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Nil-closed Noetherian sub-algebras of H*(W) and their centres

OuRrIEL BLEDE

Abstract

For G some groupoid whose objects are the sub-vector spaces of a Fj,-vector space W, we define
H*(W)9 a nil-closed, noetherian, unstable sub-algebra of H*(W) over the Steenrod algebra. The
application on the appropriate ordered set of groupoids, that maps G to H*(W)9 defines an isomorphism
of posets to the set of noetherian, nil-closed, unstable sub-algebras of H* (W) of transcendence degree
dim(W), ordered by inclusion.

Since any noetherian and integral unstable algebra of transcendence degree dim(W) admits an
injection into H* (W), any such nil-closed unstable algebra is isomorphic to some H* (W)9.

We prove that G encodes the centre, in the sense of Heard, of H* (W)9. Also, there is a H* (C)-
comodule structure on K that is associated with the centre of K. For K = H*(W)9, we explain how the
sub-algebra of primitive elements of H* (W)¥ for this comodule structure is also encoded in G. Along
the way, we prove that this algebra of primitive elements is also noetherian.

1. Introduction

1.1. The two theorems of Adams—Wilkerson

We consider p a prime number and W a F,-vector space. The F,-algebra H*(W) :=
H*(BW), where BW is the classifying space of W and H* denote the singular cohomology
with [F,-coefficients, is an unstable algebra over A, the Steenrod algebra over F,,. The
category U of unstable modules over ‘A admits a localizing sub-category Nil and an
unstable module M is called nil-closed if its localization away from Nil is an isomorphism.

The first theorem of Adams—Wilkerson [1, Theorem 1.1] states that any integral and
noetherian unstable algebra K is isomorphic to some sub-algebra of H* (W), with dim(W)
equal to the transcendence degree of K. The first aim of this article is to describe the
poset of unstable sub-algebras of H*(W) which are noetherian, nil-closed and whose
transcendence degree is the dimension of W. Combined with the theorem of Adams—
Wilkerson, this would give us a description of any nil-closed, integral and noetherian
unstable algebra.

We define Groupoid(W), a poset of groupoids G, whose objects are the sub-vector
spaces of W and whose morphisms are isomorphisms, and with G satisfying a so-called
restriction property.

This work was partially supported by the ANR Project ChroK, ANR-16-CE40-0003.
Keywords: Steenrod algebra, Unstable modules, Unstable algebras, Functors.
2020 Mathematics Subject Classification: 55510, 18AXX.
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Theorem 1.1. For all finite dimensional F,-vector space W, there is an isomorphism
of posets between the poset of nil-closed and noetherian sub-algebras of H*(W) whose
transcendence degree is dim(W) and Groupoid(W).

This isomorphism is given by G +— H*(W)9Y, where the sub-algebra H*(W)Y is a
generalisation of the algebra of invariants H* (W)Y in the case where G is a sub-group
of GI(W). Theorem 1.1 therefore generalizes the second theorem of Adams—Wilkerson,
which states that a noetherian, nil-closed sub-algebra of H*(W) whose transcendance
degree is dim(W) and which is integrally closed in its field of fraction is some H* (W)%
for some sub-group G of GI(W).

1.2. The centre of an unstable algebra

In [3], Dwyer and Wilkerson introduced the notion of a central element of an unstable
algebra; this notion allowed them to exhibit the only exotic finite loop space at prime 2
in [4]. In the case where K is noetherian and connected, the set of central elements of K
coincides with the set of pairs (V, ¢) such that

(1) ¢ € Homg (K, H*(V)),

(2) K admits a structure x of H*(V))-comodule in K, such that the following diagram
commutes:

K—~ s K®H* (V)

x lek ®id

H*(V),
where ex denotes the augmentation of K (which is uniquely defined because of
the connectedness of K).

In [7], Heard showed that for K noetherian, K admits a unique (up to isomorphism)
central element (C, y) such that y induces a structure of finitely generated K-module on
H*(C) and dim(C) is maximal among such central elements. Heard called this central
element the centre of K. The centre of an unstable algebra has been shown to be an
important invariant. In [11] and [12], Kuhn used it to approximate the depth of K as
well as invariants do(K) and d; (K) introduced by Henn, Lannes, and Schwartz in [9], in
the case where K is the cohomology of a group. Heard generalised those results for K
noetherian in [6] and [7].

For K noetherian, since a central element of K is associated with a H*(V)-comodule
structure on K, it gives rise to a second invariant: the sub-algebra of primitive elements
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of K under this H*(V)-comodule structure. The second objective of this article is to
explain how central elements of H*(W)9 and their associated sub-algebra of primitive
elements are determined by G. We prove the following theorem, which gives a complete
description of central elements of H*(W)9, since any morphism from H*(W)9 to H*(T)
in K factors through the inclusion of H*(W)9 in H*(W).

Theorem 1.2. For G € Groupoid(W) and 6 a morphism from some vector space T to W,
the induced morphism in K from H*(W)9 to H*(T) is central if and only if V := 6(T)
satisfies the two following conditions:

(1) for any U and U’ subspaces of W, @« € G(U,U") andv € VN U, we have v € U’
and a(v) = v,

(2) for any U and U’ subspaces of W and a an isomorphism from U to U’ such that
a(v)=vforallveVnU acGUU)ifandonlyifa € G(V+U,V+U’),
where & is the morphism that maps v € V to itself and u € U to a(u).

1.3. The algebra of primitive elements associated with a central element

We prove the following theorem, for G € Groupoid(W), ¢ being a central element of
H*(W)Y, and P(H*(W)9Y, ¢) denoting the sub-algebra of primitive elements of H*(W)9
with respect to the comodule structure associated to ¢.

Theorem 1.3. P(H* (W)Y, ¢) is nil-closed and noetherian.

Furthermore, taking 6 a morphism of vector spaces with codomain W, such that ¢ is the
restriction of §* to H*(W)9, P(H*(W)9, ¢) identifies with a sub-algebra of H* (W /Im(5))
with transcendence degree dim(W/Im(5)). Therefore, by Theorem 1.1, there is G’ €
Groupoid(W /Im(§)) such that P(H*(W)9, ¢) identifies with H*(W /Im(6))9". In Theo-
rem 5.29, we will explain how to compute G’ from G.

1.4. Organisation of the paper

In Section 2, we recall some known facts about unstable algebras and their centres.

In [8], the authors described an equivalence of categories between K/ Nil, which is
the localization of K in morphisms whose kernels and cokernels are nilpotent, and some
category of functors, given by K — Homg (K, H*(_)). The main idea of this article is to
classify the categories of elements of functors of the form W +— Homg (K, H*(W)). In
Section 3, we define the notion of a formal category of elements and characterize those
that can be obtained as the category of elements of a functor Homg (K, H*(_)) with K
noetherian. Then, we study the properties of such formal categories of elements.
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In Section 4, we define and study the notion of a central element in a formal category of
elements. We show that, for Sk the category of elements of the functor Homg (K, H*(_))
with K nil-closed and noetherian, the central elements of Sk are the central elements
of K.

Finally, in Section 5, we define the sub-algebras H*(W)9 and prove our different
classification results.

Acknowledgements

I am thankful to Geoffrey Powell for his careful proofreading and his continued support
during and after my PhD. I also want to thank Antoine Boivin for his help in computing
the H*(W)9 of the last section.

2. Recollections on unstable algebras over the Steenrod algebra

In the following, A denotes the Steenrod algebra over F,, with p a prime number, U
and K denote the categories of unstable modules and unstable algebras over A, and Nil
denotes the Serre class of nilpotent objects in U. Recollections about unstable algebras,
unstable modules, and nilpotent objects can be found in [15].

We start this section, by recalling some known facts about the localization K/ Nil,
which is the localization of K by morphisms whose kernel and cokernel are nilpotent.

Then, we recall a definition of central elements of a noetherian unstable algebra K
over A.

2.1. Nil-localisation of unstable algebras

In [8], Henn, Lannes, and Schwartz constructed a localized category K/ Nil with respect
to the morphisms whose kernels and cokernels are in Nil, in the sense of [10]. Then, they
described an equivalence of categories between K/ Nil and some category whose objects
are contravariant functors from V7, the category of finite dimensional vector spaces, to
Pﬁnm’f)op, the category of profinite sets.

Notation 2.1. We denote by r: K — K /Nil the localization functor. It admits a right-
adjoint (cf [8]) that we denote by m. Finally, we denote by /; the composition m o r from
K to itself.

Definition 2.2. An unstable algebra K is called nil-closed if the unit of the adjunction
K — [1(K) is an isomorphism.
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Proposition 2.3 ([8, Proposition 4.4]). An unstable algebra K is nil-closed if and only if
Ext(,)u(N, K) = Ext]u(N, K) = 0 for any nilpotent module N, where the Ext-groups are
computed in the abelian category U of unstable modules over the Steenrod algebra.

Theorem 2.4. ForV € VI, H*(V) is nil-closed.
Proof. 1tis adirect consequence of Proposition 2.3 and the injectivity of H*(V) ([13]). O
Proposition 2.5. For K € K nil-closed and for V € VI, K ® H*(V) is also nil-closed.

Proof. The tensor product of nil-closed modules is nil-closed (see [5, Proposition 3.4]).
Therefore, this result follows from Theorem 2.4. m]

For K € K, Homg (K, H*(V)) has a structure of profinite set which comes from
the fact that K is the direct limit of the unstable sub-algebras of K which are finitely
generated as A-algebras. In particular, if K is noetherian, the profinite set structure of
Homg (K, H*(V)) is that of a finite set.

Definition 2.6. Let PfinV")” be the category of functors from (V/)°P to PfinV")”™ and
g: K- Pfin(V")”" be the contravariant functor that maps K to V — Homg (K, H*(V)).

We denote by Pﬁngvf)np the essential image of g in Pfin

(VI)»
Theorem 2.7 ([8, Theorem 1.5 of Part Il]). The functor g induces an equivalence of
categories between K/ Nil and (Pﬁn(w(vf)op)”P.

Remark 2.8. The category Pﬁn(w(vf)op is described in more detail in [8], and Tinwf)op,

the full subcategory of Pfin(V)?

included in Pﬁng}f)op.

of contravariant functors with values in finite sets, is

Notation 2.9. We denote by m; the composition of m with the equivalence of categories
from Pﬁngvf)op to K/ Nil.

The following lemma will be of importance in the following.

Lemma 2.10. The functor g turns injections into surjections and finite inverse limits into
direct limits.

Proof. There is an exact functor f from the category U to the category of functors from
V7 to the category V of vector spaces of any dimension (cf [8]). For K € K, it satisfies
f(K) = ]Fi(K) , Where ]Ff,(K)(V) denote the set of continuous maps from the profinite
set g(K) (V) to the discrete topological space F,. Since f is exact it sends injections to
injections and commutes with finite inverse limits, which concludes the proof. O
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2.2. Central elements of a noetherian unstable algebra

The notion of a central element of an unstable algebra K is defined by Dwyer and
Wilkerson in [3] and they used it in [4] to exhibit the only exotic finite loop space at the
prime 2. The centre of K has been studied in detail in [6] and [7].

For K an unstable algebra over the Steenrod algebra, a central element is a pair (V, ¢),
with V € V/ and ¢: K — H*(V) a morphism in % that satisfies some property that we
do not wish to recall in full generality. We will only recall the easier characterization of a
central element of K from [3], in the case where K is connected and noetherian.

Definition 2.11. Let K be an unstable algebra, K is connected if K has an augmentation
€x : K — F, which induces an isomorphism K% > Fp.

Notation 2.12. We denote by ek v or ey, when there is no ambiguity on K, the composition
of ex with the injection from F,, to H*(V).

The following propositions in Dwyer and Wilkerson’s articles use less restrictive
hypotheses. However, the hypothesis that K is noetherian will be sufficient for this article.

Proposition 2.13 ([2, Proof of Theorem 3.2]). Let K be a connected, noetherian, unstable
algebra, then (V, ey) is central for all V € V7.

We recall the following results of [3].

Proposition 2.14 ([3, Proposition 3.4]). Let K be a connected, noetherian, unstable
algebra. Then, for ¢ € Homy (K, H*(V)), (V, @) is central if and only if there exists a
morphism from K to K @ H*(V) such that the following diagram commutes:

K

id Tid ®er(v)

K= s K®H(V)

H*(V).
Notation 2.15. We denote by C(K) the class of central elements of K.

Corollary 2.16 ([7]). Let K be a connected, noetherian, unstable algebra. For ¢ €
Homgc (K, H*(V)), (V, @) is central if and only if K has a structure of H*(V)-comodule
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k in ‘K, such that the following diagram commutes:

K—— % sK®H*(V)

H*(V).
In particular, this implies:

Proposition 2.17. Let K be a connected, noetherian, unstable algebra, then for ¢ € C(K)
and a: V — E a morphism in VI, (V,a* o ) € C(K).

Example 2.18. For W € VS, the addition in W, Vw, induces on H*(W) a coalgebra
structure in K. Then, for every morphism of unstable modules ¢ from H*(W) to H*(V),
one can take the composition of Vj,, with idy-(w) ®¢ to define a H*(V)-comodule
structure on H*(W) satisfying the hypothesis of Corollary 2.16. Therefore (V, ¢) is
central.

Theorem 2.19 ([7]). For K noetherian and connected, there exists, up to isomorphism,
a unique central element (C,7), such that v makes H*(C) into a finitely generated
K-module and dim(C) is maximal. It is called the centre of K.

For (C,y) the centre of K, any central element of K has the form (V,a*y) for some
V e VS and @ € Hom(V, C).

We end this section by giving a characterization of central elements of a noetherian,
connected, nil-closed unstable algebra K, using only properties of the functor g(K).

Notation 2.20. When there is no ambiguity on K, we denote by ey the following
composition

K 5 F, — H (W).

Lemma 2.21. For K € K connected, noetherian and for ¢ from K to H*(V) central,
there is a natural group action of (Homg, (W, V), +) on Homg(K, H*(W)) that satisfies
- ey = a’¢.

Proof. Since K is connected, it admits a unit 1x. We have an isomorphism be-
tween Homy (K, H*(W)) X Homg (H*(V), H*(W)) and Homg (K ® H*(V), H*(W))
that maps (¢, ¥) to the unique morphism y in K such that y(1x ® k) = ¢ (h) and
y(k ® 1g+(w)) = ¢(k) for all k € K and h € H*(W). The result is a direct con-
sequence of Corollary 2.16 and of the isomorphism Homg (K ® H*(V), H*(W)) =
Homgc (K, H*(W)) xHomgc(H*(V), H*(W)) = Homgc (K, H*(W)) xHomg,, (W, V). O
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Proposition 2.22. If K is connected, noetherian and nil-closed, ¢ € Homqc (K, H*(V))
is central if and only if, for any W € V/ and any € Homgc(K, H*(W)), there is a
unique element ¢ 8y € Homg (K, H*(V & W)) such that

p=0(pmy): K — H' (Vo W) -5 H V),
and .
=0y (pBY): K — H (VO W) 5 H (W).

Proof. If, for any W € V/ and any ¢ € Homg (K, H*(W)), there is a unique element
@By that satisfies both conditions, one can define a morphism « from Homy (K, H* (W)) X
Homg, (W, V) to Homgc (K, H*(W)) that maps (¢, @) to (@ @ idw)* (¢ B). It is natural
and maps (¥, 0) to ¢ and (ew, @) to a*¢. By Proposition 2.5, since K is nil-closed,
my (Homgc (K, H*(W)) X Homg,(W,V)) = K ® H*(V). Therefore, m () is a morphism
from K to K ® H*(V) that satisfies the hypothesis of Proposition 2.14 and (V, ¢) is
central.

The converse is proven in [3, Lemma 4.6]. O

3. Formal categories of elements

In Section 5, we want to classify noetherian, ni/-closed, unstable sub-algebras K of
H*(W), for some vector space W, and describe their central elements. To do so, we
consider the category of elements of functors of the form Homg (K, H*(_)) for such
sub-algebras K.

In this section, we start by describing such categories of elements and their properties
in the case where K is noetherian and a sub-algebra of H*(W). Then, we describe central
elements of K in terms of the category of elements of Homg (K, H*(_)).

3.1. Category of elements : an intrinsic characterisation

We recall that, for S € Set(q/f)op, the category of elements of S is the category Sg, whose
objects are the pairs (V, ¢) with V € V7 and ¢ € S(V) and whose morphisms from
(V,¢) to (W, ) are the linear morphisms « from V to W, such that a*y = ¢. There
exists a functor from Sg to V7 that maps (V, ¢) to V.

We give an intrinsic description of such categories.

Definition 3.1. A formal category of elements is a pair (C, S) where C is a category and
S is a functor from C to V-, which satisfies:

(1) S is faithful,
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(2) forall V e vV, ST1({V}) is a set,

(3) for a alinear morphism from V to W and for ¢ € C such that S(¢) = W, there
exists a unique element a@*c € C and a unique morphism y from a*c to ¢ in C
such that S(y) = a.

We denote by & the category whose objects are the formal categories of elements
and whose morphisms from (C, S) to (C’,S’) are the functors F from C to C’
such that S =S8’ o F.

Example 3.2. For S € Set””)™ and S the functor from S to V7 that maps (V, ¢) onto
V, (Ss,S) is a formal category of element.

Lemma 3.3. For ¢ € C and two composable morphisms « and 8 in VS with S(c) the
codomain of B we have:

(1) id*S(C) c=c,

(2) a*(B'c) = (Boa)e.

Proof. For the first statement, we just have to notice that id. is a morphism from c to ¢
that satisfies S(id.) = ids(c). For the second statement, we have morphisms y from "¢
to ¢ and ¢ from a*(B%c) to B*c such that S(y) = B and S(6) = «, therefore y o § is a
morphism from a*(8%c) to ¢ that satisfies S(y o0 §) = B o a. O

We take the opportunity to prove the following lemma, which we will use on many
occasions in this article.

Lemma 3.4.

(1) Given a, b, c and d objects in C and morphisms « from a to c, B from b to d and
v from ¢ to d and given a linear morphism A such that the following diagram is a
commutative square in 2

S(a) —2— S(b),

S(Q)l lS(ﬁ)

S(c) W S(d)
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there exists a unique morphism A from a to b such that S(1) = A and the following

diagram commutes:
a b
J |s
c d

— d.
Y
(2) Givena, b, c and d objects in C and morphisms « from a to c, B from b to d and
v from a to b with S(«@) surjective, and given a linear morphism A such that the
following diagram is a commutative square in V7 :

bl
—

S(a) 2% s(p),

S((t)l lS(ﬁ)

S(c) -0 S(d)

there exists a unique morphism ) from c to d such that S (/T) = A and the following
diagram commutes:
a
|
¢

Proof. For the first statement, we consider A the map from A*b to b, by construction,
S(B o) =S8(yoa), therefore, by Lemma 3.3, a = S(y o @)*d = A*band Bo 1 = y o a.

For the second statement, since S(«) is surjective, we can consider a right inverse ¢
from S(c) to S(a). Then, using Lemma 3.3, *a = *S(a@)*c = idj‘s(c_) ¢ = c. For T the

LAy

y

— d.

A

|

induced morphism from c¢ to a, we have @ o ¢ = id. and the unique valid choice for Ais
A=Boyol O

(vSyor

Theorem 3.5. The categories Set and § are equivalent.

Proof. We have a functor
Set(V)” F

S— (G5, 9),
with S defined as in Example 3.2. And a functor

F — SetV)”

(C.8) — (Ve ST ({Vh),
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that maps the morphism a from V to W to the application from S~ ({W}) to S~ ({V})
that maps ¢ € S~!(W) to the unique a*c.
Those two functors are quasi-inverses. O

Definition 3.6. We say that (C, S) is connected if there is a unique element € in C such
that S(e) = 0. In this case, we denote by ey the elements of the form 0*e where 0 denotes
the trivial morphism in V/ from V to 0.

3.2. Noetherian formal categories of elements

. . o . .
In [8], the authors described the functors in Pfin'Y")”™ that arise from a noetherian
unstable algebra. Such functors have values in (discrete profinite) sets.

Notation 3.7. For K a noetherian unstable algebra, we will denote by Sk the category of
elements of the functor Homg (K, H*(_)).

We describe the formal categories of elements of the form Sk, with K noetherian.

Proposition 3.8. Let (C,S) € & and ¢ € C. Then, there exists a unique sub-vector space
U of S(c), denoted by ker(c), such that:

(1) Forall ¢’ € C and all morphisms y: ¢ — ¢’, ker(S(y)) c U.
(2) There exists ¢’ € C andy: ¢ — ¢’ such that ker(S(y)) = U.

(3) There exists co € C and yy: ¢ — cg such that S(7yg) is the projection from S(c)
to S(c)/U.

Proof. This is a direct consequence of Theorem 3.5 and Proposition-Definition 5.1
in [8]. =

Definition 3.9. For (C,S) € & and ¢ € C, we say that ¢ is regular if ker(c¢) = 0.

We can now define a notion of a noetherian formal category of elements, such that
(C, S) is noetherian if and only if there exists K € K noetherian such that (C,S) = Sg.

Definition 3.10. A formal category of elements (C, S) is noetherian if the following
conditions are satisfied:

(1) forall V € V/, S~ (V) is finite,
(2) thereexists d € N such that C contains no regular object ¢ such thatdim(S(c)) > d,

(3) forally: ¢ — ¢’ in C, ker(c) = S(y) ! (ker(c")).
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Notation 3.11. For (C,S) € & which satisfies the two first conditions in Definition 3.10,
S le Pﬁngvf)op (see [8]). We denote by £(C, S) the image of S™! by m : Pﬁngvf)()p =
KINiIS K.

Proposition 3.12.
(1) If K € K is noetherian, Sk is noetherian.
(2) If (C,S) € § is noetherian, then 2(C, S) € K is noetherian.

Proof. Itis a direct consequence of Theorem 3.5 and Theorem 7.1 in [8]. O

3.3. Rector’s Category
Definition 3.13. For (C,S) € &, R is the full subcategory of C of regular objects.

Remark 3.14. In the case where K is a noetherian unstable algebra, Rx = Rg, is
Rector’s category of K. Rector’s category of K is defined in [14] as the full subcategory
of Sk whose objects are the pairs (V, ¢) such that H*(V) is finitely generated as a
K-module. It is a result from [8] that this condition is equivalent to (V, ¢) being regular.

For (C, S) noetherian, the category R¢ behaves nicely and, furthermore, one can
“reconstruct” (C, S) from R¢. This fact will be the main ingredient in the classification
problem that we are addressing in this article.

Remark 3.15. For (C,S) in §, Sl|w, is a faithful functor from R¢ to V7 but it does
not satisfy that, for any « a linear morphism from V to W, and for ¢ € R¢ such that
S(c) = W, there exists uniques ¢’ € R¢ and y from ¢’ to ¢ such that S(y) = @. Indeed,
if @ is not injective a*c € C is the unique object that satisfies that condition and it is not
regular. Yet, if (C, S) is noetherian, that condition is satisfied if and only if « is injective.

Notation 3.16. We denote by VI the wide subcategory of V/ that contains all injective
morphisms.

Definition 3.17. A formal category of elements on VI is a pair (R, S) where R is a
category and S is a functor from R to V1, which satisfies:

(1) 8 is faithful,
() forallV e Vf, S71({V}) is a set
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(3) for a an injective morphisms from V to W and for ¢ € R such that S(¢) = W,
there exists a unique a*c € R and a unique y from a*c to ¢ in R such that
S(y) =a.

We denote by I the category whose objects are the formal categories of
elements on V1 and whose morphisms from (R, S) to (R’, S’) are the functors
F from R to R" such that F o § = §’.

Lemma 3.18. For (C,S) in § noetherian, (R¢c, S|w.) is formal on V1.
Proof. 1t is straightforward from the definition of a noetherian object in {. O
We explain now how to reconstruct a noetherian object (C, S) in § from (R¢, Slx,.)-

Definition 3.19. For (R,S) € &3, let (R, §) be the following formal category of
elements. The objects of R are triples (V, U, ¢) with V € V', U a sub-vector space of V
and ¢ € R such that S(¢) = V/U. The morphisms from (V’,U’, ¢’) to (V, U, c) are pairs
(a,7y) with @ a linear map from V' to V and y € R(c¢’, ¢) that satisfies:

(M o« '(U) =1,
(2) S(y) is the map induced by a from V' /U’ to V/U.

Finally, S is the functor that maps (V,U,c) toV and (@, y) to a.
Theorem 3.20.

(1) For (C,S) € & noetherian, (C,S) = (5175, -§|9gc).

(2) For (R,S) € &3, (R, S) = (Rg, §|‘R§)» Also (R, §) is noetherian if and only if
S~V ({V}) is finite for every V € V7 and there exists d € N such that S~ ({V})
is empty for dim(V) > d.

Proof. For the first statement, the functor in the first direction maps ¢ to (V, ker(c), co),
where ¢ is defined as in Proposition 3.8. Since (C, S) is noetherian, ¢ is indeed regular.
For 8 from ¢’ to ¢ in C, by Proposition 3.8, we have the following diagram in C:

, B
c —¢C
Vol l)’o
Co Cco,
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with S(c)) = S(c’)/ker(c¢’) and S(co) = S(c)/ker(c). ker(c’) = S(B)~(ker(c)) so
S(pB) induces a morphism from S(c;,) to S(co). By Lemma 3.4, this morphism can be
obtained in a unique way as a morphism S () with 3 from ¢ to ¢o. The morphism £ is
mapped to (S(B), B).

The functor in the other direction is the one that maps (V, U, c¢) to the unique ¢ for
which there is a yy from ¢ to ¢ such that S(yy) is the projection from V to V/U. For
(@, B) a morphism in {R?E we have the following diagram:

c’ c
V(Gl l?’o
< L) co-
By Lemma 3.4, there is a unique a, from ¢’ to ¢, such that S(a) = a, («, B8) is mapped

to a.

It is easy to check that the descriptions above define morphisms in § and that they are
inverses.

For the second statement, it is enough to check that (V, U, ¢) is regular in R if and
only if U = 0. On the one hand, for U # 0 there is the morphism (7, id.) from (V, U, c)
to (V/U, 0, c), with « the projection from V to V /U, therefore (V, U, c) is not regular.
On the other hand, morphisms («, y) in R from (V,0,c) satisfy @ = S(y). Since y is a
morphism in R, « is injective, therefore (V, 0, ¢) is regular. O

3.4. Some classification problems

In Section 5, we will consider the following problem: can we classify the sub-unstable
algebras K of H*(W) that are nil-closed, noetherian and such that the injection ¢: K <—
H*(W) is regular?

Notation 3.21. For W € V/ and K € K, we denote by W the category of elements of the
functor Homg, (_, W) = Homy (H* (W), H*(_)).

An injection ¢ from K to H*(W) induces a surjection of formal categories of elements
from W to Sk (by surjection, we mean a functor that is a surjection on objects but not on
morphisms), this surjection maps (W, idy ) onto (W, ¢).

We consider (C, S) a noetherian formal category of elements, and ¢ a surjection from
W to (C,S). Since ¢ is a surjection, any object of C has the form a*c for some morphism
a from some vector space V to W, and since (C, S) is noetherian, a*c is regular if and
only if a is injective. We get the following lemma.
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Lemma 3.22. For (C,S) € § noetherian and ¢: W —» (C,S) such that $(W,idw) is
regular, ¢ is induced by a surjection of formal categories of elements on VI from Ry
to Re.

In this subsection, we address the following problem: how to classify formal categories
(R, S) on VI with a fixed surjection ¢: Rw —» (R, S).

Definition 3.23. Let Rw { &3 be the category whose objects are formal categories of
elements (R, S) on VI with a fixed surjection ¢: Rw —» (R, S), where a surjection
means a map in §3J that is a surjection on objects, and whose morphisms are morphisms
in §3J compatible with the surjections from Ryy.

The category Rw (where we forget the structure of formal category of elements on
VI) admits the following skeleton. The objects of Sk are given by (W,idyw) and the
pairs of the form (U, tyy) with U a sub-vector space of W and ¢y the inclusion of U in
W, and the morphisms of Sk are the identities and the inclusions of sub-spaces. Since a
morphism from (U, ty) to (R, tg) correspond to a factorisation of (yy by (g, Sk is full,
and since for any objects (V, @) in Rw there is a unique isomorphism from (V, @) to an
element of Sk, which is (Im(), tim(e)), the inclusion of Sk in Rw is an equivalence of
categories.

For ¢: Rw - (R, S) an object in Rw { FI, the image of Sk by ¢ is not in general
a skeleton of R. Since ¢ is a surjection, it contains an element in each isomorphism
class of object in R, but this element might not be unique, and also it might not be a
full subcategory of R. Indeed, for U and U’ two sub-vector spaces of W, there might
be morphisms y from U to U’ such that (y # (- oy but ¢(U, ty) = ¢(U’, 1ty oy). We
define a groupoid G(r s, 4) (denoted only Gz when there is no ambiguity) with objects
the images of objects in Sk that will capture all the informations of (R, S, ¢).

Definition 3.24. For (R, S) a formal category of elements on VI and for ¢ a surjection
from Rw to (R, S), let G(r,s,4) be the groupoid whose objects are the sub-vector spaces
U of W, and such that G(g s,4) (U, U’) is the set of isomorphisms & from U to U’ such
that there exists y from ¢(U, ty) to ¢(U’, 1yr) in R with S(y) = a.

Lemma 3.25. Let (R, S, ¢) be an object in Rw { &3. Then, G s,¢) satisfies the
following property. For a € Gz s,¢), for M a sub-space of U, and for aps: M — a(M)
the restriction of a to M corestricted to a(M), ay € G(r,s,¢)(M, a(M)).

Proof. If y from ¢(U, ty) to ¢(U’, 1) satisfies S(y) = a, then, for L% the inclusion of
MinU,yo ¢(L5‘j4) is a morphism from ¢(M, tps) to ¢(U’, 1) in R. One checks that it

factorises as ¢(LZ'(M)) oy’ for some 7y’ that satisfies S(y’) = ap,. O
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Definition 3.26. For G a groupoid whose objects are the sub-vector spaces of W, and
whose morphisms are isomorphisms of vector spaces, we say that G has the restriction
property if, forall U, U’ and @ € G(U,U’), aps is in G(M, a(M)).

A morphism F in Ry { F3 from (R, S, ¢) to (R’,S’, ¢’) induces an inclusion of
groupoids from Gz s 4) t0 G(®’,S,4'), indeed for all U and U’ subspaces of W, and
forall @ € G(®,s,4)(U,U"), for y between ¢(U, t7) and ¢(U’, 1) such that S(y) = a,
F (%) is an isomorphism from ¢’ (U, ty) to ¢’ (U’, tyr) in R” and S(y) = S’ (F(y)) = a.

Definition 3.27. Let Groupoid(W) be the category whose objects are groupoids with the
restriction property and with objects the subspaces of W, and whose morphisms are the
inclusions of groupoids.

We want to prove that the categories Rw { 3 and Groupoid(W) are equivalent. Let
us first explain how G (g, s, ¢) captures all the information about morphisms in R.

Lemma 3.28. For (R, S, ¢) € Rw { &3 and for (U,y) and (V,v) two objects in Rw,
we have

Homg (¢(U,7), $(V, 7)) = || Gr(y(U), v(U")).
U’'<V ; dim(U’)=dim(U)
Proof. Let @ be a morphism from ¢ (U, y) to ¢(V,v) in R. Then, S(a) € VI factorises
uniquely as ¢ o @ with @ an isomorphism from U to U’ = S(«@)(U) and ¢ the inclusion
of U’ in V. Then v|Y o @ o (y|”¥))~! is an element of Gz (y(U), v(U’)). It is easy to
check that @ — v|Y" o @ o (y|”U))~! defines a bijection. O

We construct a quasi-inverse to the functor from Rw § F3 to Groupoid(W) that maps
(R, S, ¢) 0 G(r,S,9)-

Definition 3.29. For G € Groupoid(W), ~g is the following equivalence relation on
objects of Ry. For Band y from Vto W, (V, B) ~g (V,v) if there is @ in G(B(V), y(V))
suchthaty =@ o ,E, for ¥ and ﬂ~ the corestrictions of 7y and 8 to their images.

We denote by [V, 8] g, or simply [V, 8] when there is no ambiguity, the equivalence
class of (V, ).

Since G has the restriction property, for 8 and y from V to W with (V, B) ~g (V,v),
and for § from some vector space H to V, (H,B 0 6) ~g (H,y o ). The following
category is therefore well defined and it is in an obvious way an element of Rw § F3.

Definition 3.30. We defined Rw,., € Rw ¢ FJ as the category whose objects are
the equivalence classes [V, 8] and whose morphisms from [H, 7] to [V, ] is the set of
morphisms ¢ from H to V such that (H, 8 o 6) ~g (H,n). The functor from Ry, ., to
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VI is the one that map [V, ¢] to V and the morphism « to itself and the surjection from
Rw is given by (V,B) — [V, B].

Finally, if G is included in G’, the surjection from Rw to Ry, & factorises through
Rw » Rw/~,, G > Rw,~, is therefore a functor from Groupoid(W) to Rw { F3.

Example 3.31. We consider G a subgroup of GI(W). We define g(G) € Groupoid(W)
by g(G)(U, U’) is the set of restriction to U of morphisms in G such that g(U) = U’.
Then, (V,y) ~q) (V,B) if and only if there is g € G such that 8 = g o . Since
Homgc(H* (W)Y, H*(U)) = Hom(U, W)/~ with @ ~ 8 if and only if there is g € G such
that 8 = g o @, Ry-(w)c and Rw,~ ., are isomorphic in Rw { FI.

a(G)

Theorem 3.32. The categories Ry ¢ I and Groupoid(W) are equivalent.

Proof. The equivalence is given by the functors G — Ry, and (R, S, ¢) — Gr. We
have to prove that they are quasi-inverses. We consider Gg,, g (U, U") for U and U’
isomorphic subspaces of W. It is the set of isomorphisms @ from U to U’ such that
Ly o @ ~g ty and, by definition, this is the case if and only if @ € G(U, U’). Therefore
Qmw/wg =G.

In the other direction, for (R,S,¢) € Rw ¢ FS, if (V,B) ~g, (V,y) there is
@ € Gr(B(V),y(V)) such that ¥ = @ o 3, for ¥ and S the corestriction of y and S
to their images. Then, ¢(V,y) = ¥ ¢(y(V),ty(v)) = B (a*d(y(V), ty(v))). But since
@ € GRBV), (V). @ 6(¥ (V). 1y (v)) = $(B(V). 1p(v)). Therefore, (V. 7) = (V. B).
We can therefore define a surjective map A from objects of iRW/NgR to objects of R
defined by [V,y] — ¢(V,v).

We prove that A is injective. If ¢(V,y) = ¢(V,B), since y and B are injective
morphisms, there is a unique @ from B(V) to y(V) such that y = @ o B. Therefore,

B o(BYV),5v)) =7 ¢(y(V), 1,(v)) = B (@ d(¥(V), 1y (v)))-

Since B is an isomorphism, we get d(BV),5v)) = a*¢(y(V),1y(v)). Hence, a €
Gr(B(V),y(V)) and therefore (V,y) ~g. (V,f).

Finally, the functoriality of A is straightforward and the fact that it is an isomorphism
of categories is a consequence of Lemma 3.28. It is clear that A defines an isomorphism
in Rw ¢ 8’3 O

4. Central elements

In this section, we start by defining central elements of a formal category of elements in
such a way that for K € K noetherian, connected and ni/-closed, central elements of K
coincide with central elements of Sk. Then, for (C,S) € &, we explain why it is enough
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to determine regular central elements of (C, S). Finally, we characterise central elements
of (R, S, ¢) € FI using G(r,s,4)-

4.1. Central elements in a formal category of elements

We define central elements of a formal category of elements in such a way that for K
noetherian, (V, ¢) is central for K if and only if it is central as an element of Sk .

Definition 4.1. For (C,S) € § and ¢ € C, we say that c is central if for any ¢’ € C, ¢
and ¢’ have a coproduct.

Lemma 4.2. For (C,S) aformal category of elements, ¢ and ¢’ have a coproduct in C, if
and only if there exists a unique object ¢ 8 ¢’ that satisfies S(c B c¢") = S(c) ® S(¢’) and
such that there exists morphisms ¢ and 'y from ¢ and ¢’ to ¢ 8 ¢’ with S(¢) the inclusion of
S(c) in S(c) ® S(c’) and S(y) the inclusion of S(c’). In this case, ¢ B ¢’ is a coproduct.

Proof. For any d in C with maps ¢ and y from ¢ and ¢’ to d, S(¢) and S(y) factorises
through S(¢) & S(y) from S(c) ® S(¢’) to S(d). Therefore, since (C, S) is a formal
category of elements, there exists ¢”’ € C such that S(¢”") = S(c¢) ® S(¢’) and § from ¢”
to d such that ¢ and 7y factorises through ¢. Furthermore, the induced maps ¢ and 7y satisfy
that S(7) is the inclusion of S(c¢) in S(c) ® S(¢’) and S(¥) is the inclusion of S(c¢”).

Therefore, if there is a unique ¢ B ¢’ that satisfies the required conditions, it satisfies
the universal property of the coproduct.

Conversely, if ¢ and ¢’ admit a coproduct d, the canonical injections ¢ and y factors
through an object ¢’ as above, and by the universal property of the coproduct, ¢’ is
isomorphic to d and therefore a coproduct of ¢ and ¢’. Finally, for e € C and f and f’
from ¢ and ¢’ to e such that S(e¢) = S(c) ® S(¢’), S(f) is the inclusion of S(c) and
S(f’) is the inclusion of S(c¢’), we have e = ¢”’. Indeed, f and f” factorises through ¢’
and f”’, the induced morphism from ¢’ to e, satisfies S(f"') = ids(¢)es(c’)- Therefore,
¢’ = ide(e) e=e. m]

Remark 4.3. By definition of a formal category of elements, there is a map y from ¢ to ¢’
such that S(y) = « if and only if @*c” = c. Therefore, when it is defined, ¢ &8 ¢’ is the
only element such that L}(C) (cBc’) =cand Lg(c,) (cEc’) =c', forts(c) and 15() the
inclusions of S(c¢) and S(c¢’) in S(c) & S(c¢’).

Proposition 4.4. For K a noetherian, nil-closed and connected unstable algebra, (V, ¢)
is central if and only if it is central as an element of Sg.

Proof. This is a direct consequence of Lemma 4.2 and Proposition 2.22. O
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4.2. Central elements of a noetherian and connected formal category of
elements

The connectedness (see Definition 3.6) of (C, S) plays an important role in describing its
central elements.

Proposition 4.5. If (C, S) is not connected, (C, S) admits no central elements.

Proof. For x € C such that S(x) = 0, we can consider C, the set of elements ¢ in C such
that 0*¢ = x. Then, for any map y: ¢ — ¢’ in C, ¢ € Cy if and only if ¢’ € Cy. For any
¢ € C, we can take ¢’ that is not in Cy:, in this case ¢ B ¢’ should be both in Cy: and in
Co+» which is not possible, therefore ¢ &8 ¢’ is not defined and c is not central. O

Proposition 4.6. For (C, S) connected and noetherian, ey is central for any V € V.

Proof. Let ¢ € C, we consider 7 the projection from S(c¢) @ V to S(c). We show that,
m*c is a coproduct of ¢ and €y .

We have L"“,ﬂ’.‘c =0%c =.EV a1.1C.1 L*S(C)ﬂ'*c = ide(c) ¢ = c¢. We show that it is the unique
element that satisfies both identities.

Let ¢’ such that S(¢’) = S(c) ® V and ¢j,¢" = ey and L*S(C)C’ = ¢. Since (C,S) is
noetherian, L‘_/l (ker(c’)) = ker(ey) = V. Therefore, V C ker(c’). We get that ¢’ = "¢y,
for some element such that S(c)) = S(c). Furthermore, ¢ = Li‘s(c)c’ = L*S(C)ﬂ'*ca = ¢y

By Lemma 4.2, 7*c is a coproduct of ¢ and ey . O

Proposition 4.7. For (C,S) a noetherian and connected formal category of elements, if
c is central, for any morphism y from ¢’ to c in C, ¢’ is central.

Proof. We prove first the case where S(y) is an injection. Up to isomorphism, we can
suppose that S(y) is the inclusion of a sub-space of S(c¢). We use the following notations
W = 8(c¢’) and S is a complementary sub-space of W in S(c¢). Then, for any d € C,
and H = S(d), (tw @ idyg)*(c B d) satisfies S((tw ® idyg)* (c B8 d)) = W & H and
Gy (bw @ idy)*(c B d) = ¢ = " and ¢ (bw ® idy)*(c B d) = d.

We need to show that it is the only element that satisfies both identities. Let ¢’ € C
such that S(¢”’) =W e H, L”“Vc” = ¢’ and t},¢” = d. Since c is central, we can consider
cBc”. Then, S(cmc”) =S W, & W, @ H, with W; and W, to copies of W, S & W,
corresponding to S(c) and W, & H to S(c”).

We want to prove that L§$W2(c B ¢”’) = c. Indeed, in this case we would have
L§®W2®H(C Bc”) = cBd and therefore (vw ®idg)*cBd = (1w, @idH)*LgeaerH(c Ec')
which is equal to L’{%@H(c mc’)=c".

We consider L’§®W1®W2c @mc”,itisequal to cEc’. But, if we consider § from S@ W, ®W,
to S @ W defined by 6(s @ w; @ wy) = s & (w] +wy), we have S(6*c) =S oW, & W,
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* * A * * A A r % * 7y —
and Lggw, 07 C=c¢ and ¢y, 6"c = ¢/, therefore ¢ 8 ¢’ = 6"c. We get that LS$W2(C Bc’) =
* P T _
LS®W26 c =idggy c =c.

Finally, we consider the case where S(y) is not an injection, we consider S a
complementary subspace of ker(S(y)) in S(c¢’) and « the restriction of S(y) to S. Then,
¢’ = a*cBer(s(y)), the centrality of ¢’ is, therefore, a direct consequence of the centrality
of a*c and €ker(S(y))- O

A direct consequence of Proposition 4.7 is that for ¢ € C and ¢ as in Proposition 3.8,
c is central if and only if ¢ is central, where ¢ is regular. We introduce a characterization
of regular central elements intrinsic to Re.

Lemma 4.8. For (C,S) noetherian and c € C regular, c is central if and only if it admits
a coproduct in R with any regular element ¢’

Proof. First, we suppose that ¢ is central. For ¢’ € C regular and for U = ker(c & ¢’), by
Proposition 3.8 there exists ¢’ regular such that S(¢”") = S(c¢) ® S(¢’)/U and such that
c B¢’ =n*c”, for m the projection from S(c) & S(c¢’) on S(c) & S(¢’)/U. We prove
that ¢’ is a coproduct of ¢ and ¢’ in R¢. We consider two maps ¢ and y from ¢ and ¢’ to
aregular element d. Those factorises uniquely through the canonical injection from ¢ and
¢’ into ¢ B ¢’, we denote by 6 the induced morphism from ¢ 8 ¢’ to d. Since d is regular,
we have U = ker(c 8 ¢’) = S(6) ! (ker(d)) = ker(S(5)). By Lemma 3.4, we get that §
factorises uniquely through ¢ 8 ¢’ — ¢”’, therefore ¢’ is a coproduct of ¢ and ¢’ in R¢.

Conversely, if ¢’ is a coproduct of ¢ and ¢’ in R¢, we prove that ¢ and ¢’ admit a
coproduct in C. For ¢, and ¢.- the canonical injections from ¢ and ¢’ to ¢”’, we consider
(te ®ter)*c”. Let d € C with ¢ and y morphisms from ¢ and ¢’ to d. For dj such that
S(dy) = S(d)/ker(d) as in Proposition 3.8, ¢ and y induce morphisms in R¢ from ¢
and ¢’ to dy. Since ¢”’ is a coproduct in R, those factorise through a unique morphism
6: c¢"” — dy. We get the following diagram in C:

(te ®1er)"c” d
c” — dy.

By construction, the following diagram is commutative in V/:

S(e) @ S(c/) —W) g

l l

S(") g5 S(do).
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By Lemma 3.4, we get a unique factorisation of ¢ and 7y through (¢ & tr)*c”, it is
therefore a coproduct of ¢ and ¢’ in C. O

This leads to the following definition.

Definition 4.9. For (R, S) a formal category of elements on VI, ¢ € R is said to be
central if it admits a coproduct in R with any element ¢’ € R.

4.3. Central elements of objects in Rw | FI

We end this section by describing the central elements of an object (R, S, ¢) in Rw { F3I
using its associated groupoid.

Since any object in R is isomorphic to some object of the form ¢(U, ¢yy) with U a
sub-vector space of W, it is enough to describe central elements of the form ¢(V, ty) with
V a sub-vector space of W.

Lemma 4.10. For (R, S, ¢) € Rw L &3 and V and U two subspaces of W, if ¢(V,ty)
and ¢(U, wy) admit a coproduct in R then ¢(V + U, vy,y) is a coproduct of $(V, vy) and
o(U,w) inR.

Proof. The injections of V and U in V + U induce morphisms in R from ¢(V,ty)
and ¢(U, y) to ¢(V + U, ty4u). For ¢(V,y) U ¢(U, 1) a coproduct of ¢(V,ty) and
¢(U, wy), it induces a morphism y from ¢(V,ty) U ¢(U, ty) to ¢(V + U, ty4y). Since y
is a morphism in R, S(y) is injective, but S(7y) factorises the inclusions of U and V in
V + U, it is therefore surjective. We get that y is an isomorphism in R and ¢(V + U, ty+y)
is a coproduct in R. O

Theorem 4.11. For (R, S, ¢) € Rw { I and V a sub-vector space of W, ¢$(V,1y) is
central in (R, S) if and only if:

(1) for any U and U’ subspaces of W, a € Gg(U,U’) and v € V N U, we have
velU and a(v) =v,

(2) for any U and U’ subspaces of W and a an isomorphism from U to U’ such that
a(v)=vforallveVnU, a e Gg(U,U") ifandonlyifa € Gr(V+U,V+U’),
where @ is the morphism that maps v € V to itself and u € U to a(u).

Proof. We consider V such that ¢(V,ty) is central in (R, S). Then, for any U and U’
subspaces of W and for @ € Gg(U,U’), since Gg satisfies the restriction property, we
can consider ayny € Gr(V N U, a(V N U)). By composing it with the inclusion of U’
in V + U’ we get a morphism o’ from ¢(V N U, tyny) to ¢(V + U’ , ty,yr) in R. Also,
the inclusion of V in V + U’ induces a morphism ¢ from ¢(V,vy) to ¢(V + U’, ty4u).
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By Lemma 4.10 and since V N U C V, there is a unique morphism A from ¢(V, ty) to
¢(V+U’, y4y) that factorises both ¢ and a’. Then, S(A) factorises both the inclusion of
Vin V + U’ and the restriction of @ to VN U. We get that a(v) = v forv e VN U. We
have proven the necessity of condition (1).

We prove now the necessity of condition (2). For @ an isomorphism from U to U’
that satisfies a(v) = v for all v € V N U, «a is the restriction of @ to U. Since Gg has the
restriction property, @ € Gg(V + U,V + U’) implies that & € Gg (U, U’). Conversely, if
a € Ggr(U,U’), a and the inclusion of V induces morphisms in R from ¢(V,ty) and
o(U,y) to p(V+U’, ty+yr). By Lemma 4.10, those factorises through a morphism y
from ¢(V+U, ty,y) to ¢(V+U’, ty+y) and by construction we have S(y) = @, therefore
aeGr(V+U,V+U).

Finally, we prove that the conditions (1) and (2) are sufficient. We need to prove that
all objects of the form ¢(V + U, ty4y) are coproducts of ¢(V,ty) and ¢(U, y), for U
a subspace of W. Since condition (1) is satisfied, and by Lemma 3.28, any morphism
from ¢(V, ty) is an inclusion. Then, for any pair of morphisms ¢ and y from ¢(V,ty)
and ¢(U, y) to some ¢(H,ty) € R, we have V ¢ H and S(¢) is the inclusion of V
and @ = S(y) is an element of Gg (U, U’) for U’ = S(y)(U). Then, by condition (2),
@ € Gr(V+U,V+U"), therefore there is a unique ¥ such that S(¥) = @. The composition
of ¥ with the inclusion of V + U’ in H is the unique morphism from ¢(V + U, ty.y) to
¢(H, 1) that factorises ¢ and y. Therefore, ¢(V + U, ty4y) is a coproduct of ¢(V, ty)
and ¢(U, ty). O

5. The algebras H*(W)9

In this section, we apply the results of Sections 3 and 4 to some classification problems
about nil-closed, integral, noetherian, unstable algebras. Before we explain in more detail
the focus of this section, let us recall the first theorem of Adams—Wilkerson.

Definition 5.1 ([8, Part I1.2]). For K € %, the transcendence degree of K is d € NU {0},
the supremum of the cardinals of finite sets of homogeneous elements in K which are
algebraically independent.

Remark 5.2. If K is noetherian, the transcendence degree of K is finite.
Let us recall the theorem of Adams—Wilkerson.

Theorem 5.3 ([8, Theorem 3]). Let K be an integral, unstable algebra of transcendence
degree less or equal to dim(W), then there exists an injection ¢ from K to H*(W).
Furthermore, this injection is regular if and only if the transcendence degree of K equals
dim(W).
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Therefore, every integral, nil-closed, noetherian, unstable algebra is isomorphic to
a nil-closed, noetherian sub-unstable algebra of some H*(W). In the first sub-section
we define H*(W)9 for G € Groupoid(W). Then, G — H*(W)9 defines an explicit
one-to-one correspondence between the objects of Groupoid(W) and the noetherian,
nil-closed, unstable sub algebras of H*(W) of transcendence degree dim(W).

Let us now recall the definition of the primitive elements of a comodule.

Definition 5.4. For K € K provided with a H* (V)-comodule structure « in %, the algebra
of primitive elements of K is the sub-algebra of K whose elements are those satisfying
that k(x) = x ® 1, for 1 the unit of H*(V). We will denote by P(K, k) the algebra of
primitive elements of K for the H*(V)-comodule structure «.

Remark 5.5. By Corollary 2.16, for all (V, ¢) € C(K), there is a unique structure 4 of
H*(V)-comodule on K such that (ex ® idg+(v)) 0 kg = ¢.

Notation 5.6. We will also denote P(K, «4) by P(K, ¢).

The problem that we are interested in is the following. If we fix V some finite
dimensional vector space and P some unstable algebra, can we classify, under suitable
hypothesis, the connected, noetherian, integral, nil-closed unstable algebras K, satisfying
that K admit a H*(V)-comodule structure « in K, whose algebra of primitive elements
is isomorphic to P. Since, every nil-closed, noetherian, integral, unstable algebra of
transcendence degree dim(W) is isomorphic to some H*(W)9, we need to be able
to identify the primitive elements associated with a regular central element (V, ¢) of
H*(W)9.

In the second subsection, we consider H*(W)¢ and an inclusion § from some
vector space V to W, such that (V,5*¢) € C(H*(W)9) for ¢ the inclusion of H*(W)9
in H*(W). Then, we prove that P(H*(W)9,5*¢) is a nil-closed and noetherian sub-
algebra of n*(H*(W/Im(6))) for n the projection from W to W/Im(6). Since n* is
injective, there exists H*(W/Im(6))9 < H*(W/Im(6)) such that P(H*(W)9, 6*¢) =
" (H*(W/Im(8))9"). We conclude this sub-section by explaining how to determine G’
from G.

We conclude this section, by giving some applications of those results.

5.1. Noetherian, ni/-closed, unstable sub-algebras of H* (W)

In this sub-section, we give an explicit one-to-one correspondence between Groupoid (W)
and the noetherian, nil-closed, unstable sub algebra of H*(W) of transcendence degree
dim(W).
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Theorem 5.7. For all W € V/, there is a one-to-one correspondence between the set
of nil-closed and noetherian sub-algebras of H*(W) whose transcendence degree is
dim(W) and Groupoid(W).

Proof. By Theorem 3.32, there is a one-to-one correspondence between isomorphism
classes in Rw { FI and the set of objects in Groupoid(W). Thus, we have to justify
that the set of nil-closed and noetherian sub-algebras of H*(W) of transcendence degree
dim(W) are in one-to-one correspondence with isomorphism classes in Rw { F3. Let
K be a nil-closed, noetherian, sub-algebra of H*(W) whose transcendence degree is
dim(W). Then, for ¢ the inclusion of K in H*(W), since the transcendence degree of
K is dim(W), by the Theorem of Adams—Wilkerson, ¢k is regular. Then, since K is
noetherian, ¢x induces a surjection from Ry to R that we also denote by ¢k, by abuse
of notation. This defines a map 4 from the set of nil-closed and noetherian sub-algebras
of H*(W) whose transcendence degree is dim(W) to the set of isomorphism classes in
Rw ¢ 3.

For K and K’ two such sub-algebras of H*(W), (Rk, ¢x) and (Rk-, px-) are not
necessarily isomorphic in Ry § FJ if K and K’ are isomorphic (under an isomorphism 1)
in K. We also need ¢x = ¢k o . This is the case if and only if K = K’ and 7 is
the identity. The theorem is therefore a consequence of Theorems 2.7 and 3.20 and
Proposition 3.12. O

We recall that the notation £ has been defined in Notation 3.11.

Definition 5.8. For G an object in Groupoid(W) and for g g the canonical surjection
from Rw to Rwy H* (W)Y is the image of the map
£(Gg): L(Rw~g) = H'(W).

Remark 5.9. The application, G +— H*(W)9 defines a contravariant functor between
Groupoid(W) and the poset of nil-closed, noetherian, sub-algebras of H*(W), whose
transcendence degrees are dim(W), ordered by inclusion.

~g»

Corollary 5.10. Any nil-closed, integral, noetherian, unstable, algebra whose transcen-
dence degree is equal to dim(W) is isomorphic to H*(W)9 for some G.

Proof. 1t is a reformulation of the theorem of Adams—Wilkerson using Theorem 5.7. O

Example 5.11. For G a sub-group of GI(W), H*(W)3(C) = H*(W)C, for H*(W)C the
algebra of invariant element of H*(W) under the action of G.

Let us identify precisely the sub-algebra H* (W)Y of H*(W).
Proposition 5.12. Let G € Groupoid(W). Then,
H* W)Y = {x e H'(W) ; a’i,(x) =, (x) foralla € G(U,U")}.
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Proof. Let ¢ be the inclusion of H*(W)Y in H*(W) and let K(G) = {x € H*(W) ;
@’ (x) = y,(x) foralla € G(U,U")}. By construction, a*tj,¢ = (¢ foralla €
G (U, U’) and for all sub-spaces U and U’ of W. Then,

H* (W) c K(G).

Furthermore, the inclusion from K (&) to H*(W) induces a surjection from Rw to Rk (g)
which factorises through an isomorphism from Ry~ to Rk (g). The existence of this
factorization is a direct consequence of the definitions of K (&) and ~g, and it is injective,
since the inclusion of H*(W)9 induces a right inverse Ry (g) — Rw/~,-

We get the following diagram:

H*(W)§¢ K(G)© H*(W)

l”ﬂ*(wr‘i l'mg) l’m*(m

LI(H*(W)9) —— 1 (K(G))—— li (H*(W)),

where 7 denotes the unit of the adjunction between f and m. Then, since H* (W)Y and
H*(W) are nil-closed, ny-(w)s and ng-(w) are isomorphisms. Furthermore, K(G) is
a sub unstable algebra of H*(W), hence it does not contain any nilpotent sub-module,
and nk (g) is injective. Then, the commutativity of the diagram implies that g (g) is an
isomorphism, and therefore that H* (W)Y = K(G). O

Corollary 5.13. The correspondence of Theorem 5.7 is an isomorphism of posets, for the
order on sub-algebras of H*(W) which is the reverse of the inclusion.

Proof. Indeed, Proposition 5.12 implies that if G is a sub-groupoid of G’, H*(W)9" c
H*(W)9. O

Definition 5.14. For g € GI(W), and G € Groupoid(W), g - G is the groupoid in
Groupoid(W) defined by 8 € g - G(R, R’), for 8 an isomorphisms between subspaces R
and R’ of W, if there exist & € G(U,U’) for U = g"'(R) and U’ = g~'(R’), such that
the following diagram commutes:

gIR
U——R

|

U —>R.
gIX,

This defines a poset preserving action of GI(W) on Groupoid(W).
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Remark 5.15. This action generalizes the action by conjugation on Group(W). Indeed,
for G a subgroup of GI(W) and g € GI((W), g - a(G) = g(gGg™").

Proposition 5.16. For g € GI(W) and G € Groupoid(W),
H' (W) = (g71) (H"(W)9).
Proof. This is a direct consequence of Proposition 5.12. O

Remark 5.17. We want to notice that the (H*(W)9) geGroupoia(w) does not constitute
a minimal list for representing elements of isomorphism classes of ni/-closed, integral
and noetherian unstable algebras of transcendence degree dim(W). For g € GI(W)
and G € Groupoid(W), g - G needs not to be equal to G, but, by Proposition 5.16,
H*(W)9 =~ H*(W)8'9.

Conversely, since the inclusion of H*(W)9 in H*(W) induces a surjection from
Homg (H*(W), H*(W)) to Homgc(H*(W)9, H*(W)), and since g — g* induces an
isomorphism between Homgc(H* (W), H*(W)) and GI(W), we have that if H* (W)Y =
H*(W)H, there exists g € GI(W) such that H*(W)* = (g~1)*(H*(W)9). By Proposi-
tion5.16,H =g - G.

5.2. Centrality and primitive elements of H*(W)9

Throughout this sub-section, we fix V and W two objects in V/, as well as an injection &
from V to W.

We consider K a nil-closed, noetherian unstable sub algebra of H* (W) of transcendence
degree dim(W), such that (V,§*¢) € C(K), for ¢ the inclusion of K in H*(W). We start
by explaining why the H*(V)-comodule structure on K induced by §*¢ is induced from the
H*(V)-comodule structure on H*(W) given by (idw +6)*: H*(W) — H*(W) ® H*(V).

Then, for K = H* (W)g , we explain how to determine the primitive elements of this
comodule structure from G.

Proposition 5.18. Let K be a noetherian unstable sub algebra of H*(W) of finite
transcendence degree dim(W) such that (V,6*¢) € C(K), for ¢ the inclusion of K in
H*(W). The H*(V)-comodule structure x on K, induced by 6*¢ and Corollary 2.16, fits
into the following commutative diagram:

K

K K® H'(V)

¢J/ lqﬁ@idﬂ*(v)

H' (W) —oey H (W) @ H' (V).

w +6)
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Proof. We consider the following diagram:

K

K Ke® H (V)
¢l lq’:@idm(v)
H*(W) H*(W)® H*(V).

The existence of a morphism ¢* from H*(W) to H*(W) ® H*(V) which turns it into a
commutative diagram is a consequence of the surjectivity of ¢* from Homgc(H* (W),
H*(WeaV)) toHomy (K, H*(W&V)). We only have to justify why we can take ¢ = idy +4.
We have that the composition of (¢ ®idg-(v)) ok with ex ®idy+(v) is equal to 6™ ¢ and that
with id g+ (w) ®€p+(v) is equal to ¢. Hence, since 6*¢ is central, (¢ ® idg:(v)) o « is the
unique element in the inverse image of ¢ under prom, (k,H5*()),(v,s5*¢)- But (idw +6)*¢
is also in this inverse image of ¢, hence the diagram commutes. O

We consider (idw +6)* : H*(W) — H*(W) ® H*(V) which is the H*(V)-comodule
structure on H*(W) associated with (V,§*) € C(H*(W)).

Proposition 5.19. Let K be a noetherian unstable sub algebra of H*(W) of finite
transcendence degree dim(W) such that (V,6*¢) € C(K), for ¢ the inclusion of K in
H*(W). Then, we have a pullback diagram of the following form:

P(K,6"¢)— K

|+

H*(W/Im(6)) —— H*(W).

Proof. Proposition 5.18 says that the following diagram commutes:

K

K K® H(V)

¢l l«p@idm(v)

H* (W) ————— H*(W) @ H*(V).
(idw +6)*
This means that the H*(V)-comodule structure on K is induced by that on H*(W). Hence,
the primitive elements of K are simply the primitive elements of H*(W) that are in
K. But the comodule structure on H* (W) is the morphism (idw +8)* whose algebra of
primitive elements is the image of H*(W /Im(6)) under 7*, for  the projection from W
to W/Im(6). O
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Corollary 5.20. Let K be a noetherian unstable sub algebra of H*(W) of finite transcen-
dence degree dim(W) such that (V,6*¢) € C(K), for ¢ the inclusion of K in H*(W).
Then, the following is a pushout diagram in Set(V)”:

Homq, s (_, W) ———  » Homg (K, H*(_))

l |

Homa,r(_, W/Im(8)) —» Homg (P (K, 6*¢), H*(L)).

Proof. Ttis adirect consequence of Lemma 2.10 and of Proposition 5.19. O

We can thus identify Homg (P (K, 6*¢), H*(_)) in this context. In particular, we show
that P is always noetherian.

Lemma 5.21. For S a set, and ~| and ~ two equivalence relations on S, we denote by ~
the smallest equivalence relation on S (in the sense that {(a,b) € SXS; a~b} C SxS
is the smallest) such that, for all a and b in S such that a ~1 b or a ~» b, a ~ b. Then,
the following is a pushout in Set:

S——% 8/~

|

S)~y —» S/~
Proof. Let X denote the pushout of

S——% 5/~

|

S/~

Then, for s: S — X the composition of the projection from S to S/~ with the surjective
application S/~;— X, s is surjective. We define ~’ the equivalence relation on S defined
by a ~" b if and only if s(a) = s(b). Z is isomorphic in Set with §/~" and we will show
that ~'=~.

By commutativity of the pushout diagram, for a and b in S such thata ~; b ora ~, b,
s(a) = s(b). Suppose that ~" is not the smallest such equivalence relation. Then, there
exists x and y with x ~” y and an equivalence relation ~”, satisfying that for a and b such
thata ~; b ora ~, b, a ~” b, and such that x is not equivalent to y for ~”’. Then, the
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following diagram is commutative:
S——» S/~
S/~ —» S/~
and factorise by a morphism S/~’— §/~". This is a contradiction, so ~'=~. O

Remark 5.22. For ~; and ~; as in Lemma 5.21, and for S finite, the smallest equivalence
relation ~ on S such that, for all @ and b in S such thata ~y b ora ~» b, a ~ b, is the
equivalence relation defined by a ~ b if there is a finite family (s;);c[1,,) of objects in §
such that:

(1) sy =a,
(2) Sn = b3
(3) forall1 <i < n,ifiisodds; ~; s;31 and if i is even s; ~» §;41.

We deduce the following proposition.

Proposition 5.23. Let K be a noetherian unstable sub algebra of H*(W) of finite
transcendence degree dim(W) such that (V,6*¢) € C(K), for ¢ the inclusion of
K in H*(W). Then, for { and y in Homy 7 (U,V), ¥*¢lpk,67¢) = {*lp(k,50¢) €
Homgc(P(K,0"¢), H*(U)) if and only if there exists a family (€)icfi,n] €
Homa, s (U, W)™ with n € N greater than 1, such that:

M y=e,

() {=e,

(3) foralll1 <i<n-1,€¢ =€, ¢ifiisoddandn o€ =mo €y ifiiseven.
Proof. By Corollary 5.20, the following is a pushout:

Homq, s (_, W) —r Homy (K, H* (L))

Hom« s (_, W/Im(6)) —» Homg (P(K, 6% ¢), H* (L)),

where k maps {: U — Wto (*¢: K — H*(U), pmaps y: K — H*(U) to Y| p(k 5 ¢)
and 7, maps {: U - Wtomo: U — W/Im(6). Then, by Lemma 5.21, p o k() =
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p o k(y) if and only if there exists a family (&);e[1,,] € Homq s (U, W)" withn € N
greater than 1, such thaty =€, { = ¢, and forall 1 <i <n-1, k(¢;) = k(€41) ifiis
odd and 7. (¢;) = m.(€:41) if i is even. O

Corollary 5.24. Let K be a noetherian unstable sub algebra of H*(W) of finite transcen-
dence degree dim(W) such that (V,6*¢) € C(K), for ¢ the inclusion of K in H*(W).
Then, for { € Homq,r (U, W), ker({*¢|p(k,5¢)) = ker(m o {).

Proof. Let (o € Homqy(U/ker({*dlpk,s74)), W) such that (*¢lpk,s+¢) =
7409 P (k. 6* ¢y, With my the projection from U to U /ker({* ¢| p(k 6+ ¢))- Let €1 = {oomy,
€, = { and for alli /¢ = e;‘+1¢ ifiisodd and 7 o € = m o €;41 if i is even. Then, since
Homg (K, H*(_)) is noetherian, ker(r o €;) = ker(m o ;41) forall 1 <i < n — 1. Hence,
ker(m o {) = ker(m o o o my) =ker({*dlpk,s5°4))- O

Corollary 5.25. Let K be a noetherian unstable sub algebra of H*(W) of finite transcen-
dence degree dim(W) such that (V,6*¢) € C(K), for ¢ the inclusion of K in H*(W).
Then, Sp g, s+ ¢) Is noetherian.

Proof. The two first conditions are straightforward. Let (*¢|pk,s+¢) in
Homgc(P(K, 5" ¢), H*(U)) and let @ be a morphism from a vector space Y to U. Then,
by Corollary 5.24
ker(a'Z"dlp(x.00)) = ker(z o L 0 a).
This is equal to
a”(ker(r 0 0)) = @' (ker({* 6l p (k.5 9)))- o

Theorem 5.26. Let K be a noetherian unstable sub algebra of H*(W) of finite transcen-
dence degree dim(W) such that (V,6*¢) € C(K), for ¢ the inclusion of K in H*(W).
Then, P(K, 6" ¢) is nil-closed and noetherian.

Proof. Since, P(K, §*¢) is the kernel of x — idx ®1 from K to K ® H*(V) which are
nil-closed, for k the comodule structure of K associated with ¢*¢, and since f is exact
and m is left-exact, the following is an exact sequence:

L (k—idg ®1)
_—

0 — I,(P(K,6"¢)) — 11 (K) 1,(K ® H*(V)).

Therefore, since K is nil-closed, P(K, 6" ¢) is also nil-closed. Then, the noetherianity of
P(K, 6" ¢) is aconsequence of the noetherianity of Sp(k s+ ) and of Proposition3.12. O

Remark 5.27. We have identified P(K, §*¢) with a sub-algebra of H* (W /Im(¢)). Further-
more, we proved that P(K, §*¢) is nil-closed and noetherian, and (because we took ¢ to be
an injection) Corollary 5.24 implies that the inclusion from P(K, 6*¢) into H* (W /Im(9))
is regular. Therefore, by Theorem 5.7, P(K, 6*¢) has the form H* (W/Im(6))¢’, for some
G’ € Groupoid(W /Im(9)).
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This leads to the following question: for W and V in V7, for § an inclusion from
V to W and for G’ a groupoid with the restriction property and whose objects are the
sub-spaces of (W /Im(¢)), which are the groupoids G € Groupoid(W), such that

(1) H*(W)9 is a sub H*(V)-comodule of H* (W) for the comodule structure induced
by 4,

(2) the intersection of H*(W)Y with n*(H*(W/Im(5))) is the image under
7t H*(W/Im(6)) — H*(W) of H*(W/Im(6))9".

Remark 5.28. H*(W)9 is a sub H*(V)-comodule of H*(W) for the comodule struture
induced by ¢ if and only if G satisfies the two conditions of Theorem 4.11.

We recall that, from the beginning of this sub-section, V and W are fixed objects of
V/ and § a fixed injective morphism from V to W.

Theorem 5.29. Let G be a groupoid with the restriction property and whose ob-
jects are the sub-vector spaces of W, such that H*(W)9 is a sub H*(V)-comodule of
(H* (W), (idw +6)*). For G’ the only object of Groupoid(W [Im(6)) which satisfies that
7 (H*(W/[Im(8))9") is the algebra of primitive elements of H*(W)9, the two following
conditions are equivalent:

(1) @ € G’ (U,U’), where U and U’ are sub-vector spaces of W /Im(6) and « is an
isomorphism from U to U’,

(2) there exists N and N’ sub spaces of W such that n induce isomorphisms
from N and N’ to U and U’, as well as an element B € G(N,N’) such that
a=nlY, 0B o (xl)".

Proof. We consider the pushout diagram of Corollary 5.20:
Hom.y s (_, W) ———~—» Homgc(H*(W)9, H*(_))
Hom.yr (_, W/Im(6)) ——» Homgc(H*(W/Im(6))9", H* (),

where m, maps y: U — W to m oy, k maps y to y*¢g for ¢g the inclusion from
H*(W)9, g maps y: H* (W)Y — H*(U) to Wz (H*(W/Im(5))) the restriction of ¥ to
7" (H*(W/Im(6))) and, finally, p maps ¢ from U to W/Im(6) to {*¢g', for ¢ the
inclusion of H*(W/Im(6))¢" into H*(W /Im(6)).
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We fix a section s from W /Im(6) to W. Since 7 o s = idw /tm(s), 7+(5) = idw/im(s)-
Then, by commutativity of the pushout diagram, we have ¢g = q(s*¢dg) =
S" @G| (1 (Wjim(6)))

By construction, there are natural isomorphisms Rpy.wye = Rw/., and
Ry (wim(s))9 = Rw/im(s)/~z - These are the isomorphisms that map (W, ¢g) to
[W,idw]g and (W/Im(6), ¢g-) to [W/Im(6), idw/im(s)] g’ respectively.

Let us first prove (2) = (1). We consider, 8 € G(N,N’) such that m induces
isomorphisms 7r|% and 7T|1({//, between N and U and between N’ and U’. Let a be an
isomorphism from U to U’ such that @ = 7|¥, o B o (7r|%)‘1. Then, (7]¥,) oa =
Bo (m|S)~". Therefore,

@ ((xl3) ) G dg = (I ™) B iy bg
= (713" v ds-
We can choose the section s in such a way that s oty = iy o ((7|¥,)~"), then
a'is* o = (1)) iy
This implies that "¢}, s*q(¢g) = ((|¥) ™) "y ¢(¢g). Furthermore, o soiy = mouy o
(m|5)~". Hence, we also have, by Proposition 5.23, that ¢, s* g (¢ ) = ((z|5) ")y g (¢g)-
Hence,
st q(dg) = 15 q(¢g).
Since s*q(¢g) = ¢ g, this implies that @ € G’ (U, U’), as required.

Now, let us prove the far more challenging (1) = (2).
We consider @ € G’ (U, U’) where U and U’ are two sub-spaces of W/Im(§). Then,
@y de =g s
or, equivalently,
[U,woalg =[U,wlg .

By Proposition 5.23, since ¢g = s*q(¢g), we have that [H, {]g = [H,y]g’, for some
H € V/ and ¢ and y injectives from H to W/Im(6), if and only if there exists a family
(&)ie[1,n] € Homq,r (U, W)" with n € N greater than 1, such that soy = €, 50 =€,
and, forall 1 <i<n-1,€¢¢g =€ dgifiisoddand 7 o€ = 7o € if i is even.

So let (€)icf1,n] € Homq s (U, W)" be such that €; = s 0 1y, € = 5 0 1y © @ and for
all <i<n-1,¢¢g =€, ¢gifiisoddand 7w o € = 7 o € if i is even.

By induction, for alli € [[1,n], €/ ¢ and 1 o €; are regular elements respectively of
GH*(W)Q and 6H0mq,f(U,W/Im(6))- Hence, €; and r o ¢; are injections. For all i, let N;
denote the image of ¢; in W, we denote also by €; the corestriction of ¢; to N;. Then, for i
odd, €/ ¢g = €/, ¢ implies that there exists B; in G(N;, Ni41) such that €1 = S; o €;.
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We take some moment to explain a subtlety in the proof. We would like, for i even, to
have €; = €;4+1. Then, the composition of the 8; with i odd would give an isomorphism
B between N| = s(U) and N,, = s(U’) such that 8 € G(N;, N,), since G is a groupoid
and we would have (s o )|V o = B o (s o 1y)|N'. Since (s 0 1py)|M and (s o 1g) |V
are inverse isomorphisms of 7T|%l and nl%;, we would have o = nl%; ofo (nl%] )=l
If this were the case, we would have found a 8 for any N and N’ such that 7 induces
isomorphisms between U and N and between U’ and N’, and we would have done so
without using the assumption that 6*¢¢ is central. Unfortunately, this naive approach
fails, and N and N’ must be chosen carefully. The hypothesis on the ¢; for i even indicates
how to modify our original N; and N, to make it work, using the centrality of §*¢g.

First notice that, since 7 o ¢; is injective for all i, we always have N; N Im(8) = {0}.
Then, the assumption that, for i even, 7 o €; = 7 o €;41 implies that there exists p; from U
to W whose image is inside Im(8) and such that €1 = € + p;. Now, since H*(W)9Y is a
sub H*(V)-comodule of (H*(W), (idw +6)*) we know that [V, ] g is a central element
of Rw ~g- Then, by Theorem 4.11, for i odd, we know that the isomorphisms f3; from
N; & Im(5) to Ny & Im(6) defined by B;(n) = B;(n) for n € N; and B;(v) = v for
v € Im(6) satisfy B; € G(N; ®Im(6), Nir1 ®Im(5)). Moreover, fori even, moe; = mo€;y;
implies that N; & Im(8) = N;;1 ® Im(6). Then, at each even step i, we can “correct” €;_|
to get Bi_1 0 €;—1 = €;41 instead of &;.

For each i € [[1,n]), we define €/ (the “corrected” ;) by

€ = o) °|G@ D, Bibjop VT,
{jeven;i<j<n}
where §;_,; is the composition of all the Bi with k odd and i < k < j. The family
(€ )ic[1,n] satisfies the following:

(1) moel =w,moe€, =w oa,
(2) for all i, if we denote by N; the image of €/, then N ® Im(5) = N; & Im(9),

(3) for i odd, if we denote by S the restriction of Bi to N/ corestricted to N/,
€,, =B o€, with . € G(N!,N/,,)), since B; € G(N; Im(6), Nix1 & Im(5))
and G has the restriction property,

’
i+1°

Then, let N = N{, N = N and B = (B; o---0o 85 0 3]), where k = n -2 if n is
odd, k = n — 1 otherwise. Then, 8 € G(N,N’) and B o € = €,. Finally, 7 o €] = v
implies that €, = (7|5)~" and 7 o €], = 1y o @ implies that €], = (x]¥,)~! o . Hence,
a=mlY 0Bo(x¢)". 0

(4) forieven, € =€
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5.3. Applications

We end this section by presenting some applications of Theorem 5.29. We consider some
algebras H*(W)9 that satisfy some conditions on their centre and associated sub-algebras
of primitive elements.

We consider first the case where the centre of H*(W)9 has dimension dim(W).
Since the centre is a regular element of H*(W)9, we can take it to be (W, ¢g) for ¢
the inclusion in H*(W). By Theorem 4.11, W is invariant under any morphism in G.
Therefore, G is the groupoid in Groupoid(W) that contains only trivial morphisms and
H*(W)9 = H*(W). We get the following Proposition (that was already known).

Proposition 5.30. Let K be a noetherian, nil-closed, integral, unstable algebra of
transcendence degree d. We assume that the centre of K is of dimension d. Then,
K = H*(W) with dim(W) = d.

Let us now consider the case where the centre is of dimension dim(W) — 1. Up to
isomorphism, the centre is induced by the inclusion in W of a sub-vector space C. Then, the
elements of C are invariant under any morphism in G. From condition (2) in Theorem 4.11
and since G satisfies the restriction property, any morphism in G is the restriction of
a morphism in G(C @ S,C @ §’) with S and S’ complementary sub-spaces of C in W,
hence, they are the restriction of a morphism in G(W, W). Therefore, G = g(G(W, W)).
We get the following Theorem.

Theorem 5.31. Let K be a noetherian, nil-closed, integral, unstable algebra of transcen-
dence degree d. Then, the centre of K has dimension d — 1 if and only if, for W such that
dim(W) = d, there exists G a sub-group of G(W) such that K is isomorphic to H*(W)©
and such that the sub-vector space of W of invariant elements under G has dimension
d-1.

A nil-closed, noetherian, integral unstable algebra that is not an algebra of invariant
elements of the form H*(W)%, must have a centre of dimension at most d — 2, with d
the transcendence degree of K. We give such examples for p = 2, using Theorems 5.7
and 5.29.

Proposition 5.32. There are, up to isomorphism, 5 nil-closed, noetherian, unstable
algebras K of transcendence degree 3, whose centre has dimension 1 and such that the
algebra of primitive elements of K is isomorphic to H*(V3) for Vi the vector space of
dimension k. They can be realised as sub-algebras of H*(V3) = F;[x, y, z] as:

(1) Faly, z,x(x +y)(x +2)(x + y + 2)],

) Faly,z.x(x+y)(x+2)(x +y +2)] +Fa[y, z, x(x + y)]y,

218



Sub-algebras of H* (W)
(3) Falx,y,z](y +2) ® Fa [z, x(x + 2)],
@) Blz,x(x+2)] @Falx,y,z](y +2)y ® Fa [y, x(x + y) ]y,

5) Balz,x(x+2)]z@F2 [y, x(x+y)ly@Fa [y, x(x +y) | (y+2)y®F2 [x, y, 2] (y +2) yz.

Among them, only the first one is an algebra of invariant elements.
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