satisfies
the universal property of the coproduct.

Conversely, if 𝑐 and 𝑐′ admit a coproduct 𝑑, the canonical injections 𝜄 and 𝛾 factors
through an object 𝑐′′ as above, and by the universal property of the coproduct, 𝑐′′ is
isomorphic to 𝑑 and therefore a coproduct of 𝑐 and 𝑐′. Finally, for 𝑒 ∈ C and 𝑓 and 𝑓 ′

from 𝑐 and 𝑐′ to 𝑒 such that S(𝑒) = S(𝑐) ⊕ S(𝑐′), S( 𝑓 ) is the inclusion of S(𝑐) and
S( 𝑓 ′) is the inclusion of S(𝑐′), we have 𝑒 = 𝑐′′. Indeed, 𝑓 and 𝑓 ′ factorises through 𝑐′′

and 𝑓 ′′, the induced morphism from 𝑐′′ to 𝑒, satisfies S( 𝑓 ′′) = idS(𝑐)⊕S(𝑐′ ) . Therefore,
𝑐′′ = id∗S(𝑒) 𝑒 = 𝑒. □

Remark 4.3. By definition of a formal category of elements, there is a map 𝛾 from 𝑐 to 𝑐′

such that S(𝛾) = 𝛼 if and only if 𝛼∗𝑐′ = 𝑐. Therefore, when it is defined, 𝑐 ⊞ 𝑐′ is the
only element such that 𝜄∗S(𝑐) (𝑐 ⊞ 𝑐

′) = 𝑐 and 𝜄∗S(𝑐′ ) (𝑐 ⊞ 𝑐
′) = 𝑐′, for 𝜄S(𝑐) and 𝜄S(𝑐′ ) the

inclusions of S(𝑐) and S(𝑐′) in S(𝑐) ⊕ S(𝑐′).

Proposition 4.4. For 𝐾 a noetherian, 𝑛𝑖𝑙-closed and connected unstable algebra, (𝑉, 𝜙)
is central if and only if it is central as an element of 𝔖𝐾 .

Proof. This is a direct consequence of Lemma 4.2 and Proposition 2.22. □
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4.2. Central elements of a noetherian and connected formal category of
elements

The connectedness (see Definition 3.6) of (C,S) plays an important role in describing its
central elements.

Proposition 4.5. If (C,S) is not connected, (C,S) admits no central elements.

Proof. For 𝑥 ∈ C such that S(𝑥) = 0, we can consider C𝑥 the set of elements 𝑐 in C such
that 0∗𝑐 = 𝑥. Then, for any map 𝛾 : 𝑐 → 𝑐′ in C, 𝑐 ∈ C𝑥 if and only if 𝑐′ ∈ C𝑥 . For any
𝑐 ∈ C, we can take 𝑐′ that is not in C0∗𝑐, in this case 𝑐 ⊞ 𝑐′ should be both in C0∗𝑐 and in
C0∗𝑐′ which is not possible, therefore 𝑐 ⊞ 𝑐′ is not defined and 𝑐 is not central. □

Proposition 4.6. For (C,S) connected and noetherian, 𝜖𝑉 is central for any 𝑉 ∈ V 𝑓 .

Proof. Let 𝑐 ∈ C, we consider 𝜋 the projection from S(𝑐) ⊕ 𝑉 to S(𝑐). We show that,
𝜋∗𝑐 is a coproduct of 𝑐 and 𝜖𝑉 .

We have 𝜄∗
𝑉
𝜋∗𝑐 = 0∗𝑐 = 𝜖𝑉 and 𝜄∗S(𝑐)𝜋

∗𝑐 = id∗S(𝑐) 𝑐 = 𝑐. We show that it is the unique
element that satisfies both identities.

Let 𝑐′ such that S(𝑐′) = S(𝑐) ⊕ 𝑉 and 𝜄∗
𝑉
𝑐′ = 𝜖𝑉 and 𝜄∗S(𝑐)𝑐

′ = 𝑐. Since (C,S) is
noetherian, 𝜄−1

𝑉
(ker(𝑐′)) = ker(𝜖𝑉 ) = 𝑉 . Therefore, 𝑉 ⊂ ker(𝑐′). We get that 𝑐′ = 𝜋∗𝑐′0,

for some element such that S(𝑐′0) = S(𝑐). Furthermore, 𝑐 = 𝜄∗S(𝑐)𝑐
′ = 𝜄∗S(𝑐)𝜋

∗𝑐′0 = 𝑐′0.
By Lemma 4.2, 𝜋∗𝑐 is a coproduct of 𝑐 and 𝜖𝑉 . □

Proposition 4.7. For (C,S) a noetherian and connected formal category of elements, if
𝑐 is central, for any morphism 𝛾 from 𝑐′ to 𝑐 in C, 𝑐′ is central.

Proof. We prove first the case where S(𝛾) is an injection. Up to isomorphism, we can
suppose that S(𝛾) is the inclusion of a sub-space of S(𝑐). We use the following notations
𝑊 = S(𝑐′) and 𝑆 is a complementary sub-space of 𝑊 in S(𝑐). Then, for any 𝑑 ∈ C,
and 𝐻 = S(𝑑), (𝜄𝑊 ⊕ id𝐻 )∗ (𝑐 ⊞ 𝑑) satisfies S((𝜄𝑊 ⊕ id𝐻 )∗ (𝑐 ⊞ 𝑑)) = 𝑊 ⊕ 𝐻 and
𝜄∗
𝑊
(𝜄𝑊 ⊕ id𝐻 )∗ (𝑐 ⊞ 𝑑) = 𝜄∗𝑊𝑐 = 𝑐′ and 𝜄∗

𝐻
(𝜄𝑊 ⊕ id𝐻 )∗ (𝑐 ⊞ 𝑑) = 𝑑.

We need to show that it is the only element that satisfies both identities. Let 𝑐′′ ∈ C
such that S(𝑐′′) = 𝑊 ⊕ 𝐻, 𝜄∗

𝑊
𝑐′′ = 𝑐′ and 𝜄∗

𝐻
𝑐′′ = 𝑑. Since 𝑐 is central, we can consider

𝑐 ⊞ 𝑐′′. Then, S(𝑐 ⊞ 𝑐′′) = 𝑆 ⊕𝑊1 ⊕𝑊2 ⊕ 𝐻, with𝑊1 and𝑊2 to copies of𝑊 , 𝑆 ⊕𝑊1
corresponding to S(𝑐) and𝑊2 ⊕ 𝐻 to S(𝑐′′).

We want to prove that 𝜄∗
𝑆⊕𝑊2

(𝑐 ⊞ 𝑐′′) = 𝑐. Indeed, in this case we would have
𝜄∗
𝑆⊕𝑊2⊕𝐻 (𝑐⊞ 𝑐

′′) = 𝑐⊞ 𝑑 and therefore (𝜄𝑊 ⊕ id𝐻 )∗𝑐⊞ 𝑑 = (𝜄𝑊2 ⊕ id𝐻 )∗𝜄∗𝑆⊕𝑊2⊕𝐻 (𝑐⊞ 𝑐
′′)

which is equal to 𝜄∗
𝑊2⊕𝐻 (𝑐 ⊞ 𝑐

′′) = 𝑐′′.
We consider 𝜄∗

𝑆⊕𝑊1⊕𝑊2
𝑐⊞𝑐′′, it is equal to 𝑐⊞𝑐′. But, if we consider 𝛿 from 𝑆⊕𝑊1⊕𝑊2

to 𝑆 ⊕𝑊 defined by 𝛿(𝑠 ⊕ 𝑤1 ⊕ 𝑤2) = 𝑠 ⊕ (𝑤1 + 𝑤2), we have S(𝛿∗𝑐) = 𝑆 ⊕𝑊1 ⊕𝑊2
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and 𝜄∗
𝑆⊕𝑊1

𝛿∗𝑐 = 𝑐 and 𝜄∗
𝑊2
𝛿∗𝑐 = 𝑐′, therefore 𝑐 ⊞ 𝑐′ = 𝛿∗𝑐. We get that 𝜄∗

𝑆⊕𝑊2
(𝑐 ⊞ 𝑐′′) =

𝜄∗
𝑆⊕𝑊2

𝛿∗𝑐 = id∗𝑆⊕𝑊 𝑐 = 𝑐.
Finally, we consider the case where S(𝛾) is not an injection, we consider 𝑆 a

complementary subspace of ker(S(𝛾)) in S(𝑐′) and 𝛼 the restriction of S(𝛾) to 𝑆. Then,
𝑐′ = 𝛼∗𝑐⊞𝜖ker(S (𝛾) ) , the centrality of 𝑐′ is, therefore, a direct consequence of the centrality
of 𝛼∗𝑐 and 𝜖ker(S (𝛾) ) . □

A direct consequence of Proposition 4.7 is that for 𝑐 ∈ C and 𝑐0 as in Proposition 3.8,
𝑐 is central if and only if 𝑐0 is central, where 𝑐0 is regular. We introduce a characterization
of regular central elements intrinsic to ℜC .

Lemma 4.8. For (C,S) noetherian and 𝑐 ∈ C regular, 𝑐 is central if and only if it admits
a coproduct in ℜC with any regular element 𝑐′.

Proof. First, we suppose that 𝑐 is central. For 𝑐′ ∈ C regular and for𝑈 = ker(𝑐 ⊞ 𝑐′), by
Proposition 3.8 there exists 𝑐′′ regular such that S(𝑐′′) = S(𝑐) ⊕ S(𝑐′)/𝑈 and such that
𝑐 ⊞ 𝑐′ = 𝜋∗𝑐′′, for 𝜋 the projection from S(𝑐) ⊕ S(𝑐′) on S(𝑐) ⊕ S(𝑐′)/𝑈. We prove
that 𝑐′′ is a coproduct of 𝑐 and 𝑐′ in ℜC . We consider two maps 𝜄 and 𝛾 from 𝑐 and 𝑐′ to
a regular element 𝑑. Those factorises uniquely through the canonical injection from 𝑐 and
𝑐′ into 𝑐 ⊞ 𝑐′, we denote by 𝛿 the induced morphism from 𝑐 ⊞ 𝑐′ to 𝑑. Since 𝑑 is regular,
we have 𝑈 = ker(𝑐 ⊞ 𝑐′) = S(𝛿)−1 (ker(𝑑)) = ker(S(𝛿)). By Lemma 3.4, we get that 𝛿
factorises uniquely through 𝑐 ⊞ 𝑐′ → 𝑐′′, therefore 𝑐′′ is a coproduct of 𝑐 and 𝑐′ in ℜC .

Conversely, if 𝑐′′ is a coproduct of 𝑐 and 𝑐′ in ℜC , we prove that 𝑐 and 𝑐′ admit a
coproduct in C. For 𝜄𝑐 and 𝜄𝑐′ the canonical injections from 𝑐 and 𝑐′ to 𝑐′′, we consider
(𝜄𝑐 ⊕ 𝜄𝑐′ )∗𝑐′′. Let 𝑑 ∈ C with 𝜄 and 𝛾 morphisms from 𝑐 and 𝑐′ to 𝑑. For 𝑑0 such that
S(𝑑0) = S(𝑑)/ker(𝑑) as in Proposition 3.8, 𝜄 and 𝛾 induce morphisms in ℜC from 𝑐

and 𝑐′ to 𝑑0. Since 𝑐′′ is a coproduct in ℜC , those factorise through a unique morphism
𝛿 : 𝑐′′ → 𝑑0. We get the following diagram in C:

(𝜄𝑐 ⊕ 𝜄𝑐′ )∗𝑐′′

��

𝑑

��

𝑐′′
𝛿

// 𝑑0.

By construction, the following diagram is commutative in V 𝑓 :

S(𝑐) ⊕ S(𝑐′)

��

S( 𝜄)⊕S(𝛾)
// S(𝑑)

��

S(𝑐′′)
S(𝛿 )

// S(𝑑0).
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By Lemma 3.4, we get a unique factorisation of 𝜄 and 𝛾 through (𝜄𝑐 ⊕ 𝜄𝑐′ )∗𝑐′′, it is
therefore a coproduct of 𝑐 and 𝑐′ in C. □

This leads to the following definition.

Definition 4.9. For (R,S) a formal category of elements on VI, 𝑐 ∈ R is said to be
central if it admits a coproduct in R with any element 𝑐′ ∈ R.

4.3. Central elements of objects in ℜW

↠

𝔉ℑ

We end this section by describing the central elements of an object (R,S, 𝜙) in ℜW

↠

𝔉ℑ

using its associated groupoid.
Since any object in R is isomorphic to some object of the form 𝜙(𝑈, 𝜄𝑈) with 𝑈 a

sub-vector space of𝑊 , it is enough to describe central elements of the form 𝜙(𝑉, 𝜄𝑉 ) with
𝑉 a sub-vector space of𝑊 .

Lemma 4.10. For (R,S, 𝜙) ∈ ℜW

↠

𝔉ℑ and 𝑉 and𝑈 two subspaces of𝑊 , if 𝜙(𝑉, 𝜄𝑉 )
and 𝜙(𝑈, 𝜄𝑈) admit a coproduct in R then 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈) is a coproduct of 𝜙(𝑉, 𝜄𝑉 ) and
𝜙(𝑈, 𝜄𝑈) in R.

Proof. The injections of 𝑉 and 𝑈 in 𝑉 + 𝑈 induce morphisms in R from 𝜙(𝑉, 𝜄𝑉 )
and 𝜙(𝑈, 𝜄𝑈) to 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈). For 𝜙(𝑉, 𝜄𝑉 ) ⊔ 𝜙(𝑈, 𝜄𝑈) a coproduct of 𝜙(𝑉, 𝜄𝑉 ) and
𝜙(𝑈, 𝜄𝑈), it induces a morphism 𝛾 from 𝜙(𝑉, 𝜄𝑉 ) ⊔ 𝜙(𝑈, 𝜄𝑈) to 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈). Since 𝛾
is a morphism in R, S(𝛾) is injective, but S(𝛾) factorises the inclusions of𝑈 and 𝑉 in
𝑉 +𝑈, it is therefore surjective. We get that 𝛾 is an isomorphism in R and 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈)
is a coproduct in R. □

Theorem 4.11. For (R,S, 𝜙) ∈ ℜW

↠

𝔉ℑ and 𝑉 a sub-vector space of𝑊 , 𝜙(𝑉, 𝜄𝑉 ) is
central in (R,S) if and only if:

(1) for any 𝑈 and 𝑈′ subspaces of 𝑊 , 𝛼 ∈ GR (𝑈,𝑈′) and 𝑣 ∈ 𝑉 ∩ 𝑈, we have
𝑣 ∈ 𝑈′ and 𝛼(𝑣) = 𝑣,

(2) for any𝑈 and𝑈′ subspaces of𝑊 and 𝛼 an isomorphism from𝑈 to𝑈′ such that
𝛼(𝑣) = 𝑣 for all 𝑣 ∈ 𝑉 ∩𝑈, 𝛼 ∈ GR (𝑈,𝑈′) if and only if 𝛼̄ ∈ GR (𝑉 +𝑈,𝑉 +𝑈′),
where 𝛼̄ is the morphism that maps 𝑣 ∈ 𝑉 to itself and 𝑢 ∈ 𝑈 to 𝛼(𝑢).

Proof. We consider 𝑉 such that 𝜙(𝑉, 𝜄𝑉 ) is central in (R,S). Then, for any 𝑈 and 𝑈′

subspaces of 𝑊 and for 𝛼 ∈ GR (𝑈,𝑈′), since GR satisfies the restriction property, we
can consider 𝛼𝑉∩𝑈 ∈ GR (𝑉 ∩𝑈, 𝛼(𝑉 ∩𝑈)). By composing it with the inclusion of𝑈′

in 𝑉 +𝑈′ we get a morphism 𝛼′ from 𝜙(𝑉 ∩𝑈, 𝜄𝑉∩𝑈) to 𝜙(𝑉 +𝑈′, 𝜄𝑉+𝑈′ ) in R. Also,
the inclusion of 𝑉 in 𝑉 +𝑈′ induces a morphism 𝜄 from 𝜙(𝑉, 𝜄𝑉 ) to 𝜙(𝑉 +𝑈′, 𝜄𝑉+𝑈′ ).
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By Lemma 4.10 and since 𝑉 ∩𝑈 ⊂ 𝑉 , there is a unique morphism 𝜆 from 𝜙(𝑉, 𝜄𝑉 ) to
𝜙(𝑉 +𝑈′, 𝜄𝑉+𝑈′ ) that factorises both 𝜄 and 𝛼′. Then, S(𝜆) factorises both the inclusion of
𝑉 in 𝑉 +𝑈′ and the restriction of 𝛼 to 𝑉 ∩𝑈. We get that 𝛼(𝑣) = 𝑣 for 𝑣 ∈ 𝑉 ∩𝑈. We
have proven the necessity of condition (1).

We prove now the necessity of condition (2). For 𝛼 an isomorphism from 𝑈 to 𝑈′

that satisfies 𝛼(𝑣) = 𝑣 for all 𝑣 ∈ 𝑉 ∩𝑈, 𝛼 is the restriction of 𝛼̄ to𝑈. Since GR has the
restriction property, 𝛼̄ ∈ GR (𝑉 +𝑈,𝑉 +𝑈′) implies that 𝛼 ∈ GR (𝑈,𝑈′). Conversely, if
𝛼 ∈ GR (𝑈,𝑈′), 𝛼 and the inclusion of 𝑉 induces morphisms in R from 𝜙(𝑉, 𝜄𝑉 ) and
𝜙(𝑈, 𝜄𝑈) to 𝜙(𝑉 +𝑈′, 𝜄𝑉+𝑈′ ). By Lemma 4.10, those factorises through a morphism 𝛾

from 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈) to 𝜙(𝑉 +𝑈′, 𝜄𝑉+𝑈′ ) and by construction we have S(𝛾) = 𝛼̄, therefore
𝛼̄ ∈ GR (𝑉 +𝑈,𝑉 +𝑈′).

Finally, we prove that the conditions (1) and (2) are sufficient. We need to prove that
all objects of the form 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈) are coproducts of 𝜙(𝑉, 𝜄𝑉 ) and 𝜙(𝑈, 𝜄𝑈), for 𝑈
a subspace of 𝑊 . Since condition (1) is satisfied, and by Lemma 3.28, any morphism
from 𝜙(𝑉, 𝜄𝑉 ) is an inclusion. Then, for any pair of morphisms 𝜄 and 𝛾 from 𝜙(𝑉, 𝜄𝑉 )
and 𝜙(𝑈, 𝜄𝑈) to some 𝜙(𝐻, 𝜄𝐻 ) ∈ R, we have 𝑉 ⊂ 𝐻 and S(𝜄) is the inclusion of 𝑉
and 𝛼 = S(𝛾) is an element of GR (𝑈,𝑈′) for 𝑈′ = S(𝛾) (𝑈). Then, by condition (2),
𝛼̄ ∈ GR (𝑉 +𝑈,𝑉 +𝑈′), therefore there is a unique 𝛾̄ such that S(𝛾̄) = 𝛼̄. The composition
of 𝛾̄ with the inclusion of 𝑉 +𝑈′ in 𝐻 is the unique morphism from 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈) to
𝜙(𝐻, 𝜄𝐻 ) that factorises 𝜄 and 𝛾. Therefore, 𝜙(𝑉 +𝑈, 𝜄𝑉+𝑈) is a coproduct of 𝜙(𝑉, 𝜄𝑉 )
and 𝜙(𝑈, 𝜄𝑈). □

5. The algebras 𝐻∗(𝑊)G

In this section, we apply the results of Sections 3 and 4 to some classification problems
about 𝑛𝑖𝑙-closed, integral, noetherian, unstable algebras. Before we explain in more detail
the focus of this section, let us recall the first theorem of Adams–Wilkerson.

Definition 5.1 ([8, Part II.2]). For 𝐾 ∈ K , the transcendence degree of 𝐾 is 𝑑 ∈ N∪ {∞},
the supremum of the cardinals of finite sets of homogeneous elements in 𝐾 which are
algebraically independent.

Remark 5.2. If 𝐾 is noetherian, the transcendence degree of 𝐾 is finite.

Let us recall the theorem of Adams–Wilkerson.

Theorem 5.3 ([8, Theorem 3]). Let 𝐾 be an integral, unstable algebra of transcendence
degree less or equal to dim(𝑊), then there exists an injection 𝜙 from 𝐾 to 𝐻∗ (𝑊).
Furthermore, this injection is regular if and only if the transcendence degree of 𝐾 equals
dim(𝑊).
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Therefore, every integral, 𝑛𝑖𝑙-closed, noetherian, unstable algebra is isomorphic to
a 𝑛𝑖𝑙-closed, noetherian sub-unstable algebra of some 𝐻∗ (𝑊). In the first sub-section
we define 𝐻∗ (𝑊)G for G ∈ Groupoid(𝑊). Then, G ↦→ 𝐻∗ (𝑊)G defines an explicit
one-to-one correspondence between the objects of Groupoid(𝑊) and the noetherian,
𝑛𝑖𝑙-closed, unstable sub algebras of 𝐻∗ (𝑊) of transcendence degree dim(𝑊).

Let us now recall the definition of the primitive elements of a comodule.

Definition 5.4. For 𝐾 ∈ K provided with a 𝐻∗ (𝑉)-comodule structure 𝜅 in K , the algebra
of primitive elements of 𝐾 is the sub-algebra of 𝐾 whose elements are those satisfying
that 𝜅(𝑥) = 𝑥 ⊗ 1, for 1 the unit of 𝐻∗ (𝑉). We will denote by 𝑃(𝐾, 𝜅) the algebra of
primitive elements of 𝐾 for the 𝐻∗ (𝑉)-comodule structure 𝜅.

Remark 5.5. By Corollary 2.16, for all (𝑉, 𝜙) ∈ C(𝐾), there is a unique structure 𝜅𝜙 of
𝐻∗ (𝑉)-comodule on 𝐾 such that (𝜖𝐾 ⊗ id𝐻∗ (𝑉 ) ) ◦ 𝜅𝜙 = 𝜙.

Notation 5.6. We will also denote 𝑃(𝐾, 𝜅𝜙) by 𝑃(𝐾, 𝜙).

The problem that we are interested in is the following. If we fix 𝑉 some finite
dimensional vector space and 𝑃 some unstable algebra, can we classify, under suitable
hypothesis, the connected, noetherian, integral, 𝑛𝑖𝑙-closed unstable algebras 𝐾 , satisfying
that 𝐾 admit a 𝐻∗ (𝑉)-comodule structure 𝜅 in K, whose algebra of primitive elements
is isomorphic to 𝑃. Since, every 𝑛𝑖𝑙-closed, noetherian, integral, unstable algebra of
transcendence degree dim(𝑊) is isomorphic to some 𝐻∗ (𝑊)G , we need to be able
to identify the primitive elements associated with a regular central element (𝑉, 𝜙) of
𝐻∗ (𝑊)G .

In the second subsection, we consider 𝐻∗ (𝑊)G and an inclusion 𝛿 from some
vector space 𝑉 to 𝑊 , such that (𝑉, 𝛿∗𝜙) ∈ C(𝐻∗ (𝑊)G) for 𝜙 the inclusion of 𝐻∗ (𝑊)G
in 𝐻∗ (𝑊). Then, we prove that 𝑃(𝐻∗ (𝑊)G , 𝛿∗𝜙) is a 𝑛𝑖𝑙-closed and noetherian sub-
algebra of 𝜋∗ (𝐻∗ (𝑊/Im(𝛿))) for 𝜋 the projection from 𝑊 to 𝑊/Im(𝛿). Since 𝜋∗ is
injective, there exists 𝐻∗ (𝑊/Im(𝛿))G′ ⊂ 𝐻∗ (𝑊/Im(𝛿)) such that 𝑃(𝐻∗ (𝑊)G , 𝛿∗𝜙) =
𝜋∗ (𝐻∗ (𝑊/Im(𝛿))G′ ). We conclude this sub-section by explaining how to determine G′

from G.
We conclude this section, by giving some applications of those results.

5.1. Noetherian, 𝑛𝑖𝑙-closed, unstable sub-algebras of 𝐻∗(𝑊)

In this sub-section, we give an explicit one-to-one correspondence between Groupoid(𝑊)
and the noetherian, 𝑛𝑖𝑙-closed, unstable sub algebra of 𝐻∗ (𝑊) of transcendence degree
dim(𝑊).
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Theorem 5.7. For all𝑊 ∈ V 𝑓 , there is a one-to-one correspondence between the set
of 𝑛𝑖𝑙-closed and noetherian sub-algebras of 𝐻∗ (𝑊) whose transcendence degree is
dim(𝑊) and Groupoid(𝑊).
Proof. By Theorem 3.32, there is a one-to-one correspondence between isomorphism
classes in ℜW

↠

𝔉ℑ and the set of objects in Groupoid(𝑊). Thus, we have to justify
that the set of 𝑛𝑖𝑙-closed and noetherian sub-algebras of 𝐻∗ (𝑊) of transcendence degree
dim(𝑊) are in one-to-one correspondence with isomorphism classes in ℜW

↠

𝔉ℑ. Let
𝐾 be a 𝑛𝑖𝑙-closed, noetherian, sub-algebra of 𝐻∗ (𝑊) whose transcendence degree is
dim(𝑊). Then, for 𝜙𝐾 the inclusion of 𝐾 in 𝐻∗ (𝑊), since the transcendence degree of
𝐾 is dim(𝑊), by the Theorem of Adams–Wilkerson, 𝜙𝐾 is regular. Then, since 𝐾 is
noetherian, 𝜙𝐾 induces a surjection from ℜW to ℜ𝐾 that we also denote by 𝜙𝐾 , by abuse
of notation. This defines a map ℎ from the set of 𝑛𝑖𝑙-closed and noetherian sub-algebras
of 𝐻∗ (𝑊) whose transcendence degree is dim(𝑊) to the set of isomorphism classes in
ℜW

↠

𝔉ℑ.
For 𝐾 and 𝐾 ′ two such sub-algebras of 𝐻∗ (𝑊), (ℜ𝐾 , 𝜙𝐾 ) and (ℜ𝐾 ′ , 𝜙𝐾 ′ ) are not

necessarily isomorphic in ℜW

↠

𝔉ℑ if 𝐾 and 𝐾 ′ are isomorphic (under an isomorphism 𝜂)
in K. We also need 𝜙𝐾 = 𝜙𝐾 ′ ◦ 𝜂. This is the case if and only if 𝐾 = 𝐾 ′ and 𝜂 is
the identity. The theorem is therefore a consequence of Theorems 2.7 and 3.20 and
Proposition 3.12. □

We recall that the notation 𝔏 has been defined in Notation 3.11.

Definition 5.8. For G an object in Groupoid(𝑊) and for 𝑞G the canonical surjection
from ℜW to ℜW/∼G , 𝐻∗ (𝑊)G is the image of the map

𝔏(𝑞G) : 𝔏(ℜ̃W/∼G ) ↩→ 𝐻∗ (𝑊).

Remark 5.9. The application, G ↦→ 𝐻∗ (𝑊)G defines a contravariant functor between
Groupoid(𝑊) and the poset of 𝑛𝑖𝑙-closed, noetherian, sub-algebras of 𝐻∗ (𝑊), whose
transcendence degrees are dim(𝑊), ordered by inclusion.

Corollary 5.10. Any 𝑛𝑖𝑙-closed, integral, noetherian, unstable, algebra whose transcen-
dence degree is equal to dim(𝑊) is isomorphic to 𝐻∗ (𝑊)G for some G.

Proof. It is a reformulation of the theorem of Adams–Wilkerson using Theorem 5.7. □

Example 5.11. For 𝐺 a sub-group of Gl(𝑊), 𝐻∗ (𝑊)𝔤(𝐺) = 𝐻∗ (𝑊)𝐺 , for 𝐻∗ (𝑊)𝐺 the
algebra of invariant element of 𝐻∗ (𝑊) under the action of 𝐺.

Let us identify precisely the sub-algebra 𝐻∗ (𝑊)G of 𝐻∗ (𝑊).
Proposition 5.12. Let G ∈ Groupoid(𝑊). Then,

𝐻∗ (𝑊)G = {𝑥 ∈ 𝐻∗ (𝑊) ; 𝛼∗𝜄∗𝑈′ (𝑥) = 𝜄∗𝑈 (𝑥) for all 𝛼 ∈ G(𝑈,𝑈′)}.
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Proof. Let 𝜙 be the inclusion of 𝐻∗ (𝑊)G in 𝐻∗ (𝑊) and let 𝐾 (G) = {𝑥 ∈ 𝐻∗ (𝑊) ;
𝛼∗𝜄∗

𝑈′ (𝑥) = 𝜄∗
𝑈
(𝑥) for all 𝛼 ∈ G(𝑈,𝑈′)}. By construction, 𝛼∗𝜄∗

𝑈′𝜙 = 𝜄∗
𝑈
𝜙 for all 𝛼 ∈

G(𝑈,𝑈′) and for all sub-spaces𝑈 and𝑈′ of𝑊 . Then,

𝐻∗ (𝑊)G ⊂ 𝐾 (G).

Furthermore, the inclusion from 𝐾 (G) to 𝐻∗ (𝑊) induces a surjection from ℜW to ℜ𝐾 (G)
which factorises through an isomorphism from ℜW/∼G to ℜ𝐾 (G) . The existence of this
factorization is a direct consequence of the definitions of 𝐾 (G) and ∼G , and it is injective,
since the inclusion of 𝐻∗ (𝑊)G induces a right inverse ℜ𝐾 (G) → ℜW/∼G .

We get the following diagram:

𝐻∗ (𝑊)G �
�

//

𝜂
𝐻∗ (𝑊 )G

��

𝐾 (G) �
�

//

𝜂𝐾 (G)

��

𝐻∗ (𝑊)

𝜂𝐻∗ (𝑊 )

��

𝑙1 (𝐻∗ (𝑊)G) � // 𝑙1 (𝐾 (G)) �
�

// 𝑙1 (𝐻∗ (𝑊)),

where 𝜂 denotes the unit of the adjunction between 𝑓 and 𝑚. Then, since 𝐻∗ (𝑊)G and
𝐻∗ (𝑊) are 𝑛𝑖𝑙-closed, 𝜂𝐻∗ (𝑊 )G and 𝜂𝐻∗ (𝑊 ) are isomorphisms. Furthermore, 𝐾 (G) is
a sub unstable algebra of 𝐻∗ (𝑊), hence it does not contain any nilpotent sub-module,
and 𝜂𝐾 (G) is injective. Then, the commutativity of the diagram implies that 𝜂𝐾 (G) is an
isomorphism, and therefore that 𝐻∗ (𝑊)G = 𝐾 (G). □

Corollary 5.13. The correspondence of Theorem 5.7 is an isomorphism of posets, for the
order on sub-algebras of 𝐻∗ (𝑊) which is the reverse of the inclusion.

Proof. Indeed, Proposition 5.12 implies that if G is a sub-groupoid of G′, 𝐻∗ (𝑊)G′ ⊂
𝐻∗ (𝑊)G. □

Definition 5.14. For 𝑔 ∈ Gl(𝑊), and G ∈ Groupoid(𝑊), 𝑔 · G is the groupoid in
Groupoid(𝑊) defined by 𝛽 ∈ 𝑔 · G(𝑅, 𝑅′), for 𝛽 an isomorphisms between subspaces 𝑅
and 𝑅′ of 𝑊 , if there exist 𝛼 ∈ G(𝑈,𝑈′) for 𝑈 = 𝑔−1 (𝑅) and 𝑈′ = 𝑔−1 (𝑅′), such that
the following diagram commutes:

𝑈
𝑔 |𝑅
𝑈 //

𝛼

��

𝑅

𝛽

��

𝑈′
𝑔 |𝑅′
𝑈′

// 𝑅′.

This defines a poset preserving action of Gl(𝑊) on Groupoid(𝑊).
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Remark 5.15. This action generalizes the action by conjugation on Group(𝑊). Indeed,
for 𝐺 a subgroup of Gl(𝑊) and 𝑔 ∈ Gl(𝑊), 𝑔 · 𝔤(𝐺) = 𝔤(𝑔𝐺𝑔−1).

Proposition 5.16. For 𝑔 ∈ Gl(𝑊) and G ∈ Groupoid(𝑊),

𝐻∗ (𝑊)𝑔·G = (𝑔−1)∗ (𝐻∗ (𝑊)G).

Proof. This is a direct consequence of Proposition 5.12. □

Remark 5.17. We want to notice that the (𝐻∗ (𝑊)G)G∈Groupoid (𝑊 ) does not constitute
a minimal list for representing elements of isomorphism classes of 𝑛𝑖𝑙-closed, integral
and noetherian unstable algebras of transcendence degree dim(𝑊). For 𝑔 ∈ Gl(𝑊)
and G ∈ Groupoid(𝑊), 𝑔 · G needs not to be equal to G, but, by Proposition 5.16,
𝐻∗ (𝑊)G � 𝐻∗ (𝑊)𝑔·G .

Conversely, since the inclusion of 𝐻∗ (𝑊)G in 𝐻∗ (𝑊) induces a surjection from
HomK (𝐻∗ (𝑊), 𝐻∗ (𝑊)) to HomK (𝐻∗ (𝑊)G , 𝐻∗ (𝑊)), and since 𝑔 ↦→ 𝑔∗ induces an
isomorphism between HomK (𝐻∗ (𝑊), 𝐻∗ (𝑊)) and Gl(𝑊), we have that if 𝐻∗ (𝑊)G �
𝐻∗ (𝑊)H , there exists 𝑔 ∈ Gl(𝑊) such that 𝐻∗ (𝑊)H = (𝑔−1)∗ (𝐻∗ (𝑊)G). By Proposi-
tion 5.16, H = 𝑔 · G.

5.2. Centrality and primitive elements of 𝐻∗(𝑊)G

Throughout this sub-section, we fix 𝑉 and𝑊 two objects in V 𝑓 , as well as an injection 𝛿
from 𝑉 to𝑊 .

We consider𝐾 a 𝑛𝑖𝑙-closed, noetherian unstable sub algebra of𝐻∗ (𝑊) of transcendence
degree dim(𝑊), such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of 𝐾 in 𝐻∗ (𝑊). We start
by explaining why the𝐻∗ (𝑉)-comodule structure on 𝐾 induced by 𝛿∗𝜙 is induced from the
𝐻∗ (𝑉)-comodule structure on 𝐻∗ (𝑊) given by (id𝑊 +𝛿)∗ : 𝐻∗ (𝑊) → 𝐻∗ (𝑊) ⊗ 𝐻∗ (𝑉).

Then, for 𝐾 = 𝐻∗ (𝑊)G , we explain how to determine the primitive elements of this
comodule structure from G.

Proposition 5.18. Let 𝐾 be a noetherian unstable sub algebra of 𝐻∗ (𝑊) of finite
transcendence degree dim(𝑊) such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of 𝐾 in
𝐻∗ (𝑊). The 𝐻∗ (𝑉)-comodule structure 𝜅 on 𝐾 , induced by 𝛿∗𝜙 and Corollary 2.16, fits
into the following commutative diagram:

𝐾

𝜙

��

𝜅 // 𝐾 ⊗ 𝐻∗ (𝑉)

𝜙⊗id𝐻∗ (𝑉 )
��

𝐻∗ (𝑊)
(id𝑊 +𝛿 )∗

// 𝐻∗ (𝑊) ⊗ 𝐻∗ (𝑉).
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Proof. We consider the following diagram:

𝐾

𝜙

��

𝜅 // 𝐾 ⊗ 𝐻∗ (𝑉)

𝜙⊗id𝐻∗ (𝑉 )
��

𝐻∗ (𝑊) 𝐻∗ (𝑊) ⊗ 𝐻∗ (𝑉).

The existence of a morphism 𝜓∗ from 𝐻∗ (𝑊) to 𝐻∗ (𝑊) ⊗ 𝐻∗ (𝑉) which turns it into a
commutative diagram is a consequence of the surjectivity of 𝜙∗ from HomK (𝐻∗ (𝑊),
𝐻∗ (𝑊⊕𝑉)) to HomK (𝐾, 𝐻∗ (𝑊⊕𝑉)). We only have to justify why we can take𝜓 = id𝑊 +𝛿.
We have that the composition of (𝜙⊗ id𝐻∗ (𝑉 ) )◦𝜅 with 𝜖𝐾 ⊗ id𝐻∗ (𝑉 ) is equal to 𝛿∗𝜙 and that
with id𝐻∗ (𝑊 ) ⊗𝜖𝐻∗ (𝑉 ) is equal to 𝜙. Hence, since 𝛿∗𝜙 is central, (𝜙 ⊗ id𝐻∗ (𝑉 ) ) ◦ 𝜅 is the
unique element in the inverse image of 𝜙 under 𝜌HomK (𝐾,𝐻∗ (_) ) , (𝑉,𝛿∗𝜙) . But (id𝑊 +𝛿)∗𝜙
is also in this inverse image of 𝜙, hence the diagram commutes. □

We consider (id𝑊 +𝛿)∗ : 𝐻∗ (𝑊) → 𝐻∗ (𝑊) ⊗ 𝐻∗ (𝑉) which is the 𝐻∗ (𝑉)-comodule
structure on 𝐻∗ (𝑊) associated with (𝑉, 𝛿∗) ∈ C(𝐻∗ (𝑊)).

Proposition 5.19. Let 𝐾 be a noetherian unstable sub algebra of 𝐻∗ (𝑊) of finite
transcendence degree dim(𝑊) such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of 𝐾 in
𝐻∗ (𝑊). Then, we have a pullback diagram of the following form:

𝑃(𝐾, 𝛿∗𝜙) �
�

//
� _

��

𝐾� _

𝜙

��

𝐻∗ (𝑊/Im(𝛿)) �
�

𝜋∗
// 𝐻∗ (𝑊).

Proof. Proposition 5.18 says that the following diagram commutes:

𝐾

𝜙

��

𝜅 // 𝐾 ⊗ 𝐻∗ (𝑉)

𝜙⊗id𝐻∗ (𝑉 )
��

𝐻∗ (𝑊)
(id𝑊 +𝛿 )∗

// 𝐻∗ (𝑊) ⊗ 𝐻∗ (𝑉).

This means that the 𝐻∗ (𝑉)-comodule structure on 𝐾 is induced by that on 𝐻∗ (𝑊). Hence,
the primitive elements of 𝐾 are simply the primitive elements of 𝐻∗ (𝑊) that are in
𝐾. But the comodule structure on 𝐻∗ (𝑊) is the morphism (id𝑊 +𝛿)∗ whose algebra of
primitive elements is the image of 𝐻∗ (𝑊/Im(𝛿)) under 𝜋∗, for 𝜋 the projection from𝑊

to𝑊/Im(𝛿). □
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Corollary 5.20. Let 𝐾 be a noetherian unstable sub algebra of 𝐻∗ (𝑊) of finite transcen-
dence degree dim(𝑊) such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of 𝐾 in 𝐻∗ (𝑊).
Then, the following is a pushout diagram in Set(V

𝑓 )op
:

HomV 𝑓 (_,𝑊) // //

����

HomK (𝐾, 𝐻∗ (_))

����

HomV 𝑓 (_,𝑊/Im(𝛿)) // // HomK (𝑃(𝐾, 𝛿∗𝜙), 𝐻∗ (_)).

Proof. It is a direct consequence of Lemma 2.10 and of Proposition 5.19. □

We can thus identify HomK (𝑃(𝐾, 𝛿∗𝜙), 𝐻∗ (_)) in this context. In particular, we show
that 𝑃 is always noetherian.

Lemma 5.21. For 𝑆 a set, and ∼1 and ∼2 two equivalence relations on 𝑆, we denote by ∼
the smallest equivalence relation on 𝑆 (in the sense that {(𝑎, 𝑏) ∈ 𝑆 × 𝑆 ; 𝑎 ∼ 𝑏} ⊂ 𝑆 × 𝑆
is the smallest) such that, for all 𝑎 and 𝑏 in 𝑆 such that 𝑎 ∼1 𝑏 or 𝑎 ∼2 𝑏, 𝑎 ∼ 𝑏. Then,
the following is a pushout in Set:

𝑆 // //

����

𝑆/∼1

����

𝑆/∼2 // // 𝑆/∼ .

Proof. Let Σ denote the pushout of

𝑆 // //

����

𝑆/∼1

𝑆/∼2 .

Then, for 𝑠 : 𝑆 → Σ the composition of the projection from 𝑆 to 𝑆/∼1 with the surjective
application 𝑆/∼1→ Σ, 𝑠 is surjective. We define ∼′ the equivalence relation on 𝑆 defined
by 𝑎 ∼′ 𝑏 if and only if 𝑠(𝑎) = 𝑠(𝑏). Σ is isomorphic in Set with 𝑆/∼′ and we will show
that ∼′=∼.

By commutativity of the pushout diagram, for 𝑎 and 𝑏 in 𝑆 such that 𝑎 ∼1 𝑏 or 𝑎 ∼2 𝑏,
𝑠(𝑎) = 𝑠(𝑏). Suppose that ∼′ is not the smallest such equivalence relation. Then, there
exists 𝑥 and 𝑦 with 𝑥 ∼′ 𝑦 and an equivalence relation ∼′′, satisfying that for 𝑎 and 𝑏 such
that 𝑎 ∼1 𝑏 or 𝑎 ∼2 𝑏, 𝑎 ∼′′ 𝑏, and such that 𝑥 is not equivalent to 𝑦 for ∼′′. Then, the
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following diagram is commutative:

𝑆 // //

����

𝑆/∼1

����

𝑆/∼2 // // 𝑆/∼′′,

and factorise by a morphism 𝑆/∼′→ 𝑆/∼′′. This is a contradiction, so ∼′=∼. □

Remark 5.22. For ∼1 and ∼2 as in Lemma 5.21, and for 𝑆 finite, the smallest equivalence
relation ∼ on 𝑆 such that, for all 𝑎 and 𝑏 in 𝑆 such that 𝑎 ∼1 𝑏 or 𝑎 ∼2 𝑏, 𝑎 ∼ 𝑏, is the
equivalence relation defined by 𝑎 ∼ 𝑏 if there is a finite family (𝑠𝑖)𝑖∈⟦1,𝑛⟧ of objects in 𝑆
such that:

(1) 𝑠1 = 𝑎,

(2) 𝑠𝑛 = 𝑏,

(3) for all 1 ≤ 𝑖 ≤ 𝑛, if 𝑖 is odd 𝑠𝑖 ∼1 𝑠𝑖+1 and if 𝑖 is even 𝑠𝑖 ∼2 𝑠𝑖+1.

We deduce the following proposition.

Proposition 5.23. Let 𝐾 be a noetherian unstable sub algebra of 𝐻∗ (𝑊) of finite
transcendence degree dim(𝑊) such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of
𝐾 in 𝐻∗ (𝑊). Then, for 𝜁 and 𝛾 in HomVI (𝑈,𝑉), 𝛾∗𝜙|𝑃 (𝐾,𝛿∗𝜙) = 𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) ∈
HomK (𝑃(𝐾, 𝛿∗𝜙), 𝐻∗ (𝑈)) if and only if there exists a family (𝜖𝑖)𝑖∈⟦1,𝑛⟧ ∈
HomV 𝑓 (𝑈,𝑊)𝑛 with 𝑛 ∈ N greater than 1, such that:

(1) 𝛾 = 𝜖1,

(2) 𝜁 = 𝜖𝑛,

(3) for all 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝜖∗
𝑖
𝜙 = 𝜖∗

𝑖+1𝜙 if 𝑖 is odd and 𝜋 ◦ 𝜖𝑖 = 𝜋 ◦ 𝜖𝑖+1 if 𝑖 is even.

Proof. By Corollary 5.20, the following is a pushout:

HomV 𝑓 (_,𝑊) 𝑘 // //

𝜋∗
����

HomK (𝐾, 𝐻∗ (_))

𝑝

����

HomV 𝑓 (_,𝑊/Im(𝛿)) // // HomK (𝑃(𝐾, 𝛿∗𝜙), 𝐻∗ (_)),

where 𝑘 maps 𝜁 : 𝑈 → 𝑊 to 𝜁∗𝜙 : 𝐾 → 𝐻∗ (𝑈), 𝑝 maps 𝜓 : 𝐾 → 𝐻∗ (𝑈) to 𝜓 |𝑃 (𝐾,𝛿∗𝜙)
and 𝜋∗ maps 𝜁 : 𝑈 → 𝑊 to 𝜋 ◦ 𝜁 : 𝑈 → 𝑊/Im(𝛿). Then, by Lemma 5.21, 𝑝 ◦ 𝑘 (𝜁) =
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𝑝 ◦ 𝑘 (𝛾) if and only if there exists a family (𝜖𝑖)𝑖∈⟦1,𝑛⟧ ∈ HomV 𝑓 (𝑈,𝑊)𝑛 with 𝑛 ∈ N
greater than 1, such that 𝛾 = 𝜖1, 𝜁 = 𝜖𝑛 and for all 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑘 (𝜖𝑖) = 𝑘 (𝜖𝑖+1) if 𝑖 is
odd and 𝜋∗ (𝜖𝑖) = 𝜋∗ (𝜖𝑖+1) if 𝑖 is even. □

Corollary 5.24. Let 𝐾 be a noetherian unstable sub algebra of 𝐻∗ (𝑊) of finite transcen-
dence degree dim(𝑊) such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of 𝐾 in 𝐻∗ (𝑊).
Then, for 𝜁 ∈ HomV 𝑓 (𝑈,𝑊), ker(𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) ) = ker(𝜋 ◦ 𝜁).

Proof. Let 𝜁0 ∈ HomV 𝑓 (𝑈/ker(𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) ),𝑊) such that 𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) =

𝜋∗
𝑈
𝜁∗0𝜙|𝑃 (𝐾,𝛿∗𝜙) , with 𝜋𝑈 the projection from𝑈 to𝑈/ker(𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) ). Let 𝜖1 = 𝜁0◦𝜋𝑈 ,

𝜖𝑛 = 𝜁 and for all 𝑖 𝜖∗
𝑖
𝜙 = 𝜖∗

𝑖+1𝜙 if 𝑖 is odd and 𝜋 ◦ 𝜖𝑖 = 𝜋 ◦ 𝜖𝑖+1 if 𝑖 is even. Then, since
HomK (𝐾, 𝐻∗ (_)) is noetherian, ker(𝜋 ◦ 𝜖𝑖) = ker(𝜋 ◦ 𝜖𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛 − 1. Hence,
ker(𝜋 ◦ 𝜁) = ker(𝜋 ◦ 𝜁0 ◦ 𝜋𝑈) = ker(𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) ). □

Corollary 5.25. Let 𝐾 be a noetherian unstable sub algebra of 𝐻∗ (𝑊) of finite transcen-
dence degree dim(𝑊) such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of 𝐾 in 𝐻∗ (𝑊).
Then, 𝔖𝑃 (𝐾,𝛿∗𝜙) is noetherian.

Proof. The two first conditions are straightforward. Let 𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) in
HomK (𝑃(𝐾, 𝛿∗𝜙), 𝐻∗ (𝑈)) and let 𝛼 be a morphism from a vector space 𝑌 to 𝑈. Then,
by Corollary 5.24

ker(𝛼∗𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) ) = ker(𝜋 ◦ 𝜁 ◦ 𝛼).
This is equal to

𝛼−1 (ker(𝜋 ◦ 𝜁)) = 𝛼−1 (ker(𝜁∗𝜙|𝑃 (𝐾,𝛿∗𝜙) )). □

Theorem 5.26. Let 𝐾 be a noetherian unstable sub algebra of 𝐻∗ (𝑊) of finite transcen-
dence degree dim(𝑊) such that (𝑉, 𝛿∗𝜙) ∈ C(𝐾), for 𝜙 the inclusion of 𝐾 in 𝐻∗ (𝑊).
Then, 𝑃(𝐾, 𝛿∗𝜙) is 𝑛𝑖𝑙-closed and noetherian.

Proof. Since, 𝑃(𝐾, 𝛿∗𝜙) is the kernel of 𝜅 − id𝐾 ⊗1 from 𝐾 to 𝐾 ⊗ 𝐻∗ (𝑉) which are
𝑛𝑖𝑙-closed, for 𝜅 the comodule structure of 𝐾 associated with 𝛿∗𝜙, and since 𝑓 is exact
and 𝑚 is left-exact, the following is an exact sequence:

0 −→ 𝑙1 (𝑃(𝐾, 𝛿∗𝜙)) −→ 𝑙1 (𝐾)
𝑙1 (𝜅−id𝐾 ⊗1)
−−−−−−−−−−→ 𝑙1 (𝐾 ⊗ 𝐻∗ (𝑉)).

Therefore, since 𝐾 is 𝑛𝑖𝑙-closed, 𝑃(𝐾, 𝛿∗𝜙) is also 𝑛𝑖𝑙-closed. Then, the noetherianity of
𝑃(𝐾, 𝛿∗𝜙) is a consequence of the noetherianity of𝔖𝑃 (𝐾,𝛿∗𝜙) and of Proposition 3.12. □

Remark 5.27. We have identified 𝑃(𝐾, 𝛿∗𝜙) with a sub-algebra of 𝐻∗ (𝑊/Im(𝛿)). Further-
more, we proved that 𝑃(𝐾, 𝛿∗𝜙) is 𝑛𝑖𝑙-closed and noetherian, and (because we took 𝛿 to be
an injection) Corollary 5.24 implies that the inclusion from 𝑃(𝐾, 𝛿∗𝜙) into 𝐻∗ (𝑊/Im(𝛿))
is regular. Therefore, by Theorem 5.7, 𝑃(𝐾, 𝛿∗𝜙) has the form 𝐻∗ (𝑊/Im(𝛿))G′ , for some
G′ ∈ Groupoid(𝑊/Im(𝛿)).
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This leads to the following question: for 𝑊 and 𝑉 in V 𝑓 , for 𝛿 an inclusion from
𝑉 to 𝑊 and for G′ a groupoid with the restriction property and whose objects are the
sub-spaces of (𝑊/Im(𝛿)), which are the groupoids G ∈ Groupoid(𝑊), such that

(1) 𝐻∗ (𝑊)G is a sub 𝐻∗ (𝑉)-comodule of 𝐻∗ (𝑊) for the comodule structure induced
by 𝛿,

(2) the intersection of 𝐻∗ (𝑊)G with 𝜋∗ (𝐻∗ (𝑊/Im(𝛿))) is the image under
𝜋∗ : 𝐻∗ (𝑊/Im(𝛿)) → 𝐻∗ (𝑊) of 𝐻∗ (𝑊/Im(𝛿))G′ .

Remark 5.28. 𝐻∗ (𝑊)G is a sub 𝐻∗ (𝑉)-comodule of 𝐻∗ (𝑊) for the comodule struture
induced by 𝛿 if and only if G satisfies the two conditions of Theorem 4.11.

We recall that, from the beginning of this sub-section, 𝑉 and𝑊 are fixed objects of
V 𝑓 and 𝛿 a fixed injective morphism from 𝑉 to𝑊 .

Theorem 5.29. Let G be a groupoid with the restriction property and whose ob-
jects are the sub-vector spaces of 𝑊 , such that 𝐻∗ (𝑊)G is a sub 𝐻∗ (𝑉)-comodule of
(𝐻∗ (𝑊), (id𝑊 +𝛿)∗). For G′ the only object of Groupoid(𝑊/Im(𝛿)) which satisfies that
𝜋∗ (𝐻∗ (𝑊/Im(𝛿))G′ ) is the algebra of primitive elements of 𝐻∗ (𝑊)G , the two following
conditions are equivalent:

(1) 𝛼 ∈ G′ (𝑈,𝑈′), where𝑈 and𝑈′ are sub-vector spaces of𝑊/Im(𝛿) and 𝛼 is an
isomorphism from𝑈 to𝑈′,

(2) there exists 𝑁 and 𝑁 ′ sub spaces of 𝑊 such that 𝜋 induce isomorphisms
from 𝑁 and 𝑁 ′ to 𝑈 and 𝑈′, as well as an element 𝛽 ∈ G(𝑁, 𝑁 ′) such that
𝛼 = 𝜋 |𝑈′

𝑁 ′ ◦ 𝛽 ◦ (𝜋 |𝑈
𝑁
)−1.

Proof. We consider the pushout diagram of Corollary 5.20:

HomV 𝑓 (_,𝑊) 𝑘 // //

𝜋∗

����

HomK (𝐻∗ (𝑊)G , 𝐻∗ (_))

𝑞

����

HomV 𝑓 (_,𝑊/Im(𝛿))
𝑝
// // HomK (𝐻∗ (𝑊/Im(𝛿))G′

, 𝐻∗ (_)),

where 𝜋∗ maps 𝛾 : 𝑈 → 𝑊 to 𝜋 ◦ 𝛾, 𝑘 maps 𝛾 to 𝛾∗𝜙G for 𝜙G the inclusion from
𝐻∗ (𝑊)G , 𝑞 maps 𝜓 : 𝐻∗ (𝑊)G → 𝐻∗ (𝑈) to 𝜓 |𝜋∗ (𝐻∗ (𝑊/Im(𝛿 ) ) ) the restriction of 𝜓 to
𝜋∗ (𝐻∗ (𝑊/Im(𝛿))) and, finally, 𝑝 maps 𝜁 from 𝑈 to 𝑊/Im(𝛿) to 𝜁∗𝜙G′ , for 𝜙G′ the
inclusion of 𝐻∗ (𝑊/Im(𝛿))G′ into 𝐻∗ (𝑊/Im(𝛿)).
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We fix a section 𝑠 from 𝑊/Im(𝛿) to 𝑊 . Since 𝜋 ◦ 𝑠 = id𝑊/Im(𝛿 ) , 𝜋∗ (𝑠) = id𝑊/Im(𝛿 ) .
Then, by commutativity of the pushout diagram, we have 𝜙G′ = 𝑞(𝑠∗𝜙G) =

𝑠∗𝜙G |𝜋∗ (𝐻∗ (𝑊/Im(𝛿 ) ) ) .
By construction, there are natural isomorphisms ℜ𝐻∗ (𝑊 )G � ℜW/∼G and

ℜ𝐻∗ (𝑊/Im(𝛿 ) )G′ � ℜW/Im(𝛿 )/∼G′ . These are the isomorphisms that map (𝑊, 𝜙G) to
[𝑊, id𝑊 ]G and (𝑊/Im(𝛿), 𝜙G′ ) to [𝑊/Im(𝛿), id𝑊/Im(𝛿 ) ]G′ respectively.

Let us first prove (2) ⇒ (1). We consider, 𝛽 ∈ G(𝑁, 𝑁 ′) such that 𝜋 induces
isomorphisms 𝜋 |𝑈

𝑁
and 𝜋 |𝑈′

𝑁 ′ between 𝑁 and 𝑈 and between 𝑁 ′ and 𝑈′. Let 𝛼 be an
isomorphism from 𝑈 to 𝑈′ such that 𝛼 = 𝜋 |𝑈′

𝑁 ′ ◦ 𝛽 ◦ (𝜋 |𝑈
𝑁
)−1. Then, (𝜋 |𝑈′

𝑁 ′ )−1 ◦ 𝛼 =

𝛽 ◦ (𝜋 |𝑈
𝑁
)−1. Therefore,

𝛼∗ ((𝜋 |𝑈′

𝑁 ′ )−1)∗𝜄∗𝑁 ′𝜙G = ((𝜋 |𝑈𝑁 )
−1)∗𝛽∗𝜄∗𝑁 ′𝜙G

= ((𝜋 |𝑈𝑁 )
−1)∗𝜄∗𝑁𝜙G .

We can choose the section 𝑠 in such a way that 𝑠 ◦ 𝜄𝑈′ = 𝜄𝑁 ′ ◦ ((𝜋 |𝑈′

𝑁 ′ )−1), then

𝛼∗𝜄∗𝑈′ 𝑠
∗𝜙G = ((𝜋 |𝑈𝑁 )

−1)∗𝜄∗𝑁𝜙G .

This implies that 𝛼∗𝜄∗
𝑈′ 𝑠

∗𝑞(𝜙G) = ((𝜋 |𝑈
𝑁
)−1)∗𝜄∗

𝑁
𝑞(𝜙G). Furthermore, 𝜋◦ 𝑠◦ 𝜄𝑈 = 𝜋◦ 𝜄𝑁 ◦

(𝜋 |𝑈
𝑁
)−1. Hence, we also have, by Proposition 5.23, that 𝜄∗

𝑈
𝑠∗𝑞(𝜙G)= ((𝜋 |𝑈

𝑁
)−1)∗𝜄∗

𝑁
𝑞(𝜙G).

Hence,
𝛼∗𝜄∗𝑈′ 𝑠

∗𝑞(𝜙G) = 𝜄∗𝑈𝑠∗𝑞(𝜙G).
Since 𝑠∗𝑞(𝜙G) = 𝜙G′ , this implies that 𝛼 ∈ G′ (𝑈,𝑈′), as required.

Now, let us prove the far more challenging (1) ⇒ (2).
We consider 𝛼 ∈ G′ (𝑈,𝑈′) where𝑈 and𝑈′ are two sub-spaces of𝑊/Im(𝛿). Then,

𝛼∗𝜄∗𝑈′𝜙G′ = 𝜄∗𝑈𝜙G′ ,

or, equivalently,
[𝑈, 𝜄𝑈′ ◦ 𝛼]G′ = [𝑈, 𝜄𝑈]G′ .

By Proposition 5.23, since 𝜙G′ = 𝑠∗𝑞(𝜙G), we have that [𝐻, 𝜁]G′ = [𝐻, 𝛾]G′ , for some
𝐻 ∈ V 𝑓 and 𝜁 and 𝛾 injectives from 𝐻 to𝑊/Im(𝛿), if and only if there exists a family
(𝜖𝑖)𝑖∈⟦1,𝑛⟧ ∈ HomV 𝑓 (𝑈,𝑊)𝑛 with 𝑛 ∈ N greater than 1, such that 𝑠 ◦ 𝛾 = 𝜖1, 𝑠 ◦ 𝜁 = 𝜖𝑛

and, for all 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝜖∗
𝑖
𝜙G = 𝜖∗

𝑖+1𝜙G if 𝑖 is odd and 𝜋 ◦ 𝜖𝑖 = 𝜋 ◦ 𝜖𝑖+1 if 𝑖 is even.
So let (𝜖𝑖)𝑖∈⟦1,𝑛⟧ ∈ HomV 𝑓 (𝑈,𝑊)𝑛 be such that 𝜖1 = 𝑠 ◦ 𝜄𝑈 , 𝜖𝑛 = 𝑠 ◦ 𝜄𝑈′ ◦ 𝛼 and for

all 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝜖∗
𝑖
𝜙G = 𝜖∗

𝑖+1𝜙G if 𝑖 is odd and 𝜋 ◦ 𝜖𝑖 = 𝜋 ◦ 𝜖𝑖+1 if 𝑖 is even.
By induction, for all 𝑖 ∈ ⟦1, 𝑛⟧, 𝜖∗

𝑖
𝜙G and 𝜋 ◦ 𝜖𝑖 are regular elements respectively of

𝔖𝐻∗ (𝑊 )G and 𝔖HomV 𝑓 (𝑈,𝑊/Im(𝛿 ) ) . Hence, 𝜖𝑖 and 𝜋 ◦ 𝜖𝑖 are injections. For all 𝑖, let 𝑁𝑖
denote the image of 𝜖𝑖 in𝑊 , we denote also by 𝜖̃ 𝑖 the corestriction of 𝜖𝑖 to 𝑁𝑖 . Then, for 𝑖
odd, 𝜖∗

𝑖
𝜙G = 𝜖∗

𝑖+1𝜙G implies that there exists 𝛽𝑖 in G(𝑁𝑖 , 𝑁𝑖+1) such that 𝜖̃ 𝑖+1 = 𝛽𝑖 ◦ 𝜖̃ 𝑖 .
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We take some moment to explain a subtlety in the proof. We would like, for 𝑖 even, to
have 𝜖𝑖 = 𝜖𝑖+1. Then, the composition of the 𝛽𝑖 with 𝑖 odd would give an isomorphism
𝛽 between 𝑁1 = 𝑠(𝑈) and 𝑁𝑛 = 𝑠(𝑈′) such that 𝛽 ∈ G(𝑁1, 𝑁𝑛), since G is a groupoid
and we would have (𝑠 ◦ 𝜄𝑈′ ) |𝑁𝑛 ◦ 𝛼 = 𝛽 ◦ (𝑠 ◦ 𝜄𝑈) |𝑁1 . Since (𝑠 ◦ 𝜄𝑈) |𝑁1 and (𝑠 ◦ 𝜄𝑈′ ) |𝑁𝑛
are inverse isomorphisms of 𝜋 |𝑈

𝑁1
and 𝜋 |𝑈′

𝑁𝑛
, we would have 𝛼 = 𝜋 |𝑈′

𝑁𝑛
◦ 𝛽 ◦ (𝜋 |𝑈

𝑁1
)−1.

If this were the case, we would have found a 𝛽 for any 𝑁 and 𝑁 ′ such that 𝜋 induces
isomorphisms between 𝑈 and 𝑁 and between 𝑈′ and 𝑁 ′, and we would have done so
without using the assumption that 𝛿∗𝜙G is central. Unfortunately, this naive approach
fails, and 𝑁 and 𝑁 ′ must be chosen carefully. The hypothesis on the 𝜖𝑖 for 𝑖 even indicates
how to modify our original 𝑁1 and 𝑁𝑛 to make it work, using the centrality of 𝛿∗𝜙G .

First notice that, since 𝜋 ◦ 𝜖𝑖 is injective for all 𝑖, we always have 𝑁𝑖 ∩ Im(𝛿) = {0}.
Then, the assumption that, for 𝑖 even, 𝜋 ◦ 𝜖𝑖 = 𝜋 ◦ 𝜖𝑖+1 implies that there exists 𝜌𝑖 from𝑈

to𝑊 whose image is inside Im(𝛿) and such that 𝜖𝑖+1 = 𝜖𝑖 + 𝜌𝑖 . Now, since 𝐻∗ (𝑊)G is a
sub 𝐻∗ (𝑉)-comodule of (𝐻∗ (𝑊), (id𝑊 +𝛿)∗) we know that [𝑉, 𝛿]G is a central element
of ℜW/∼G . Then, by Theorem 4.11, for 𝑖 odd, we know that the isomorphisms 𝛽𝑖 from
𝑁𝑖 ⊕ Im(𝛿) to 𝑁𝑖+1 ⊕ Im(𝛿) defined by 𝛽𝑖 (𝑛) = 𝛽𝑖 (𝑛) for 𝑛 ∈ 𝑁𝑖 and 𝛽𝑖 (𝑣) = 𝑣 for
𝑣 ∈ Im(𝛿) satisfy 𝛽𝑖 ∈ G(𝑁𝑖 ⊕ Im(𝛿), 𝑁𝑖+1⊕ Im(𝛿)). Moreover, for 𝑖 even, 𝜋◦𝜖𝑖 = 𝜋◦𝜖𝑖+1
implies that 𝑁𝑖 ⊕ Im(𝛿) = 𝑁𝑖+1 ⊕ Im(𝛿). Then, at each even step 𝑖, we can “correct” 𝜖𝑖−1
to get 𝛽𝑖−1 ◦ 𝜖̃ 𝑖−1 = 𝜖̃ 𝑖+1 instead of 𝜖̃ 𝑖 .

For each 𝑖 ∈ ⟦1, 𝑛⟧, we define 𝜖 ′
𝑖

(the “corrected” 𝜖𝑖) by

𝜖 ′𝑖 := 𝜄𝑊
𝑁𝑖⊕Im(𝛿 ) ◦

©­«𝜖̃ 𝑖 ⊕
∑︁

{ 𝑗 even ; 𝑖≤ 𝑗<𝑛}
𝛽−1
𝑖→ 𝑗 ◦ 𝜌 𝑗 |𝑁 𝑗⊕Im(𝛿 )ª®¬ ,

where 𝛽𝑖→ 𝑗 is the composition of all the 𝛽𝑘 with 𝑘 odd and 𝑖 ≤ 𝑘 < 𝑗 . The family
(𝜖 ′
𝑖
)𝑖∈⟦1,𝑛⟧ satisfies the following:

(1) 𝜋 ◦ 𝜖 ′1 = 𝜄𝑈 , 𝜋 ◦ 𝜖 ′𝑛 = 𝜄𝑈′ ◦ 𝛼,

(2) for all 𝑖, if we denote by 𝑁 ′
𝑖

the image of 𝜖 ′
𝑖
, then 𝑁 ′

𝑖
⊕ Im(𝛿) = 𝑁𝑖 ⊕ Im(𝛿),

(3) for 𝑖 odd, if we denote by 𝛽′
𝑖

the restriction of 𝛽𝑖 to 𝑁 ′
𝑖

corestricted to 𝑁 ′
𝑖+1,

𝜖̃ ′
𝑖+1 = 𝛽′

𝑖
◦ 𝜖̃ ′

𝑖
, with 𝛽′

𝑖
∈ G(𝑁 ′

𝑖
, 𝑁 ′

𝑖+1)), since 𝛽𝑖 ∈ G(𝑁𝑖 ⊕ Im(𝛿), 𝑁𝑖+1 ⊕ Im(𝛿))
and G has the restriction property,

(4) for 𝑖 even, 𝜖 ′
𝑖
= 𝜖 ′

𝑖+1.

Then, let 𝑁 = 𝑁 ′
1, 𝑁 ′ = 𝑁 ′

𝑛 and 𝛽 = (𝛽′
𝑘
◦ · · · ◦ 𝛽′3 ◦ 𝛽′1), where 𝑘 = 𝑛 − 2 if 𝑛 is

odd, 𝑘 = 𝑛 − 1 otherwise. Then, 𝛽 ∈ G(𝑁, 𝑁 ′) and 𝛽 ◦ 𝜖̃ ′1 = 𝜖̃ ′𝑛. Finally, 𝜋 ◦ 𝜖 ′1 = 𝜄𝑈

implies that 𝜖̃ ′1 = (𝜋 |𝑈
𝑁
)−1 and 𝜋 ◦ 𝜖 ′𝑛 = 𝜄𝑈′ ◦ 𝛼 implies that 𝜖̃ ′𝑛 = (𝜋 |𝑈′

𝑁 ′ )−1 ◦ 𝛼. Hence,
𝛼 = 𝜋 |𝑈′

𝑁 ′ ◦ 𝛽 ◦ (𝜋 |𝑈
𝑁
)−1. □
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5.3. Applications

We end this section by presenting some applications of Theorem 5.29. We consider some
algebras 𝐻∗ (𝑊)G that satisfy some conditions on their centre and associated sub-algebras
of primitive elements.

We consider first the case where the centre of 𝐻∗ (𝑊)G has dimension dim(𝑊).
Since the centre is a regular element of 𝐻∗ (𝑊)G, we can take it to be (𝑊, 𝜙G) for 𝜙G
the inclusion in 𝐻∗ (𝑊). By Theorem 4.11, 𝑊 is invariant under any morphism in G.
Therefore, G is the groupoid in Groupoid(𝑊) that contains only trivial morphisms and
𝐻∗ (𝑊)G = 𝐻∗ (𝑊). We get the following Proposition (that was already known).

Proposition 5.30. Let 𝐾 be a noetherian, 𝑛𝑖𝑙-closed, integral, unstable algebra of
transcendence degree 𝑑. We assume that the centre of 𝐾 is of dimension 𝑑. Then,
𝐾 � 𝐻∗ (𝑊) with dim(𝑊) = 𝑑.

Let us now consider the case where the centre is of dimension dim(𝑊) − 1. Up to
isomorphism, the centre is induced by the inclusion in𝑊 of a sub-vector space𝐶. Then, the
elements of𝐶 are invariant under any morphism in G. From condition (2) in Theorem 4.11
and since G satisfies the restriction property, any morphism in G is the restriction of
a morphism in G(𝐶 ⊕ 𝑆, 𝐶 ⊕ 𝑆′) with 𝑆 and 𝑆′ complementary sub-spaces of 𝐶 in 𝑊 ,
hence, they are the restriction of a morphism in G(𝑊,𝑊). Therefore, G = 𝔤(G(𝑊,𝑊)).
We get the following Theorem.

Theorem 5.31. Let 𝐾 be a noetherian, 𝑛𝑖𝑙-closed, integral, unstable algebra of transcen-
dence degree 𝑑. Then, the centre of 𝐾 has dimension 𝑑 − 1 if and only if, for𝑊 such that
dim(𝑊) = 𝑑, there exists 𝐺 a sub-group of Gl(𝑊) such that 𝐾 is isomorphic to 𝐻∗ (𝑊)𝐺
and such that the sub-vector space of𝑊 of invariant elements under 𝐺 has dimension
𝑑 − 1.

A 𝑛𝑖𝑙-closed, noetherian, integral unstable algebra that is not an algebra of invariant
elements of the form 𝐻∗ (𝑊)𝐺 , must have a centre of dimension at most 𝑑 − 2, with 𝑑
the transcendence degree of 𝐾. We give such examples for 𝑝 = 2, using Theorems 5.7
and 5.29.

Proposition 5.32. There are, up to isomorphism, 5 𝑛𝑖𝑙-closed, noetherian, unstable
algebras 𝐾 of transcendence degree 3, whose centre has dimension 1 and such that the
algebra of primitive elements of 𝐾 is isomorphic to 𝐻∗ (𝑉2) for 𝑉𝑘 the vector space of
dimension 𝑘 . They can be realised as sub-algebras of 𝐻∗ (𝑉3) � F2 [𝑥, 𝑦, 𝑧] as:

(1) F2 [𝑦, 𝑧, 𝑥(𝑥 + 𝑦) (𝑥 + 𝑧) (𝑥 + 𝑦 + 𝑧)],

(2) F2 [𝑦, 𝑧, 𝑥(𝑥 + 𝑦) (𝑥 + 𝑧) (𝑥 + 𝑦 + 𝑧)] + F2 [𝑦, 𝑧, 𝑥(𝑥 + 𝑦)]𝑦,
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(3) F2 [𝑥, 𝑦, 𝑧] (𝑦 + 𝑧) ⊕ F2 [𝑧, 𝑥(𝑥 + 𝑧)],

(4) F2 [𝑧, 𝑥(𝑥 + 𝑧)] ⊕ F2 [𝑥, 𝑦, 𝑧] (𝑦 + 𝑧)𝑦 ⊕ F2 [𝑦, 𝑥(𝑥 + 𝑦)]𝑦,

(5) F2 [𝑧, 𝑥(𝑥+𝑧)]𝑧⊕F2 [𝑦, 𝑥(𝑥+𝑦)]𝑦⊕F2 [𝑦, 𝑥(𝑥+𝑦)] (𝑦+𝑧)𝑦⊕F2 [𝑥, 𝑦, 𝑧] (𝑦+𝑧)𝑦𝑧.

Among them, only the first one is an algebra of invariant elements.
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