

ANNALES MATHÉMATIQUES

BLAISE PASCAL

OURIEL BLAËDÉ

Nil-closed Noetherian sub-algebras of $H^*(W)$ and their centres

Volume 32, n° 2 (2025), p. 185-220.

<https://doi.org/10.5802/ambp.437>

Cet article est mis à disposition selon les termes de la licence
CREATIVE COMMONS ATTRIBUTION (CC-BY) 4.0.
<http://creativecommons.org/licenses/by/4.0/>

*Publication éditée par le laboratoire de mathématiques Blaise Pascal
de l'université Clermont Auvergne, UMR 6620 du CNRS
Clermont-Ferrand — France*

*Publication membre du centre
Mersenne pour l'édition scientifique ouverte
<http://www.centre-mersenne.org/>
e-ISSN : 2118-7436*

Nil-closed Noetherian sub-algebras of $H^*(W)$ and their centres

OURIEL BLØDÉ

Abstract

For \mathcal{G} some groupoid whose objects are the sub-vector spaces of a \mathbb{F}_p -vector space W , we define $H^*(W)^\mathcal{G}$ a *nil*-closed, noetherian, unstable sub-algebra of $H^*(W)$ over the Steenrod algebra. The application on the appropriate ordered set of groupoids, that maps \mathcal{G} to $H^*(W)^\mathcal{G}$ defines an isomorphism of posets to the set of noetherian, *nil*-closed, unstable sub-algebras of $H^*(W)$ of transcendence degree $\dim(W)$, ordered by inclusion.

Since any noetherian and integral unstable algebra of transcendence degree $\dim(W)$ admits an injection into $H^*(W)$, any such *nil*-closed unstable algebra is isomorphic to some $H^*(W)^\mathcal{G}$.

We prove that \mathcal{G} encodes the centre, in the sense of Heard, of $H^*(W)^\mathcal{G}$. Also, there is a $H^*(C)$ -comodule structure on K that is associated with the centre of K . For $K = H^*(W)^\mathcal{G}$, we explain how the sub-algebra of primitive elements of $H^*(W)^\mathcal{G}$ for this comodule structure is also encoded in \mathcal{G} . Along the way, we prove that this algebra of primitive elements is also noetherian.

1. Introduction

1.1. The two theorems of Adams–Wilkerson

We consider p a prime number and W a \mathbb{F}_p -vector space. The \mathbb{F}_p -algebra $H^*(W) := H^*(BW)$, where BW is the classifying space of W and H^* denote the singular cohomology with \mathbb{F}_p -coefficients, is an unstable algebra over \mathcal{A} , the Steenrod algebra over \mathbb{F}_p . The category \mathcal{U} of unstable modules over \mathcal{A} admits a localizing sub-category $\mathcal{N}\text{il}$ and an unstable module M is called *nil*-closed if its localization away from $\mathcal{N}\text{il}$ is an isomorphism.

The first theorem of Adams–Wilkerson [1, Theorem 1.1] states that any integral and noetherian unstable algebra K is isomorphic to some sub-algebra of $H^*(W)$, with $\dim(W)$ equal to the transcendence degree of K . The first aim of this article is to describe the poset of unstable sub-algebras of $H^*(W)$ which are noetherian, *nil*-closed and whose transcendence degree is the dimension of W . Combined with the theorem of Adams–Wilkerson, this would give us a description of any *nil*-closed, integral and noetherian unstable algebra.

We define *Groupoid*(W), a poset of groupoids \mathcal{G} , whose objects are the sub-vector spaces of W and whose morphisms are isomorphisms, and with \mathcal{G} satisfying a so-called restriction property.

This work was partially supported by the ANR Project *ChroK*, ANR-16-CE40-0003.

Keywords: Steenrod algebra, Unstable modules, Unstable algebras, Functors.

2020 *Mathematics Subject Classification:* 55S10, 18AXX.

Theorem 1.1. *For all finite dimensional \mathbb{F}_p -vector space W , there is an isomorphism of posets between the poset of nil-closed and noetherian sub-algebras of $H^*(W)$ whose transcendence degree is $\dim(W)$ and $\text{Groupoid}(W)$.*

This isomorphism is given by $\mathcal{G} \mapsto H^*(W)^\mathcal{G}$, where the sub-algebra $H^*(W)^\mathcal{G}$ is a generalisation of the algebra of invariants $H^*(W)^G$ in the case where G is a sub-group of $\text{Gl}(W)$. Theorem 1.1 therefore generalizes the second theorem of Adams–Wilkerson, which states that a noetherian, nil-closed sub-algebra of $H^*(W)$ whose transcendence degree is $\dim(W)$ and which is integrally closed in its field of fraction is some $H^*(W)^G$ for some sub-group G of $\text{Gl}(W)$.

1.2. The centre of an unstable algebra

In [3], Dwyer and Wilkerson introduced the notion of a central element of an unstable algebra; this notion allowed them to exhibit the only exotic finite loop space at prime 2 in [4]. In the case where K is noetherian and connected, the set of central elements of K coincides with the set of pairs (V, ϕ) such that

- (1) $\phi \in \text{Hom}_{\mathcal{K}}(K, H^*(V))$,
- (2) K admits a structure κ of $H^*(V)$ -comodule in \mathcal{K} , such that the following diagram commutes:

$$\begin{array}{ccc} K & \xrightarrow{\kappa} & K \otimes H^*(V) \\ & \searrow \phi & \downarrow \epsilon_K \otimes \text{id} \\ & & H^*(V), \end{array}$$

where ϵ_K denotes the augmentation of K (which is uniquely defined because of the connectedness of K).

In [7], Heard showed that for K noetherian, K admits a unique (up to isomorphism) central element (C, γ) such that γ induces a structure of finitely generated K -module on $H^*(C)$ and $\dim(C)$ is maximal among such central elements. Heard called this central element the centre of K . The centre of an unstable algebra has been shown to be an important invariant. In [11] and [12], Kuhn used it to approximate the depth of K as well as invariants $d_0(K)$ and $d_1(K)$ introduced by Henn, Lannes, and Schwartz in [9], in the case where K is the cohomology of a group. Heard generalised those results for K noetherian in [6] and [7].

For K noetherian, since a central element of K is associated with a $H^*(V)$ -comodule structure on K , it gives rise to a second invariant: the sub-algebra of primitive elements

of K under this $H^*(V)$ -comodule structure. The second objective of this article is to explain how central elements of $H^*(W)^{\mathcal{G}}$ and their associated sub-algebra of primitive elements are determined by \mathcal{G} . We prove the following theorem, which gives a complete description of central elements of $H^*(W)^{\mathcal{G}}$, since any morphism from $H^*(W)^{\mathcal{G}}$ to $H^*(T)$ in K factors through the inclusion of $H^*(W)^{\mathcal{G}}$ in $H^*(W)$.

Theorem 1.2. *For $\mathcal{G} \in \text{Groupoid}(W)$ and δ a morphism from some vector space T to W , the induced morphism in \mathcal{K} from $H^*(W)^{\mathcal{G}}$ to $H^*(T)$ is central if and only if $V := \delta(T)$ satisfies the two following conditions:*

- (1) *for any U and U' subspaces of W , $\alpha \in \mathcal{G}(U, U')$ and $v \in V \cap U$, we have $v \in U'$ and $\alpha(v) = v$,*
- (2) *for any U and U' subspaces of W and α an isomorphism from U to U' such that $\alpha(v) = v$ for all $v \in V \cap U$, $\alpha \in \mathcal{G}(U, U')$ if and only if $\bar{\alpha} \in \mathcal{G}(V + U, V + U')$, where $\bar{\alpha}$ is the morphism that maps $v \in V$ to itself and $u \in U$ to $\alpha(u)$.*

1.3. The algebra of primitive elements associated with a central element

We prove the following theorem, for $\mathcal{G} \in \text{Groupoid}(W)$, ϕ being a central element of $H^*(W)^{\mathcal{G}}$, and $P(H^*(W)^{\mathcal{G}}, \phi)$ denoting the sub-algebra of primitive elements of $H^*(W)^{\mathcal{G}}$ with respect to the comodule structure associated to ϕ .

Theorem 1.3. *$P(H^*(W)^{\mathcal{G}}, \phi)$ is nil-closed and noetherian.*

Furthermore, taking δ a morphism of vector spaces with codomain W , such that ϕ is the restriction of δ^* to $H^*(W)^{\mathcal{G}}$, $P(H^*(W)^{\mathcal{G}}, \phi)$ identifies with a sub-algebra of $H^*(W/\text{Im}(\delta))$ with transcendence degree $\dim(W/\text{Im}(\delta))$. Therefore, by Theorem 1.1, there is $\mathcal{G}' \in \text{Groupoid}(W/\text{Im}(\delta))$ such that $P(H^*(W)^{\mathcal{G}}, \phi)$ identifies with $H^*(W/\text{Im}(\delta))^{\mathcal{G}'}$. In Theorem 5.29, we will explain how to compute \mathcal{G}' from \mathcal{G} .

1.4. Organisation of the paper

In Section 2, we recall some known facts about unstable algebras and their centres.

In [8], the authors described an equivalence of categories between \mathcal{K}/Nil , which is the localization of \mathcal{K} in morphisms whose kernels and cokernels are nilpotent, and some category of functors, given by $K \mapsto \text{Hom}_{\mathcal{K}}(K, H^*(_))$. The main idea of this article is to classify the categories of elements of functors of the form $W \mapsto \text{Hom}_{\mathcal{K}}(K, H^*(W))$. In Section 3, we define the notion of a formal category of elements and characterize those that can be obtained as the category of elements of a functor $\text{Hom}_{\mathcal{K}}(K, H^*(_))$ with K noetherian. Then, we study the properties of such formal categories of elements.

In Section 4, we define and study the notion of a central element in a formal category of elements. We show that, for \mathfrak{S}_K the category of elements of the functor $\text{Hom}_\mathcal{K}(K, H^*(_))$ with K *nil*-closed and noetherian, the central elements of \mathfrak{S}_K are the central elements of K .

Finally, in Section 5, we define the sub-algebras $H^*(W)^\mathcal{G}$ and prove our different classification results.

Acknowledgements

I am thankful to Geoffrey Powell for his careful proofreading and his continued support during and after my PhD. I also want to thank Antoine Boivin for his help in computing the $H^*(W)^\mathcal{G}$ of the last section.

2. Recollections on unstable algebras over the Steenrod algebra

In the following, \mathcal{A} denotes the Steenrod algebra over \mathbb{F}_p with p a prime number, \mathcal{U} and \mathcal{K} denote the categories of unstable modules and unstable algebras over \mathcal{A} , and $\mathcal{N}\text{il}$ denotes the Serre class of nilpotent objects in \mathcal{U} . Recollections about unstable algebras, unstable modules, and nilpotent objects can be found in [15].

We start this section, by recalling some known facts about the localization $\mathcal{K}/\mathcal{N}\text{il}$, which is the localization of \mathcal{K} by morphisms whose kernel and cokernel are nilpotent.

Then, we recall a definition of central elements of a noetherian unstable algebra K over \mathcal{A} .

2.1. $\mathcal{N}\text{il}$ -localisation of unstable algebras

In [8], Henn, Lannes, and Schwartz constructed a localized category $\mathcal{K}/\mathcal{N}\text{il}$ with respect to the morphisms whose kernels and cokernels are in $\mathcal{N}\text{il}$, in the sense of [10]. Then, they described an equivalence of categories between $\mathcal{K}/\mathcal{N}\text{il}$ and some category whose objects are contravariant functors from \mathcal{V}^f , the category of finite dimensional vector spaces, to $\mathcal{P}\text{fin}^{(\mathcal{V}^f)^\text{op}}$, the category of profinite sets.

Notation 2.1. We denote by $r: \mathcal{K} \rightarrow \mathcal{K}/\mathcal{N}\text{il}$ the localization functor. It admits a right-adjoint (cf [8]) that we denote by m . Finally, we denote by l_1 the composition $m \circ r$ from \mathcal{K} to itself.

Definition 2.2. An unstable algebra K is called *nil*-closed if the unit of the adjunction $K \rightarrow l_1(K)$ is an isomorphism.

Proposition 2.3 ([8, Proposition 4.4]). *An unstable algebra K is nil-closed if and only if $\text{Ext}_{\mathcal{U}}^0(N, K) \cong \text{Ext}_{\mathcal{U}}^1(N, K) \cong 0$ for any nilpotent module N , where the Ext-groups are computed in the abelian category \mathcal{U} of unstable modules over the Steenrod algebra.*

Theorem 2.4. *For $V \in \mathcal{V}^f$, $H^*(V)$ is nil-closed.*

Proof. It is a direct consequence of Proposition 2.3 and the injectivity of $H^*(V)$ ([13]). \square

Proposition 2.5. *For $K \in \mathcal{K}$ nil-closed and for $V \in \mathcal{V}^f$, $K \otimes H^*(V)$ is also nil-closed.*

Proof. The tensor product of nil-closed modules is nil-closed (see [5, Proposition 3.4]). Therefore, this result follows from Theorem 2.4. \square

For $K \in \mathcal{K}$, $\text{Hom}_{\mathcal{K}}(K, H^*(V))$ has a structure of profinite set which comes from the fact that K is the direct limit of the unstable sub-algebras of K which are finitely generated as \mathcal{A} -algebras. In particular, if K is noetherian, the profinite set structure of $\text{Hom}_{\mathcal{K}}(K, H^*(V))$ is that of a finite set.

Definition 2.6. Let $\mathcal{P}\text{fin}^{(\mathcal{V}^f)^{\text{op}}}$ be the category of functors from $(\mathcal{V}^f)^{\text{op}}$ to $\mathcal{P}\text{fin}^{(\mathcal{V}^f)^{\text{op}}}$ and $g: \mathcal{K} \rightarrow \mathcal{P}\text{fin}^{(\mathcal{V}^f)^{\text{op}}}$ be the contravariant functor that maps K to $V \mapsto \text{Hom}_{\mathcal{K}}(K, H^*(V))$.

We denote by $\mathcal{P}\text{fin}_{\omega}^{(\mathcal{V}^f)^{\text{op}}}$ the essential image of g in $\mathcal{P}\text{fin}^{(\mathcal{V}^f)^{\text{op}}}$.

Theorem 2.7 ([8, Theorem 1.5 of Part III]). *The functor g induces an equivalence of categories between \mathcal{K}/Nil and $(\mathcal{P}\text{fin}_{\omega}^{(\mathcal{V}^f)^{\text{op}}})^{\text{op}}$.*

Remark 2.8. The category $\mathcal{P}\text{fin}_{\omega}^{(\mathcal{V}^f)^{\text{op}}}$ is described in more detail in [8], and $\mathcal{F}\text{in}^{(\mathcal{V}^f)^{\text{op}}}$, the full subcategory of $\mathcal{P}\text{fin}^{(\mathcal{V}^f)^{\text{op}}}$ of contravariant functors with values in finite sets, is included in $\mathcal{P}\text{fin}_{\omega}^{(\mathcal{V}^f)^{\text{op}}}$.

Notation 2.9. We denote by m_1 the composition of m with the equivalence of categories from $\mathcal{P}\text{fin}_{\omega}^{(\mathcal{V}^f)^{\text{op}}}$ to \mathcal{K}/Nil .

The following lemma will be of importance in the following.

Lemma 2.10. *The functor g turns injections into surjections and finite inverse limits into direct limits.*

Proof. There is an exact functor f from the category \mathcal{U} to the category of functors from \mathcal{V}^f to the category \mathcal{V} of vector spaces of any dimension (cf [8]). For $K \in \mathcal{K}$, it satisfies $f(K) \cong \mathbb{F}_p^{g(K)(V)}$, where $\mathbb{F}_p^{g(K)(V)}$ denote the set of continuous maps from the profinite set $g(K)(V)$ to the discrete topological space \mathbb{F}_p . Since f is exact it sends injections to injections and commutes with finite inverse limits, which concludes the proof. \square

2.2. Central elements of a noetherian unstable algebra

The notion of a central element of an unstable algebra K is defined by Dwyer and Wilkerson in [3] and they used it in [4] to exhibit the only exotic finite loop space at the prime 2. The centre of K has been studied in detail in [6] and [7].

For K an unstable algebra over the Steenrod algebra, a central element is a pair (V, ϕ) , with $V \in \mathcal{V}^f$ and $\phi: K \rightarrow H^*(V)$ a morphism in \mathcal{K} that satisfies some property that we do not wish to recall in full generality. We will only recall the easier characterization of a central element of K from [3], in the case where K is connected and noetherian.

Definition 2.11. Let K be an unstable algebra, K is connected if K has an augmentation $\epsilon_K: K \rightarrow \mathbb{F}_p$ which induces an isomorphism $K^0 \xrightarrow{\cong} \mathbb{F}_p$.

Notation 2.12. We denote by $\epsilon_{K,V}$ or ϵ_V , when there is no ambiguity on K , the composition of ϵ_K with the injection from \mathbb{F}_p to $H^*(V)$.

The following propositions in Dwyer and Wilkerson's articles use less restrictive hypotheses. However, the hypothesis that K is noetherian will be sufficient for this article.

Proposition 2.13 ([2, Proof of Theorem 3.2]). *Let K be a connected, noetherian, unstable algebra, then (V, ϵ_V) is central for all $V \in \mathcal{V}^f$.*

We recall the following results of [3].

Proposition 2.14 ([3, Proposition 3.4]). *Let K be a connected, noetherian, unstable algebra. Then, for $\phi \in \text{Hom}_{\mathcal{K}}(K, H^*(V))$, (V, ϕ) is central if and only if there exists a morphism from K to $K \otimes H^*(V)$ such that the following diagram commutes:*

$$\begin{array}{ccc}
 & K & \\
 \text{id} \swarrow & \uparrow \text{id} \otimes \epsilon_{H^*(V)} & \\
 K & \xrightarrow{\quad} & K \otimes H^*(V) \\
 & \searrow \phi & \downarrow \epsilon_K \otimes \text{id} \\
 & & H^*(V).
 \end{array}$$

Notation 2.15. We denote by $\mathbf{C}(K)$ the class of central elements of K .

Corollary 2.16 ([7]). *Let K be a connected, noetherian, unstable algebra. For $\phi \in \text{Hom}_{\mathcal{K}}(K, H^*(V))$, (V, ϕ) is central if and only if K has a structure of $H^*(V)$ -comodule*

κ in \mathcal{K} , such that the following diagram commutes:

$$\begin{array}{ccc}
 K & \xrightarrow{\kappa} & K \otimes H^*(V) \\
 & \searrow \phi & \downarrow \epsilon_K \otimes \text{id} \\
 & & H^*(V).
 \end{array}$$

In particular, this implies:

Proposition 2.17. *Let K be a connected, noetherian, unstable algebra, then for $\phi \in \mathbf{C}(K)$ and $\alpha: V \rightarrow E$ a morphism in \mathcal{V}^f , $(V, \alpha^* \circ \phi) \in \mathbf{C}(K)$.*

Example 2.18. For $W \in \mathcal{V}^f$, the addition in W , ∇_W , induces on $H^*(W)$ a coalgebra structure in \mathcal{K} . Then, for every morphism of unstable modules ϕ from $H^*(W)$ to $H^*(V)$, one can take the composition of ∇_W^* with $\text{id}_{H^*(W)} \otimes \phi$ to define a $H^*(V)$ -comodule structure on $H^*(W)$ satisfying the hypothesis of Corollary 2.16. Therefore (V, ϕ) is central.

Theorem 2.19 ([7]). *For K noetherian and connected, there exists, up to isomorphism, a unique central element (C, γ) , such that γ makes $H^*(C)$ into a finitely generated K -module and $\dim(C)$ is maximal. It is called the centre of K .*

For (C, γ) the centre of K , any central element of K has the form $(V, \alpha^* \gamma)$ for some $V \in \mathcal{V}^f$ and $\alpha \in \text{Hom}(V, C)$.

We end this section by giving a characterization of central elements of a noetherian, connected, *nil*-closed unstable algebra K , using only properties of the functor $g(K)$.

Notation 2.20. When there is no ambiguity on K , we denote by ϵ_W the following composition

$$K \xrightarrow{\epsilon_K} \mathbb{F}_p \hookrightarrow H^*(W).$$

Lemma 2.21. *For $K \in \mathcal{K}$ connected, noetherian and for ϕ from K to $H^*(V)$ central, there is a natural group action of $(\text{Hom}_{\mathbb{F}_p}(W, V), +)$ on $\text{Hom}_{\mathcal{K}}(K, H^*(W))$ that satisfies $\alpha \cdot \epsilon_W = \alpha^* \phi$.*

Proof. Since K is connected, it admits a unit 1_K . We have an isomorphism between $\text{Hom}_{\mathcal{K}}(K, H^*(W)) \times \text{Hom}_{\mathcal{K}}(H^*(V), H^*(W))$ and $\text{Hom}_{\mathcal{K}}(K \otimes H^*(V), H^*(W))$ that maps (ϕ, ψ) to the unique morphism γ in \mathcal{K} such that $\gamma(1_K \otimes h) = \psi(h)$ and $\gamma(k \otimes 1_{H^*(W)}) = \phi(k)$ for all $k \in K$ and $h \in H^*(W)$. The result is a direct consequence of Corollary 2.16 and of the isomorphism $\text{Hom}_{\mathcal{K}}(K \otimes H^*(V), H^*(W)) \cong \text{Hom}_{\mathcal{K}}(K, H^*(W)) \times \text{Hom}_{\mathcal{K}}(H^*(V), H^*(W)) \cong \text{Hom}_{\mathcal{K}}(K, H^*(W)) \times \text{Hom}_{\mathbb{F}_p}(W, V)$. \square

Proposition 2.22. *If K is connected, noetherian and nil-closed, $\phi \in \text{Hom}_{\mathcal{K}}(K, H^*(V))$ is central if and only if, for any $W \in \mathcal{V}^f$ and any $\psi \in \text{Hom}_{\mathcal{K}}(K, H^*(W))$, there is a unique element $\phi \boxplus \psi \in \text{Hom}_{\mathcal{K}}(K, H^*(V \oplus W))$ such that*

$$\phi = \iota_V^*(\phi \boxplus \psi): K \longrightarrow H^*(V \oplus W) \xrightarrow{\iota_V^*} H^*(V),$$

and

$$\psi = \iota_W^*(\phi \boxplus \psi): K \longrightarrow H^*(V \oplus W) \xrightarrow{\iota_W^*} H^*(W).$$

Proof. If, for any $W \in \mathcal{V}^f$ and any $\psi \in \text{Hom}_{\mathcal{K}}(K, H^*(W))$, there is a unique element $\phi \boxplus \psi$ that satisfies both conditions, one can define a morphism κ from $\text{Hom}_{\mathcal{K}}(K, H^*(W)) \times \text{Hom}_{\mathbb{F}_p}(W, V)$ to $\text{Hom}_{\mathcal{K}}(K, H^*(W))$ that maps (ψ, α) to $(\alpha \oplus \text{id}_W)^*(\phi \boxplus \psi)$. It is natural and maps $(\psi, 0)$ to ψ and (ϵ_W, α) to $\alpha^*\phi$. By Proposition 2.5, since K is nil-closed, $m_1(\text{Hom}_{\mathcal{K}}(K, H^*(W)) \times \text{Hom}_{\mathbb{F}_p}(W, V)) \cong K \otimes H^*(V)$. Therefore, $m_1(\kappa)$ is a morphism from K to $K \otimes H^*(V)$ that satisfies the hypothesis of Proposition 2.14 and (V, ϕ) is central.

The converse is proven in [3, Lemma 4.6]. \square

3. Formal categories of elements

In Section 5, we want to classify noetherian, nil-closed, unstable sub-algebras K of $H^*(W)$, for some vector space W , and describe their central elements. To do so, we consider the category of elements of functors of the form $\text{Hom}_{\mathcal{K}}(K, H^*(_))$ for such sub-algebras K .

In this section, we start by describing such categories of elements and their properties in the case where K is noetherian and a sub-algebra of $H^*(W)$. Then, we describe central elements of K in terms of the category of elements of $\text{Hom}_{\mathcal{K}}(K, H^*(_))$.

3.1. Category of elements : an intrinsic characterisation

We recall that, for $S \in \text{Set}^{(\mathcal{V}^f)^{\text{op}}}$, the category of elements of S is the category \mathfrak{S}_S , whose objects are the pairs (V, ϕ) with $V \in \mathcal{V}^f$ and $\phi \in S(V)$ and whose morphisms from (V, ϕ) to (W, ψ) are the linear morphisms α from V to W , such that $\alpha^*\psi = \phi$. There exists a functor from \mathfrak{S}_S to \mathcal{V}^f that maps (V, ϕ) to V .

We give an intrinsic description of such categories.

Definition 3.1. A formal category of elements is a pair (C, \mathcal{S}) where C is a category and \mathcal{S} is a functor from C to \mathcal{V}^f , which satisfies:

- (1) \mathcal{S} is faithful,

- (2) for all $V \in \mathcal{V}^f$, $\mathcal{S}^{-1}(\{V\})$ is a set,
- (3) for α a linear morphism from V to W and for $c \in C$ such that $\mathcal{S}(c) = W$, there exists a unique element $\alpha^*c \in C$ and a unique morphism γ from α^*c to c in C such that $\mathcal{S}(\gamma) = \alpha$.

We denote by \mathfrak{F} the category whose objects are the formal categories of elements and whose morphisms from (C, \mathcal{S}) to (C', \mathcal{S}') are the functors F from C to C' such that $\mathcal{S} = \mathcal{S}' \circ F$.

Example 3.2. For $S \in \text{Set}^{(\mathcal{V}^f)^{\text{op}}}$ and \mathcal{S} the functor from \mathfrak{S}_S to \mathcal{V}^f that maps (V, ϕ) onto V , $(\mathfrak{S}_S, \mathcal{S})$ is a formal category of element.

Lemma 3.3. *For $c \in C$ and two composable morphisms α and β in \mathcal{V}^f with $\mathcal{S}(c)$ the codomain of β we have:*

- (1) $\text{id}_{\mathcal{S}(c)}^* c = c$,
- (2) $\alpha^*(\beta^* c) = (\beta \circ \alpha)^* c$.

Proof. For the first statement, we just have to notice that id_c is a morphism from c to c that satisfies $\mathcal{S}(\text{id}_c) = \text{id}_{\mathcal{S}(c)}$. For the second statement, we have morphisms γ from β^*c to c and δ from $\alpha^*(\beta^*c)$ to β^*c such that $\mathcal{S}(\gamma) = \beta$ and $\mathcal{S}(\delta) = \alpha$, therefore $\gamma \circ \delta$ is a morphism from $\alpha^*(\beta^*c)$ to c that satisfies $\mathcal{S}(\gamma \circ \delta) = \beta \circ \alpha$. \square

We take the opportunity to prove the following lemma, which we will use on many occasions in this article.

Lemma 3.4.

- (1) *Given a, b, c and d objects in C and morphisms α from a to c , β from b to d and γ from c to d and given a linear morphism λ such that the following diagram is a commutative square in \mathcal{V}^f :*

$$\begin{array}{ccc}
 \mathcal{S}(a) & \xrightarrow{\lambda} & \mathcal{S}(b), \\
 \mathcal{S}(\alpha) \downarrow & & \downarrow \mathcal{S}(\beta) \\
 \mathcal{S}(c) & \xrightarrow{\mathcal{S}(\gamma)} & \mathcal{S}(d)
 \end{array}$$

there exists a unique morphism $\tilde{\lambda}$ from a to b such that $\mathcal{S}(\tilde{\lambda}) = \lambda$ and the following diagram commutes:

$$\begin{array}{ccc} a & \xrightarrow{\tilde{\lambda}} & b \\ \alpha \downarrow & & \downarrow \beta \\ c & \xrightarrow{\gamma} & d. \end{array}$$

(2) Given a, b, c and d objects in C and morphisms α from a to c , β from b to d and γ from a to b with $\mathcal{S}(\alpha)$ surjective, and given a linear morphism λ such that the following diagram is a commutative square in \mathcal{V}^f :

$$\begin{array}{ccc} \mathcal{S}(a) & \xrightarrow{\mathcal{S}(\gamma)} & \mathcal{S}(b), \\ \mathcal{S}(\alpha) \downarrow & & \downarrow \mathcal{S}(\beta) \\ \mathcal{S}(c) & \xrightarrow{\lambda} & \mathcal{S}(d) \end{array}$$

there exists a unique morphism $\tilde{\lambda}$ from c to d such that $\mathcal{S}(\tilde{\lambda}) = \lambda$ and the following diagram commutes:

$$\begin{array}{ccc} a & \xrightarrow{\gamma} & b \\ \alpha \downarrow & & \downarrow \beta \\ c & \xrightarrow{\tilde{\lambda}} & d. \end{array}$$

Proof. For the first statement, we consider $\tilde{\lambda}$ the map from λ^*b to b , by construction, $\mathcal{S}(\beta \circ \tilde{\lambda}) = \mathcal{S}(\gamma \circ \alpha)$, therefore, by Lemma 3.3, $a = \mathcal{S}(\gamma \circ \alpha)^*d = \lambda^*b$ and $\beta \circ \tilde{\lambda} = \gamma \circ \alpha$.

For the second statement, since $\mathcal{S}(\alpha)$ is surjective, we can consider a right inverse ι from $\mathcal{S}(c)$ to $\mathcal{S}(a)$. Then, using Lemma 3.3, $\iota^*a = \iota^*\mathcal{S}(\alpha)^*c = \text{id}_{\mathcal{S}(c)}^*c = c$. For $\tilde{\iota}$ the induced morphism from c to a , we have $\alpha \circ \iota = \text{id}_c$ and the unique valid choice for $\tilde{\lambda}$ is $\tilde{\lambda} = \beta \circ \gamma \circ \tilde{\iota}$. \square

Theorem 3.5. *The categories $\text{Set}^{(\mathcal{V}^f)^{\text{op}}}$ and \mathfrak{F} are equivalent.*

Proof. We have a functor

$$\begin{aligned} \text{Set}^{(\mathcal{V}^f)^{\text{op}}} &\longrightarrow \mathfrak{F} \\ S &\longmapsto (\mathfrak{S}_S, S), \end{aligned}$$

with S defined as in Example 3.2. And a functor

$$\begin{aligned} \mathfrak{F} &\longrightarrow \text{Set}^{(\mathcal{V}^f)^{\text{op}}} \\ (C, S) &\longmapsto (V \mapsto S^{-1}(\{V\})), \end{aligned}$$

that maps the morphism α from V to W to the application from $\mathcal{S}^{-1}(\{W\})$ to $\mathcal{S}^{-1}(\{V\})$ that maps $c \in \mathcal{S}^{-1}(W)$ to the unique α^*c .

Those two functors are quasi-inverses. \square

Definition 3.6. We say that (C, \mathcal{S}) is connected if there is a unique element ϵ in C such that $\mathcal{S}(\epsilon) = 0$. In this case, we denote by ϵ_V the elements of the form $0^*\epsilon$ where 0 denotes the trivial morphism in \mathcal{V}^f from V to 0 .

3.2. Noetherian formal categories of elements

In [8], the authors described the functors in $\mathcal{P}\text{fin}^{(\mathcal{V}^f)^{\text{op}}}$ that arise from a noetherian unstable algebra. Such functors have values in (discrete profinite) sets.

Notation 3.7. For K a noetherian unstable algebra, we will denote by \mathfrak{S}_K the category of elements of the functor $\text{Hom}_{\mathcal{K}}(K, H^*(_))$.

We describe the formal categories of elements of the form \mathfrak{S}_K , with K noetherian.

Proposition 3.8. Let $(C, \mathcal{S}) \in \mathfrak{F}$ and $c \in C$. Then, there exists a unique sub-vector space U of $\mathcal{S}(c)$, denoted by $\ker(c)$, such that:

- (1) For all $c' \in C$ and all morphisms $\gamma: c \rightarrow c'$, $\ker(\mathcal{S}(\gamma)) \subset U$.
- (2) There exists $c' \in C$ and $\gamma: c \rightarrow c'$ such that $\ker(\mathcal{S}(\gamma)) = U$.
- (3) There exists $c_0 \in C$ and $\gamma_0: c \rightarrow c_0$ such that $\mathcal{S}(\gamma_0)$ is the projection from $\mathcal{S}(c)$ to $\mathcal{S}(c)/U$.

Proof. This is a direct consequence of Theorem 3.5 and Proposition-Definition 5.1 in [8]. \square

Definition 3.9. For $(C, \mathcal{S}) \in \mathfrak{F}$ and $c \in C$, we say that c is regular if $\ker(c) = 0$.

We can now define a notion of a noetherian formal category of elements, such that (C, \mathcal{S}) is noetherian if and only if there exists $K \in \mathcal{K}$ noetherian such that $(C, \mathcal{S}) \cong \mathfrak{S}_K$.

Definition 3.10. A formal category of elements (C, \mathcal{S}) is noetherian if the following conditions are satisfied:

- (1) for all $V \in \mathcal{V}^f$, $\mathcal{S}^{-1}(V)$ is finite,
- (2) there exists $d \in \mathbb{N}$ such that C contains no regular object c such that $\dim(\mathcal{S}(c)) > d$,
- (3) for all $\gamma: c \rightarrow c'$ in C , $\ker(c) = \mathcal{S}(\gamma)^{-1}(\ker(c'))$.

Notation 3.11. For $(C, \mathcal{S}) \in \mathfrak{F}$ which satisfies the two first conditions in Definition 3.10, $\mathcal{S}^{-1} \in \mathcal{P}\text{fin}_{\omega}^{(\mathcal{V}^f)^{\text{op}}}$ (see [8]). We denote by $\mathfrak{L}(C, \mathcal{S})$ the image of \mathcal{S}^{-1} by $m_1: \mathcal{P}\text{fin}_{\omega}^{(\mathcal{V}^f)^{\text{op}}} \cong \mathcal{K}/\text{Nil} \xrightarrow{m} \mathcal{K}$.

Proposition 3.12.

- (1) *If $K \in \mathcal{K}$ is noetherian, \mathfrak{S}_K is noetherian.*
- (2) *If $(C, \mathcal{S}) \in \mathfrak{F}$ is noetherian, then $\mathfrak{L}(C, \mathcal{S}) \in \mathcal{K}$ is noetherian.*

Proof. It is a direct consequence of Theorem 3.5 and Theorem 7.1 in [8]. □

3.3. Rector's Category

Definition 3.13. For $(C, \mathcal{S}) \in \mathfrak{F}$, \mathfrak{R}_C is the full subcategory of C of regular objects.

Remark 3.14. In the case where K is a noetherian unstable algebra, $\mathfrak{R}_K := \mathfrak{R}_{\mathfrak{S}_K}$ is Rector's category of K . Rector's category of K is defined in [14] as the full subcategory of \mathfrak{S}_K whose objects are the pairs (V, ϕ) such that $H^*(V)$ is finitely generated as a K -module. It is a result from [8] that this condition is equivalent to (V, ϕ) being regular.

For (C, \mathcal{S}) noetherian, the category \mathfrak{R}_C behaves nicely and, furthermore, one can “reconstruct” (C, \mathcal{S}) from \mathfrak{R}_C . This fact will be the main ingredient in the classification problem that we are addressing in this article.

Remark 3.15. For (C, \mathcal{S}) in \mathfrak{F} , $\mathcal{S}|_{\mathfrak{R}_C}$ is a faithful functor from \mathfrak{R}_C to \mathcal{V}^f but it does not satisfy that, for any α a linear morphism from V to W , and for $c \in \mathfrak{R}_C$ such that $\mathcal{S}(c) = W$, there exists uniques $c' \in \mathfrak{R}_C$ and γ from c' to c such that $\mathcal{S}(\gamma) = \alpha$. Indeed, if α is not injective $\alpha^*c \in C$ is the unique object that satisfies that condition and it is not regular. Yet, if (C, \mathcal{S}) is noetherian, that condition is satisfied if and only if α is injective.

Notation 3.16. We denote by \mathcal{VI} the wide subcategory of \mathcal{V}^f that contains all injective morphisms.

Definition 3.17. A formal category of elements on \mathcal{VI} is a pair $(\mathcal{R}, \mathcal{S})$ where \mathcal{R} is a category and \mathcal{S} is a functor from \mathcal{R} to \mathcal{VI} , which satisfies:

- (1) \mathcal{S} is faithful,
- (2) for all $V \in \mathcal{V}^f$, $\mathcal{S}^{-1}(\{V\})$ is a set

(3) for α an injective morphisms from V to W and for $c \in \mathcal{R}$ such that $\mathcal{S}(c) = W$, there exists a unique $\alpha^*c \in \mathcal{R}$ and a unique γ from α^*c to c in \mathcal{R} such that $\mathcal{S}(\gamma) = \alpha$.

We denote by \mathfrak{FI} the category whose objects are the formal categories of elements on \mathcal{VI} and whose morphisms from $(\mathcal{R}, \mathcal{S})$ to $(\mathcal{R}', \mathcal{S}')$ are the functors F from \mathcal{R} to \mathcal{R}' such that $F \circ \mathcal{S} = \mathcal{S}'$.

Lemma 3.18. *For (C, \mathcal{S}) in \mathfrak{F} noetherian, $(\mathfrak{R}_C, \mathcal{S}|_{\mathfrak{R}_C})$ is formal on \mathcal{VI} .*

Proof. It is straightforward from the definition of a noetherian object in \mathfrak{F} . \square

We explain now how to reconstruct a noetherian object (C, \mathcal{S}) in \mathfrak{F} from $(\mathfrak{R}_C, \mathcal{S}|_{\mathfrak{R}_C})$.

Definition 3.19. For $(\mathcal{R}, \mathcal{S}) \in \mathfrak{FI}$, let $(\tilde{\mathcal{R}}, \tilde{\mathcal{S}})$ be the following formal category of elements. The objects of $\tilde{\mathcal{R}}$ are triples (V, U, c) with $V \in \mathcal{V}^f$, U a sub-vector space of V and $c \in \mathcal{R}$ such that $\mathcal{S}(c) = V/U$. The morphisms from (V', U', c') to (V, U, c) are pairs (α, γ) with α a linear map from V' to V and $\gamma \in \mathcal{R}(c', c)$ that satisfies:

- (1) $\alpha^{-1}(U) = U'$,
- (2) $\mathcal{S}(\gamma)$ is the map induced by α from V'/U' to V/U .

Finally, $\tilde{\mathcal{S}}$ is the functor that maps (V, U, c) to V and (α, γ) to α .

Theorem 3.20.

- (1) *For $(C, \mathcal{S}) \in \mathfrak{F}$ noetherian, $(C, \mathcal{S}) \cong (\widetilde{\mathfrak{R}_C}, \widetilde{\mathcal{S}}|_{\mathfrak{R}_C})$.*
- (2) *For $(\mathcal{R}, \mathcal{S}) \in \mathfrak{FI}$, $(\mathcal{R}, \mathcal{S}) \cong (\mathfrak{R}_{\tilde{\mathcal{R}}}, \tilde{\mathcal{S}}|_{\mathfrak{R}_{\tilde{\mathcal{R}}}})$. Also $(\tilde{\mathcal{R}}, \tilde{\mathcal{S}})$ is noetherian if and only if $\mathcal{S}^{-1}(\{V\})$ is finite for every $V \in \mathcal{V}^f$ and there exists $d \in \mathbb{N}$ such that $\mathcal{S}^{-1}(\{V\})$ is empty for $\dim(V) > d$.*

Proof. For the first statement, the functor in the first direction maps c to $(V, \ker(c), c_0)$, where c_0 is defined as in Proposition 3.8. Since (C, \mathcal{S}) is noetherian, c_0 is indeed regular. For β from c' to c in C , by Proposition 3.8, we have the following diagram in C :

$$\begin{array}{ccc} c' & \xrightarrow{\beta} & c \\ \gamma'_0 \downarrow & & \downarrow \gamma_0 \\ c'_0 & & c_0, \end{array}$$

with $\mathcal{S}(c'_0) = \mathcal{S}(c')/\ker(c')$ and $\mathcal{S}(c_0) = \mathcal{S}(c)/\ker(c)$. $\ker(c') = \mathcal{S}(\beta)^{-1}(\ker(c))$ so $\mathcal{S}(\beta)$ induces a morphism from $\mathcal{S}(c'_0)$ to $\mathcal{S}(c_0)$. By Lemma 3.4, this morphism can be obtained in a unique way as a morphism $\mathcal{S}(\tilde{\beta})$ with $\tilde{\beta}$ from c'_0 to c_0 . The morphism β is mapped to $(\mathcal{S}(\beta), \tilde{\beta})$.

The functor in the other direction is the one that maps (V, U, c_0) to the unique c for which there is a γ_0 from c to c_0 such that $\mathcal{S}(\gamma_0)$ is the projection from V to V/U . For (α, β) a morphism in $\widetilde{\mathcal{R}_C}$, we have the following diagram:

$$\begin{array}{ccc} c' & & c \\ \downarrow \gamma'_0 & & \downarrow \gamma_0 \\ c'_0 & \xrightarrow{\beta} & c_0. \end{array}$$

By Lemma 3.4, there is a unique $\tilde{\alpha}$, from c' to c , such that $\mathcal{S}(\tilde{\alpha}) = \alpha$, (α, β) is mapped to $\tilde{\alpha}$.

It is easy to check that the descriptions above define morphisms in \mathfrak{F} and that they are inverses.

For the second statement, it is enough to check that (V, U, c) is regular in $\widetilde{\mathcal{R}}$ if and only if $U = 0$. On the one hand, for $U \neq 0$ there is the morphism (π, id_c) from (V, U, c) to $(V/U, 0, c)$, with π the projection from V to V/U , therefore (V, U, c) is not regular. On the other hand, morphisms (α, γ) in $\widetilde{\mathcal{R}}$ from $(V, 0, c)$ satisfy $\alpha = \mathcal{S}(\gamma)$. Since γ is a morphism in \mathcal{R} , α is injective, therefore $(V, 0, c)$ is regular. \square

3.4. Some classification problems

In Section 5, we will consider the following problem: can we classify the sub-unstable algebras K of $H^*(W)$ that are *nil*-closed, noetherian and such that the injection $\phi: K \hookrightarrow H^*(W)$ is regular?

Notation 3.21. For $W \in \mathcal{V}^f$ and $K \in \mathcal{K}$, we denote by \mathbf{W} the category of elements of the functor $\text{Hom}_{\mathbb{F}_p}(_, W) \cong \text{Hom}_{\mathcal{K}}(H^*(W), H^*(_))$.

An injection ϕ from K to $H^*(W)$ induces a surjection of formal categories of elements from \mathbf{W} to \mathfrak{S}_K (by surjection, we mean a functor that is a surjection on objects but not on morphisms), this surjection maps (W, id_W) onto (W, ϕ) .

We consider (C, \mathcal{S}) a noetherian formal category of elements, and ϕ a surjection from \mathbf{W} to (C, \mathcal{S}) . Since ϕ is a surjection, any object of C has the form α^*c for some morphism α from some vector space V to W , and since (C, \mathcal{S}) is noetherian, α^*c is regular if and only if α is injective. We get the following lemma.

Lemma 3.22. For $(C, S) \in \mathfrak{F}$ noetherian and $\phi: \mathbf{W} \twoheadrightarrow (C, S)$ such that $\phi(W, \text{id}_W)$ is regular, ϕ is induced by a surjection of formal categories of elements on \mathcal{VI} from \mathfrak{R}_W to \mathfrak{R}_C .

In this subsection, we address the following problem: how to classify formal categories (\mathcal{R}, S) on \mathcal{VI} with a fixed surjection $\phi: \mathfrak{R}_W \twoheadrightarrow (\mathcal{R}, S)$.

Definition 3.23. Let $\mathfrak{R}_W \downarrow \mathfrak{FI}$ be the category whose objects are formal categories of elements (\mathcal{R}, S) on \mathcal{VI} with a fixed surjection $\phi: \mathfrak{R}_W \twoheadrightarrow (\mathcal{R}, S)$, where a surjection means a map in \mathfrak{FI} that is a surjection on objects, and whose morphisms are morphisms in \mathfrak{FI} compatible with the surjections from \mathfrak{R}_W .

The category \mathfrak{R}_W (where we forget the structure of formal category of elements on \mathcal{VI}) admits the following skeleton. The objects of \mathcal{Sk} are given by (W, id_W) and the pairs of the form (U, ι_U) with U a sub-vector space of W and ι_U the inclusion of U in W , and the morphisms of \mathcal{Sk} are the identities and the inclusions of sub-spaces. Since a morphism from (U, ι_U) to (R, ι_R) correspond to a factorisation of ι_U by ι_R , \mathcal{Sk} is full, and since for any objects (V, α) in \mathfrak{R}_W there is a unique isomorphism from (V, α) to an element of \mathcal{Sk} , which is $(\text{Im}(\alpha), \iota_{\text{Im}(\alpha)})$, the inclusion of \mathcal{Sk} in \mathfrak{R}_W is an equivalence of categories.

For $\phi: \mathfrak{R}_W \twoheadrightarrow (\mathcal{R}, S)$ an object in $\mathfrak{R}_W \downarrow \mathfrak{FI}$, the image of \mathcal{Sk} by ϕ is not in general a skeleton of \mathcal{R} . Since ϕ is a surjection, it contains an element in each isomorphism class of object in \mathcal{R} , but this element might not be unique, and also it might not be a full subcategory of \mathcal{R} . Indeed, for U and U' two sub-vector spaces of W , there might be morphisms γ from U to U' such that $\iota_U \neq \iota_{U'} \circ \gamma$ but $\phi(U, \iota_U) = \phi(U', \iota_{U'} \circ \gamma)$. We define a groupoid $\mathcal{G}_{(\mathcal{R}, S, \phi)}$ (denoted only $\mathcal{G}_\mathcal{R}$ when there is no ambiguity) with objects the images of objects in \mathcal{Sk} that will capture all the informations of (\mathcal{R}, S, ϕ) .

Definition 3.24. For (\mathcal{R}, S) a formal category of elements on \mathcal{VI} and for ϕ a surjection from \mathfrak{R}_W to (\mathcal{R}, S) , let $\mathcal{G}_{(\mathcal{R}, S, \phi)}$ be the groupoid whose objects are the sub-vector spaces U of W , and such that $\mathcal{G}_{(\mathcal{R}, S, \phi)}(U, U')$ is the set of isomorphisms α from U to U' such that there exists γ from $\phi(U, \iota_U)$ to $\phi(U', \iota_{U'})$ in \mathcal{R} with $S(\gamma) = \alpha$.

Lemma 3.25. Let (\mathcal{R}, S, ϕ) be an object in $\mathfrak{R}_W \downarrow \mathfrak{FI}$. Then, $\mathcal{G}_{(\mathcal{R}, S, \phi)}$ satisfies the following property. For $\alpha \in \mathcal{G}_{(\mathcal{R}, S, \phi)}$, for M a sub-space of U , and for $\alpha_M: M \rightarrow \alpha(M)$ the restriction of α to M corestricted to $\alpha(M)$, $\alpha_M \in \mathcal{G}_{(\mathcal{R}, S, \phi)}(M, \alpha(M))$.

Proof. If γ from $\phi(U, \iota_U)$ to $\phi(U', \iota_{U'})$ satisfies $S(\gamma) = \alpha$, then, for ι_M^U the inclusion of M in U , $\gamma \circ \phi(\iota_M^U)$ is a morphism from $\phi(M, \iota_M)$ to $\phi(U', \iota_{U'})$ in \mathcal{R} . One checks that it factorises as $\phi(\iota_{\alpha(M)}^{U'}) \circ \gamma'$ for some γ' that satisfies $S(\gamma') = \alpha_M$. \square

Definition 3.26. For \mathcal{G} a groupoid whose objects are the sub-vector spaces of W , and whose morphisms are isomorphisms of vector spaces, we say that \mathcal{G} has the restriction property if, for all U, U' and $\alpha \in \mathcal{G}(U, U')$, α_M is in $\mathcal{G}(M, \alpha(M))$.

A morphism F in $\mathfrak{R}_W \downarrow \mathfrak{FI}$ from $(\mathcal{R}, \mathcal{S}, \phi)$ to $(\mathcal{R}', \mathcal{S}', \phi')$ induces an inclusion of groupoids from $\mathcal{G}_{(\mathcal{R}, \mathcal{S}, \phi)}$ to $\mathcal{G}_{(\mathcal{R}', \mathcal{S}, \phi')}$, indeed for all U and U' subspaces of W , and for all $\alpha \in \mathcal{G}_{(\mathcal{R}, \mathcal{S}, \phi)}(U, U')$, for γ between $\phi(U, \iota_U)$ and $\phi(U', \iota_{U'})$ such that $\mathcal{S}(\gamma) = \alpha$, $F(\gamma)$ is an isomorphism from $\phi'(U, \iota_U)$ to $\phi'(U', \iota_{U'})$ in \mathcal{R}' and $\mathcal{S}'(F(\gamma)) = \alpha$.

Definition 3.27. Let $Groupoid(W)$ be the category whose objects are groupoids with the restriction property and with objects the subspaces of W , and whose morphisms are the inclusions of groupoids.

We want to prove that the categories $\mathfrak{R}_W \downarrow \mathfrak{FI}$ and $Groupoid(W)$ are equivalent. Let us first explain how $\mathcal{G}_{(\mathcal{R}, \mathcal{S}, \phi)}$ captures all the information about morphisms in \mathcal{R} .

Lemma 3.28. For $(\mathcal{R}, \mathcal{S}, \phi) \in \mathfrak{R}_W \downarrow \mathfrak{FI}$ and for (U, γ) and (V, ν) two objects in \mathfrak{R}_W , we have

$$\text{Hom}_{\mathcal{R}}(\phi(U, \gamma), \phi(V, \nu)) \cong \bigsqcup_{U' \triangleleft V ; \dim(U') = \dim(U)} \mathcal{G}_{\mathcal{R}}(\gamma(U), \nu(U')).$$

Proof. Let α be a morphism from $\phi(U, \gamma)$ to $\phi(V, \nu)$ in \mathcal{R} . Then, $\mathcal{S}(\alpha) \in \mathcal{VI}$ factorises uniquely as $\iota \circ \tilde{\alpha}$ with $\tilde{\alpha}$ an isomorphism from U to $U' = \mathcal{S}(\alpha)(U)$ and ι the inclusion of U' in V . Then $\nu|^{U'} \circ \tilde{\alpha} \circ (\gamma|^{U'})^{-1}$ is an element of $\mathcal{G}_{\mathcal{R}}(\gamma(U), \nu(U'))$. It is easy to check that $\alpha \mapsto \nu|^{U'} \circ \tilde{\alpha} \circ (\gamma|^{U'})^{-1}$ defines a bijection. \square

We construct a quasi-inverse to the functor from $\mathfrak{R}_W \downarrow \mathfrak{FI}$ to $Groupoid(W)$ that maps $(\mathcal{R}, \mathcal{S}, \phi)$ to $\mathcal{G}_{(\mathcal{R}, \mathcal{S}, \phi)}$.

Definition 3.29. For $\mathcal{G} \in Groupoid(W)$, $\sim_{\mathcal{G}}$ is the following equivalence relation on objects of \mathfrak{R}_W . For β and γ from V to W , $(V, \beta) \sim_{\mathcal{G}} (V, \gamma)$ if there is α in $\mathcal{G}(\beta(V), \gamma(V))$ such that $\tilde{\gamma} = \alpha \circ \tilde{\beta}$, for $\tilde{\gamma}$ and $\tilde{\beta}$ the corestrictions of γ and β to their images.

We denote by $[V, \beta]_{\mathcal{G}}$, or simply $[V, \beta]$ when there is no ambiguity, the equivalence class of (V, β) .

Since \mathcal{G} has the restriction property, for β and γ from V to W with $(V, \beta) \sim_{\mathcal{G}} (V, \gamma)$, and for δ from some vector space H to V , $(H, \beta \circ \delta) \sim_{\mathcal{G}} (H, \gamma \circ \delta)$. The following category is therefore well defined and it is in an obvious way an element of $\mathfrak{R}_W \downarrow \mathfrak{FI}$.

Definition 3.30. We defined $\mathfrak{R}_{W/\sim_{\mathcal{G}}} \in \mathfrak{R}_W \downarrow \mathfrak{FI}$ as the category whose objects are the equivalence classes $[V, \beta]$ and whose morphisms from $[H, \eta]$ to $[V, \beta]$ is the set of morphisms δ from H to V such that $(H, \beta \circ \delta) \sim_{\mathcal{G}} (H, \eta)$. The functor from $\mathfrak{R}_{W/\sim_{\mathcal{G}}}$ to

\mathcal{VI} is the one that map $[V, \phi]$ to V and the morphism α to itself and the surjection from \mathfrak{R}_W is given by $(V, \beta) \mapsto [V, \beta]$.

Finally, if \mathcal{G} is included in \mathcal{G}' , the surjection from \mathfrak{R}_W to $\mathfrak{R}_{W/\sim_{\mathcal{G}'}}$ factorises through $\mathfrak{R}_W \twoheadrightarrow \mathfrak{R}_{W/\sim_{\mathcal{G}}}$, $\mathcal{G} \mapsto \mathfrak{R}_{W/\sim_{\mathcal{G}}}$ is therefore a functor from $\text{Groupoid}(W)$ to $\mathfrak{R}_W \downarrow \mathfrak{FI}$.

Example 3.31. We consider G a subgroup of $\text{Gl}(W)$. We define $\mathfrak{g}(G) \in \text{Groupoid}(W)$ by $\mathfrak{g}(G)(U, U')$ is the set of restriction to U of morphisms in G such that $g(U) = U'$. Then, $(V, \gamma) \sim_{\mathfrak{g}(G)} (V, \beta)$ if and only if there is $g \in G$ such that $\beta = g \circ \gamma$. Since $\text{Hom}_{\mathcal{K}}(H^*(W)^G, H^*(U)) \cong \text{Hom}(U, W)/\sim$ with $\alpha \sim \beta$ if and only if there is $g \in G$ such that $\beta = g \circ \alpha$, $\mathfrak{R}_{H^*(W)^G}$ and $\mathfrak{R}_{W/\sim_{\mathfrak{g}(G)}}$ are isomorphic in $\mathfrak{R}_W \downarrow \mathfrak{FI}$.

Theorem 3.32. *The categories $\mathfrak{R}_W \downarrow \mathfrak{FI}$ and $\text{Groupoid}(W)$ are equivalent.*

Proof. The equivalence is given by the functors $\mathcal{G} \mapsto \mathfrak{R}_{W/\sim_{\mathcal{G}}}$ and $(\mathcal{R}, \mathcal{S}, \phi) \mapsto \mathcal{G}_{\mathcal{R}}$. We have to prove that they are quasi-inverses. We consider $\mathcal{G}_{\mathfrak{R}_{W/\sim_{\mathcal{G}}}}(U, U')$ for U and U' isomorphic subspaces of W . It is the set of isomorphisms α from U to U' such that $\iota_{U'} \circ \alpha \sim_{\mathcal{G}} \iota_U$ and, by definition, this is the case if and only if $\alpha \in \mathcal{G}(U, U')$. Therefore $\mathcal{G}_{\mathfrak{R}_{W/\sim_{\mathcal{G}}}} = \mathcal{G}$.

In the other direction, for $(\mathcal{R}, \mathcal{S}, \phi) \in \mathfrak{R}_W \downarrow \mathfrak{FI}$, if $(V, \beta) \sim_{\mathcal{G}_{\mathcal{R}}} (V, \gamma)$ there is $\alpha \in \mathcal{G}_{\mathcal{R}}(\beta(V), \gamma(V))$ such that $\tilde{\gamma} = \alpha \circ \tilde{\beta}$, for $\tilde{\gamma}$ and $\tilde{\beta}$ the corestriction of γ and β to their images. Then, $\phi(V, \gamma) = \tilde{\gamma}^* \phi(\gamma(V), \iota_{\gamma(V)}) = \tilde{\beta}^* (\alpha^* \phi(\gamma(V), \iota_{\gamma(V)}))$. But since $\alpha \in \mathcal{G}_{\mathcal{R}}(\beta(V), \gamma(V))$, $\alpha^* \phi(\gamma(V), \iota_{\gamma(V)}) = \phi(\beta(V), \iota_{\beta(V)})$. Therefore, $\phi(V, \gamma) = \phi(V, \beta)$. We can therefore define a surjective map Λ from objects of $\mathfrak{R}_{W/\sim_{\mathcal{G}_{\mathcal{R}}}}$ to objects of \mathcal{R} defined by $[V, \gamma] \mapsto \phi(V, \gamma)$.

We prove that Λ is injective. If $\phi(V, \gamma) = \phi(V, \beta)$, since γ and β are injective morphisms, there is a unique α from $\beta(V)$ to $\gamma(V)$ such that $\tilde{\gamma} = \alpha \circ \tilde{\beta}$. Therefore,

$$\tilde{\beta}^* \phi(\beta(V), \iota_{\beta(V)}) = \tilde{\gamma}^* \phi(\gamma(V), \iota_{\gamma(V)}) = \tilde{\beta}^* (\alpha^* \phi(\gamma(V), \iota_{\gamma(V)})).$$

Since $\tilde{\beta}$ is an isomorphism, we get $\phi(\beta(V), \iota_{\beta(V)}) = \alpha^* \phi(\gamma(V), \iota_{\gamma(V)})$. Hence, $\alpha \in \mathcal{G}_{\mathcal{R}}(\beta(V), \gamma(V))$ and therefore $(V, \gamma) \sim_{\mathcal{G}_{\mathcal{R}}} (V, \beta)$.

Finally, the functoriality of Λ is straightforward and the fact that it is an isomorphism of categories is a consequence of Lemma 3.28. It is clear that Λ defines an isomorphism in $\mathfrak{R}_W \downarrow \mathfrak{FI}$. \square

4. Central elements

In this section, we start by defining central elements of a formal category of elements in such a way that for $K \in \mathcal{K}$ noetherian, connected and *nil*-closed, central elements of K coincide with central elements of \mathfrak{S}_K . Then, for $(C, \mathcal{S}) \in \mathfrak{F}$, we explain why it is enough

to determine regular central elements of (C, \mathcal{S}) . Finally, we characterise central elements of $(\mathcal{R}, \mathcal{S}, \phi) \in \mathfrak{FI}$ using $\mathcal{G}_{(\mathcal{R}, \mathcal{S}, \phi)}$.

4.1. Central elements in a formal category of elements

We define central elements of a formal category of elements in such a way that for K noetherian, (V, ϕ) is central for K if and only if it is central as an element of \mathfrak{S}_K .

Definition 4.1. For $(C, \mathcal{S}) \in \mathfrak{FI}$ and $c \in C$, we say that c is central if for any $c' \in C$, c and c' have a coproduct.

Lemma 4.2. For (C, \mathcal{S}) a formal category of elements, c and c' have a coproduct in C , if and only if there exists a unique object $c \boxplus c'$ that satisfies $\mathcal{S}(c \boxplus c') = \mathcal{S}(c) \oplus \mathcal{S}(c')$ and such that there exists morphisms ι and γ from c and c' to $c \boxplus c'$ with $\mathcal{S}(\iota)$ the inclusion of $\mathcal{S}(c)$ in $\mathcal{S}(c) \oplus \mathcal{S}(c')$ and $\mathcal{S}(\gamma)$ the inclusion of $\mathcal{S}(c')$. In this case, $c \boxplus c'$ is a coproduct.

Proof. For any d in C with maps ι and γ from c and c' to d , $\mathcal{S}(\iota)$ and $\mathcal{S}(\gamma)$ factorise through $\mathcal{S}(\iota) \oplus \mathcal{S}(\gamma)$ from $\mathcal{S}(c) \oplus \mathcal{S}(c')$ to $\mathcal{S}(d)$. Therefore, since (C, \mathcal{S}) is a formal category of elements, there exists $c'' \in C$ such that $\mathcal{S}(c'') = \mathcal{S}(c) \oplus \mathcal{S}(c')$ and δ from c'' to d such that ι and γ factorise through δ . Furthermore, the induced maps $\tilde{\iota}$ and $\tilde{\gamma}$ satisfy that $\mathcal{S}(\tilde{\iota})$ is the inclusion of $\mathcal{S}(c)$ in $\mathcal{S}(c) \oplus \mathcal{S}(c')$ and $\mathcal{S}(\tilde{\gamma})$ is the inclusion of $\mathcal{S}(c')$.

Therefore, if there is a unique $c \boxplus c'$ that satisfies the required conditions, it satisfies the universal property of the coproduct.

Conversely, if c and c' admit a coproduct d , the canonical injections ι and γ factors through an object c'' as above, and by the universal property of the coproduct, c'' is isomorphic to d and therefore a coproduct of c and c' . Finally, for $e \in C$ and f and f' from c and c' to e such that $\mathcal{S}(e) = \mathcal{S}(c) \oplus \mathcal{S}(c')$, $\mathcal{S}(f)$ is the inclusion of $\mathcal{S}(c)$ and $\mathcal{S}(f')$ is the inclusion of $\mathcal{S}(c')$, we have $e = c''$. Indeed, f and f' factorise through c'' and f'' , the induced morphism from c'' to e , satisfies $\mathcal{S}(f'') = \text{id}_{\mathcal{S}(c) \oplus \mathcal{S}(c')}$. Therefore, $c'' = \text{id}_{\mathcal{S}(e)}^* e = e$. \square

Remark 4.3. By definition of a formal category of elements, there is a map γ from c to c' such that $\mathcal{S}(\gamma) = \alpha$ if and only if $\alpha^* c' = c$. Therefore, when it is defined, $c \boxplus c'$ is the only element such that $\iota_{\mathcal{S}(c)}^*(c \boxplus c') = c$ and $\iota_{\mathcal{S}(c')}^*(c \boxplus c') = c'$, for $\iota_{\mathcal{S}(c)}$ and $\iota_{\mathcal{S}(c')}$ the inclusions of $\mathcal{S}(c)$ and $\mathcal{S}(c')$ in $\mathcal{S}(c) \oplus \mathcal{S}(c')$.

Proposition 4.4. For K a noetherian, nil-closed and connected unstable algebra, (V, ϕ) is central if and only if it is central as an element of \mathfrak{S}_K .

Proof. This is a direct consequence of Lemma 4.2 and Proposition 2.22. \square

4.2. Central elements of a noetherian and connected formal category of elements

The connectedness (see Definition 3.6) of (C, \mathcal{S}) plays an important role in describing its central elements.

Proposition 4.5. *If (C, \mathcal{S}) is not connected, (C, \mathcal{S}) admits no central elements.*

Proof. For $x \in C$ such that $\mathcal{S}(x) = 0$, we can consider C_x the set of elements c in C such that $0^*c = x$. Then, for any map $\gamma: c \rightarrow c'$ in C , $c \in C_x$ if and only if $c' \in C_x$. For any $c \in C$, we can take c' that is not in C_{0^*c} , in this case $c \boxplus c'$ should be both in C_{0^*c} and in $C_{0^*c'}$ which is not possible, therefore $c \boxplus c'$ is not defined and c is not central. \square

Proposition 4.6. *For (C, \mathcal{S}) connected and noetherian, ϵ_V is central for any $V \in \mathcal{V}^f$.*

Proof. Let $c \in C$, we consider π the projection from $\mathcal{S}(c) \oplus V$ to $\mathcal{S}(c)$. We show that, π^*c is a coproduct of c and ϵ_V .

We have $\iota_V^* \pi^* c = 0^* c = \epsilon_V$ and $\iota_{\mathcal{S}(c)}^* \pi^* c = \text{id}_{\mathcal{S}(c)}^* c = c$. We show that it is the unique element that satisfies both identities.

Let c' such that $\mathcal{S}(c') = \mathcal{S}(c) \oplus V$ and $\iota_V^* c' = \epsilon_V$ and $\iota_{\mathcal{S}(c)}^* c' = c$. Since (C, \mathcal{S}) is noetherian, $\iota_V^{-1}(\ker(c')) = \ker(\epsilon_V) = V$. Therefore, $V \subset \ker(c')$. We get that $c' = \pi^* c'_0$, for some element such that $\mathcal{S}(c'_0) = \mathcal{S}(c)$. Furthermore, $c = \iota_{\mathcal{S}(c)}^* c' = \iota_{\mathcal{S}(c)}^* \pi^* c'_0 = c'_0$.

By Lemma 4.2, $\pi^* c$ is a coproduct of c and ϵ_V . \square

Proposition 4.7. *For (C, \mathcal{S}) a noetherian and connected formal category of elements, if c is central, for any morphism γ from c' to c in C , c' is central.*

Proof. We prove first the case where $\mathcal{S}(\gamma)$ is an injection. Up to isomorphism, we can suppose that $\mathcal{S}(\gamma)$ is the inclusion of a sub-space of $\mathcal{S}(c)$. We use the following notations $W = \mathcal{S}(c')$ and S is a complementary sub-space of W in $\mathcal{S}(c)$. Then, for any $d \in C$, and $H = \mathcal{S}(d)$, $(\iota_W \oplus \text{id}_H)^*(c \boxplus d)$ satisfies $\mathcal{S}((\iota_W \oplus \text{id}_H)^*(c \boxplus d)) = W \oplus H$ and $\iota_W^* (\iota_W \oplus \text{id}_H)^*(c \boxplus d) = \iota_W^* c = c'$ and $\iota_H^* (\iota_W \oplus \text{id}_H)^*(c \boxplus d) = d$.

We need to show that it is the only element that satisfies both identities. Let $c'' \in C$ such that $\mathcal{S}(c'') = W \oplus H$, $\iota_W^* c'' = c'$ and $\iota_H^* c'' = d$. Since c is central, we can consider $c \boxplus c''$. Then, $\mathcal{S}(c \boxplus c'') = S \oplus W_1 \oplus W_2 \oplus H$, with W_1 and W_2 to copies of W , $S \oplus W_1$ corresponding to $\mathcal{S}(c)$ and $W_2 \oplus H$ to $\mathcal{S}(c'')$.

We want to prove that $\iota_{S \oplus W_2}^*(c \boxplus c'') = c$. Indeed, in this case we would have $\iota_{S \oplus W_2 \oplus H}^*(c \boxplus c'') = c \boxplus d$ and therefore $(\iota_W \oplus \text{id}_H)^* c \boxplus d = (\iota_W \oplus \text{id}_H)^* \iota_{S \oplus W_2 \oplus H}^*(c \boxplus c'')$ which is equal to $\iota_{W_2 \oplus H}^*(c \boxplus c'') = c''$.

We consider $\iota_{S \oplus W_1 \oplus W_2}^* c \boxplus c''$, it is equal to $c \boxplus c'$. But, if we consider δ from $S \oplus W_1 \oplus W_2$ to $S \oplus W$ defined by $\delta(s \oplus w_1 \oplus w_2) = s \oplus (w_1 + w_2)$, we have $\mathcal{S}(\delta^* c) = S \oplus W_1 \oplus W_2$

and $\iota_{S \oplus W_1}^* \delta^* c = c$ and $\iota_{W_2}^* \delta^* c = c'$, therefore $c \boxplus c' = \delta^* c$. We get that $\iota_{S \oplus W_2}^* (c \boxplus c'') = \iota_{S \oplus W_2}^* \delta^* c = \text{id}_{S \oplus W}^* c = c$.

Finally, we consider the case where $\mathcal{S}(\gamma)$ is not an injection, we consider S a complementary subspace of $\ker(\mathcal{S}(\gamma))$ in $\mathcal{S}(c')$ and α the restriction of $\mathcal{S}(\gamma)$ to S . Then, $c' = \alpha^* c \boxplus \epsilon_{\ker(\mathcal{S}(\gamma))}$, the centrality of c' is, therefore, a direct consequence of the centrality of $\alpha^* c$ and $\epsilon_{\ker(\mathcal{S}(\gamma))}$. \square

A direct consequence of Proposition 4.7 is that for $c \in C$ and c_0 as in Proposition 3.8, c is central if and only if c_0 is central, where c_0 is regular. We introduce a characterization of regular central elements intrinsic to \mathfrak{R}_C .

Lemma 4.8. *For (C, \mathcal{S}) noetherian and $c \in C$ regular, c is central if and only if it admits a coproduct in \mathfrak{R}_C with any regular element c' .*

Proof. First, we suppose that c is central. For $c' \in C$ regular and for $U = \ker(c \boxplus c')$, by Proposition 3.8 there exists c'' regular such that $\mathcal{S}(c'') = \mathcal{S}(c) \oplus \mathcal{S}(c')/U$ and such that $c \boxplus c' = \pi^* c''$, for π the projection from $\mathcal{S}(c) \oplus \mathcal{S}(c')$ on $\mathcal{S}(c) \oplus \mathcal{S}(c')/U$. We prove that c'' is a coproduct of c and c' in \mathfrak{R}_C . We consider two maps ι and γ from c and c' to a regular element d . Those factorise uniquely through the canonical injection from c and c' into $c \boxplus c'$, we denote by δ the induced morphism from $c \boxplus c'$ to d . Since d is regular, we have $U = \ker(c \boxplus c') = \mathcal{S}(\delta)^{-1}(\ker(d)) = \ker(\mathcal{S}(\delta))$. By Lemma 3.4, we get that δ factorises uniquely through $c \boxplus c' \rightarrow c''$, therefore c'' is a coproduct of c and c' in \mathfrak{R}_C .

Conversely, if c'' is a coproduct of c and c' in \mathfrak{R}_C , we prove that c and c' admit a coproduct in C . For ι_c and $\iota_{c'}$ the canonical injections from c and c' to c'' , we consider $(\iota_c \oplus \iota_{c'})^* c''$. Let $d \in C$ with ι and γ morphisms from c and c' to d . For d_0 such that $\mathcal{S}(d_0) = \mathcal{S}(d)/\ker(d)$ as in Proposition 3.8, ι and γ induce morphisms in \mathfrak{R}_C from c and c' to d_0 . Since c'' is a coproduct in \mathfrak{R}_C , those factorise through a unique morphism $\delta: c'' \rightarrow d_0$. We get the following diagram in C :

$$\begin{array}{ccc} (\iota_c \oplus \iota_{c'})^* c'' & & d \\ \downarrow & & \downarrow \\ c'' & \xrightarrow{\delta} & d_0. \end{array}$$

By construction, the following diagram is commutative in \mathcal{V}^f :

$$\begin{array}{ccc} \mathcal{S}(c) \oplus \mathcal{S}(c') & \xrightarrow{\mathcal{S}(\iota) \oplus \mathcal{S}(\gamma)} & \mathcal{S}(d) \\ \downarrow & & \downarrow \\ \mathcal{S}(c'') & \xrightarrow{\mathcal{S}(\delta)} & \mathcal{S}(d_0). \end{array}$$

By Lemma 3.4, we get a unique factorisation of ι and γ through $(\iota_c \oplus \iota_{c'})^* c''$, it is therefore a coproduct of c and c' in C . \square

This leads to the following definition.

Definition 4.9. For $(\mathcal{R}, \mathcal{S})$ a formal category of elements on \mathcal{VI} , $c \in \mathcal{R}$ is said to be central if it admits a coproduct in \mathcal{R} with any element $c' \in \mathcal{R}$.

4.3. Central elements of objects in $\mathfrak{R}_W \downarrow \mathfrak{FI}$

We end this section by describing the central elements of an object $(\mathcal{R}, \mathcal{S}, \phi)$ in $\mathfrak{R}_W \downarrow \mathfrak{FI}$ using its associated groupoid.

Since any object in \mathcal{R} is isomorphic to some object of the form $\phi(U, \iota_U)$ with U a sub-vector space of W , it is enough to describe central elements of the form $\phi(V, \iota_V)$ with V a sub-vector space of W .

Lemma 4.10. For $(\mathcal{R}, \mathcal{S}, \phi) \in \mathfrak{R}_W \downarrow \mathfrak{FI}$ and V and U two subspaces of W , if $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$ admit a coproduct in \mathcal{R} then $\phi(V + U, \iota_{V+U})$ is a coproduct of $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$ in \mathcal{R} .

Proof. The injections of V and U in $V + U$ induce morphisms in \mathcal{R} from $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$ to $\phi(V + U, \iota_{V+U})$. For $\phi(V, \iota_V) \sqcup \phi(U, \iota_U)$ a coproduct of $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$, it induces a morphism γ from $\phi(V, \iota_V) \sqcup \phi(U, \iota_U)$ to $\phi(V + U, \iota_{V+U})$. Since γ is a morphism in \mathcal{R} , $\mathcal{S}(\gamma)$ is injective, but $\mathcal{S}(\gamma)$ factorises the inclusions of U and V in $V + U$, it is therefore surjective. We get that γ is an isomorphism in \mathcal{R} and $\phi(V + U, \iota_{V+U})$ is a coproduct in \mathcal{R} . \square

Theorem 4.11. For $(\mathcal{R}, \mathcal{S}, \phi) \in \mathfrak{R}_W \downarrow \mathfrak{FI}$ and V a sub-vector space of W , $\phi(V, \iota_V)$ is central in $(\mathcal{R}, \mathcal{S})$ if and only if:

- (1) for any U and U' subspaces of W , $\alpha \in \mathcal{G}_{\mathcal{R}}(U, U')$ and $v \in V \cap U$, we have $v \in U'$ and $\alpha(v) = v$,
- (2) for any U and U' subspaces of W and α an isomorphism from U to U' such that $\alpha(v) = v$ for all $v \in V \cap U$, $\alpha \in \mathcal{G}_{\mathcal{R}}(U, U')$ if and only if $\bar{\alpha} \in \mathcal{G}_{\mathcal{R}}(V + U, V + U')$, where $\bar{\alpha}$ is the morphism that maps $v \in V$ to itself and $u \in U$ to $\alpha(u)$.

Proof. We consider V such that $\phi(V, \iota_V)$ is central in $(\mathcal{R}, \mathcal{S})$. Then, for any U and U' subspaces of W and for $\alpha \in \mathcal{G}_{\mathcal{R}}(U, U')$, since $\mathcal{G}_{\mathcal{R}}$ satisfies the restriction property, we can consider $\alpha_{V \cap U} \in \mathcal{G}_{\mathcal{R}}(V \cap U, \alpha(V \cap U))$. By composing it with the inclusion of U' in $V + U'$ we get a morphism α' from $\phi(V \cap U, \iota_{V \cap U})$ to $\phi(V + U', \iota_{V+U'})$ in \mathcal{R} . Also, the inclusion of V in $V + U'$ induces a morphism ι from $\phi(V, \iota_V)$ to $\phi(V + U', \iota_{V+U'})$.

By Lemma 4.10 and since $V \cap U \subset V$, there is a unique morphism λ from $\phi(V, \iota_V)$ to $\phi(V + U', \iota_{V+U'})$ that factorises both ι and α' . Then, $\mathcal{S}(\lambda)$ factorises both the inclusion of V in $V + U'$ and the restriction of α to $V \cap U$. We get that $\alpha(v) = v$ for $v \in V \cap U$. We have proven the necessity of condition (1).

We prove now the necessity of condition (2). For α an isomorphism from U to U' that satisfies $\alpha(v) = v$ for all $v \in V \cap U$, α is the restriction of $\bar{\alpha}$ to U . Since $\mathcal{G}_{\mathcal{R}}$ has the restriction property, $\bar{\alpha} \in \mathcal{G}_{\mathcal{R}}(V + U, V + U')$ implies that $\alpha \in \mathcal{G}_{\mathcal{R}}(U, U')$. Conversely, if $\alpha \in \mathcal{G}_{\mathcal{R}}(U, U')$, α and the inclusion of V induces morphisms in \mathcal{R} from $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$ to $\phi(V + U', \iota_{V+U'})$. By Lemma 4.10, those factorises through a morphism γ from $\phi(V + U, \iota_{V+U})$ to $\phi(V + U', \iota_{V+U'})$ and by construction we have $\mathcal{S}(\gamma) = \bar{\alpha}$, therefore $\bar{\alpha} \in \mathcal{G}_{\mathcal{R}}(V + U, V + U')$.

Finally, we prove that the conditions (1) and (2) are sufficient. We need to prove that all objects of the form $\phi(V + U, \iota_{V+U})$ are coproducts of $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$, for U a subspace of W . Since condition (1) is satisfied, and by Lemma 3.28, any morphism from $\phi(V, \iota_V)$ is an inclusion. Then, for any pair of morphisms ι and γ from $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$ to some $\phi(H, \iota_H) \in \mathcal{R}$, we have $V \subset H$ and $\mathcal{S}(\iota)$ is the inclusion of V and $\alpha = \mathcal{S}(\gamma)$ is an element of $\mathcal{G}_{\mathcal{R}}(U, U')$ for $U' = \mathcal{S}(\gamma)(U)$. Then, by condition (2), $\bar{\alpha} \in \mathcal{G}_{\mathcal{R}}(V + U, V + U')$, therefore there is a unique $\bar{\gamma}$ such that $\mathcal{S}(\bar{\gamma}) = \bar{\alpha}$. The composition of $\bar{\gamma}$ with the inclusion of $V + U'$ in H is the unique morphism from $\phi(V + U, \iota_{V+U})$ to $\phi(H, \iota_H)$ that factorises ι and γ . Therefore, $\phi(V + U, \iota_{V+U})$ is a coproduct of $\phi(V, \iota_V)$ and $\phi(U, \iota_U)$. \square

5. The algebras $H^*(W)^{\mathcal{G}}$

In this section, we apply the results of Sections 3 and 4 to some classification problems about *nil*-closed, integral, noetherian, unstable algebras. Before we explain in more detail the focus of this section, let us recall the first theorem of Adams–Wilkerson.

Definition 5.1 ([8, Part II.2]). For $K \in \mathcal{K}$, the transcendence degree of K is $d \in \mathbb{N} \cup \{\infty\}$, the supremum of the cardinals of finite sets of homogeneous elements in K which are algebraically independent.

Remark 5.2. If K is noetherian, the transcendence degree of K is finite.

Let us recall the theorem of Adams–Wilkerson.

Theorem 5.3 ([8, Theorem 3]). *Let K be an integral, unstable algebra of transcendence degree less or equal to $\dim(W)$, then there exists an injection ϕ from K to $H^*(W)$. Furthermore, this injection is regular if and only if the transcendence degree of K equals $\dim(W)$.*

Therefore, every integral, *nil*-closed, noetherian, unstable algebra is isomorphic to a *nil*-closed, noetherian sub-unstable algebra of some $H^*(W)$. In the first sub-section we define $H^*(W)^{\mathcal{G}}$ for $\mathcal{G} \in \text{Groupoid}(W)$. Then, $\mathcal{G} \mapsto H^*(W)^{\mathcal{G}}$ defines an explicit one-to-one correspondence between the objects of $\text{Groupoid}(W)$ and the noetherian, *nil*-closed, unstable sub algebras of $H^*(W)$ of transcendence degree $\dim(W)$.

Let us now recall the definition of the primitive elements of a comodule.

Definition 5.4. For $K \in \mathcal{K}$ provided with a $H^*(V)$ -comodule structure κ in \mathcal{K} , the algebra of primitive elements of K is the sub-algebra of K whose elements are those satisfying that $\kappa(x) = x \otimes 1$, for 1 the unit of $H^*(V)$. We will denote by $P(K, \kappa)$ the algebra of primitive elements of K for the $H^*(V)$ -comodule structure κ .

Remark 5.5. By Corollary 2.16, for all $(V, \phi) \in \mathbf{C}(K)$, there is a unique structure κ_{ϕ} of $H^*(V)$ -comodule on K such that $(\epsilon_K \otimes \text{id}_{H^*(V)}) \circ \kappa_{\phi} = \phi$.

Notation 5.6. We will also denote $P(K, \kappa_{\phi})$ by $P(K, \phi)$.

The problem that we are interested in is the following. If we fix V some finite dimensional vector space and P some unstable algebra, can we classify, under suitable hypothesis, the connected, noetherian, integral, *nil*-closed unstable algebras K , satisfying that K admit a $H^*(V)$ -comodule structure κ in \mathcal{K} , whose algebra of primitive elements is isomorphic to P . Since, every *nil*-closed, noetherian, integral, unstable algebra of transcendence degree $\dim(W)$ is isomorphic to some $H^*(W)^{\mathcal{G}}$, we need to be able to identify the primitive elements associated with a regular central element (V, ϕ) of $H^*(W)^{\mathcal{G}}$.

In the second subsection, we consider $H^*(W)^{\mathcal{G}}$ and an inclusion δ from some vector space V to W , such that $(V, \delta^* \phi) \in \mathbf{C}(H^*(W)^{\mathcal{G}})$ for ϕ the inclusion of $H^*(W)^{\mathcal{G}}$ in $H^*(W)$. Then, we prove that $P(H^*(W)^{\mathcal{G}}, \delta^* \phi)$ is a *nil*-closed and noetherian sub-algebra of $\pi^*(H^*(W/\text{Im}(\delta)))$ for π the projection from W to $W/\text{Im}(\delta)$. Since π^* is injective, there exists $H^*(W/\text{Im}(\delta))^{\mathcal{G}'} \subset H^*(W/\text{Im}(\delta))$ such that $P(H^*(W)^{\mathcal{G}}, \delta^* \phi) = \pi^*(H^*(W/\text{Im}(\delta))^{\mathcal{G}'})$. We conclude this sub-section by explaining how to determine \mathcal{G}' from \mathcal{G} .

We conclude this section, by giving some applications of those results.

5.1. Noetherian, *nil*-closed, unstable sub-algebras of $H^*(W)$

In this sub-section, we give an explicit one-to-one correspondence between $\text{Groupoid}(W)$ and the noetherian, *nil*-closed, unstable sub algebra of $H^*(W)$ of transcendence degree $\dim(W)$.

Theorem 5.7. *For all $W \in \mathcal{V}^f$, there is a one-to-one correspondence between the set of nil-closed and noetherian sub-algebras of $H^*(W)$ whose transcendence degree is $\dim(W)$ and $\text{Groupoid}(W)$.*

Proof. By Theorem 3.32, there is a one-to-one correspondence between isomorphism classes in $\mathfrak{R}_W \downarrow \mathfrak{FI}$ and the set of objects in $\text{Groupoid}(W)$. Thus, we have to justify that the set of nil-closed and noetherian sub-algebras of $H^*(W)$ of transcendence degree $\dim(W)$ are in one-to-one correspondence with isomorphism classes in $\mathfrak{R}_W \downarrow \mathfrak{FI}$. Let K be a nil-closed, noetherian, sub-algebra of $H^*(W)$ whose transcendence degree is $\dim(W)$. Then, for ϕ_K the inclusion of K in $H^*(W)$, since the transcendence degree of K is $\dim(W)$, by the Theorem of Adams–Wilkerson, ϕ_K is regular. Then, since K is noetherian, ϕ_K induces a surjection from \mathfrak{R}_W to \mathfrak{R}_K that we also denote by ϕ_K , by abuse of notation. This defines a map h from the set of nil-closed and noetherian sub-algebras of $H^*(W)$ whose transcendence degree is $\dim(W)$ to the set of isomorphism classes in $\mathfrak{R}_W \downarrow \mathfrak{FI}$.

For K and K' two such sub-algebras of $H^*(W)$, (\mathfrak{R}_K, ϕ_K) and $(\mathfrak{R}_{K'}, \phi_{K'})$ are not necessarily isomorphic in $\mathfrak{R}_W \downarrow \mathfrak{FI}$ if K and K' are isomorphic (under an isomorphism η) in \mathcal{K} . We also need $\phi_K = \phi_{K'} \circ \eta$. This is the case if and only if $K = K'$ and η is the identity. The theorem is therefore a consequence of Theorems 2.7 and 3.20 and Proposition 3.12. \square

We recall that the notation \mathfrak{L} has been defined in Notation 3.11.

Definition 5.8. For \mathcal{G} an object in $\text{Groupoid}(W)$ and for $q_{\mathcal{G}}$ the canonical surjection from \mathfrak{R}_W to $\mathfrak{R}_{W/\sim_{\mathcal{G}}}$, $H^*(W)^{\mathcal{G}}$ is the image of the map

$$\mathfrak{L}(\tilde{q}_{\mathcal{G}}): \mathfrak{L}(\mathfrak{R}_{W/\sim_{\mathcal{G}}}) \hookrightarrow H^*(W).$$

Remark 5.9. The application, $\mathcal{G} \mapsto H^*(W)^{\mathcal{G}}$ defines a contravariant functor between $\text{Groupoid}(W)$ and the poset of nil-closed, noetherian, sub-algebras of $H^*(W)$, whose transcendence degrees are $\dim(W)$, ordered by inclusion.

Corollary 5.10. *Any nil-closed, integral, noetherian, unstable, algebra whose transcendence degree is equal to $\dim(W)$ is isomorphic to $H^*(W)^{\mathcal{G}}$ for some \mathcal{G} .*

Proof. It is a reformulation of the theorem of Adams–Wilkerson using Theorem 5.7. \square

Example 5.11. For G a sub-group of $\text{Gl}(W)$, $H^*(W)^{\mathfrak{g}(G)} = H^*(W)^G$, for $H^*(W)^G$ the algebra of invariant element of $H^*(W)$ under the action of G .

Let us identify precisely the sub-algebra $H^*(W)^{\mathcal{G}}$ of $H^*(W)$.

Proposition 5.12. *Let $\mathcal{G} \in \text{Groupoid}(W)$. Then,*

$$H^*(W)^{\mathcal{G}} = \{x \in H^*(W) ; \alpha^* \iota_{U'}^*(x) = \iota_U^*(x) \text{ for all } \alpha \in \mathcal{G}(U, U')\}.$$

Proof. Let ϕ be the inclusion of $H^*(W)^\mathcal{G}$ in $H^*(W)$ and let $K(\mathcal{G}) = \{x \in H^*(W) ; \alpha^* \iota_{U'}^*(x) = \iota_U^*(x) \text{ for all } \alpha \in \mathcal{G}(U, U')\}$. By construction, $\alpha^* \iota_{U'}^* \phi = \iota_U^* \phi$ for all $\alpha \in \mathcal{G}(U, U')$ and for all sub-spaces U and U' of W . Then,

$$H^*(W)^\mathcal{G} \subset K(\mathcal{G}).$$

Furthermore, the inclusion from $K(\mathcal{G})$ to $H^*(W)$ induces a surjection from \mathfrak{R}_W to $\mathfrak{R}_{K(\mathcal{G})}$ which factorises through an isomorphism from $\mathfrak{R}_{W/\sim_{\mathcal{G}}}$ to $\mathfrak{R}_{K(\mathcal{G})}$. The existence of this factorization is a direct consequence of the definitions of $K(\mathcal{G})$ and $\sim_{\mathcal{G}}$, and it is injective, since the inclusion of $H^*(W)^\mathcal{G}$ induces a right inverse $\mathfrak{R}_{K(\mathcal{G})} \rightarrow \mathfrak{R}_{W/\sim_{\mathcal{G}}}$.

We get the following diagram:

$$\begin{array}{ccccc} H^*(W)^\mathcal{G} & \hookrightarrow & K(\mathcal{G}) & \hookrightarrow & H^*(W) \\ \downarrow \eta_{H^*(W)^\mathcal{G}} & & \downarrow \eta_{K(\mathcal{G})} & & \downarrow \eta_{H^*(W)} \\ l_1(H^*(W)^\mathcal{G}) & \xrightarrow{\cong} & l_1(K(\mathcal{G})) & \hookrightarrow & l_1(H^*(W)), \end{array}$$

where η denotes the unit of the adjunction between f and m . Then, since $H^*(W)^\mathcal{G}$ and $H^*(W)$ are *nil*-closed, $\eta_{H^*(W)^\mathcal{G}}$ and $\eta_{H^*(W)}$ are isomorphisms. Furthermore, $K(\mathcal{G})$ is a sub unstable algebra of $H^*(W)$, hence it does not contain any nilpotent sub-module, and $\eta_{K(\mathcal{G})}$ is injective. Then, the commutativity of the diagram implies that $\eta_{K(\mathcal{G})}$ is an isomorphism, and therefore that $H^*(W)^\mathcal{G} = K(\mathcal{G})$. \square

Corollary 5.13. *The correspondence of Theorem 5.7 is an isomorphism of posets, for the order on sub-algebras of $H^*(W)$ which is the reverse of the inclusion.*

Proof. Indeed, Proposition 5.12 implies that if \mathcal{G} is a sub-groupoid of \mathcal{G}' , $H^*(W)^{\mathcal{G}'} \subset H^*(W)^\mathcal{G}$. \square

Definition 5.14. For $g \in \text{Gl}(W)$, and $\mathcal{G} \in \text{Groupoid}(W)$, $g \cdot \mathcal{G}$ is the groupoid in $\text{Groupoid}(W)$ defined by $\beta \in g \cdot \mathcal{G}(R, R')$, for β an isomorphisms between subspaces R and R' of W , if there exist $\alpha \in \mathcal{G}(U, U')$ for $U = g^{-1}(R)$ and $U' = g^{-1}(R')$, such that the following diagram commutes:

$$\begin{array}{ccc} U & \xrightarrow{g|_U^R} & R \\ \alpha \downarrow & & \downarrow \beta \\ U' & \xrightarrow{g|_{U'}^{R'}} & R'. \end{array}$$

This defines a poset preserving action of $\text{Gl}(W)$ on $\text{Groupoid}(W)$.

Remark 5.15. This action generalizes the action by conjugation on $Group(W)$. Indeed, for G a subgroup of $Gl(W)$ and $g \in Gl(W)$, $g \cdot g(G) = g(gGg^{-1})$.

Proposition 5.16. *For $g \in Gl(W)$ and $\mathcal{G} \in Groupoid(W)$,*

$$H^*(W)^{g \cdot \mathcal{G}} = (g^{-1})^*(H^*(W)^\mathcal{G}).$$

Proof. This is a direct consequence of Proposition 5.12. \square

Remark 5.17. We want to notice that the $(H^*(W)^\mathcal{G})_{\mathcal{G} \in Groupoid(W)}$ does not constitute a minimal list for representing elements of isomorphism classes of *nil*-closed, integral and noetherian unstable algebras of transcendence degree $\dim(W)$. For $g \in Gl(W)$ and $\mathcal{G} \in Groupoid(W)$, $g \cdot \mathcal{G}$ needs not to be equal to \mathcal{G} , but, by Proposition 5.16, $H^*(W)^\mathcal{G} \cong H^*(W)^{g \cdot \mathcal{G}}$.

Conversely, since the inclusion of $H^*(W)^\mathcal{G}$ in $H^*(W)$ induces a surjection from $\text{Hom}_{\mathcal{K}}(H^*(W), H^*(W))$ to $\text{Hom}_{\mathcal{K}}(H^*(W)^\mathcal{G}, H^*(W))$, and since $g \mapsto g^*$ induces an isomorphism between $\text{Hom}_{\mathcal{K}}(H^*(W), H^*(W))$ and $Gl(W)$, we have that if $H^*(W)^\mathcal{G} \cong H^*(W)^\mathcal{H}$, there exists $g \in Gl(W)$ such that $H^*(W)^\mathcal{H} = (g^{-1})^*(H^*(W)^\mathcal{G})$. By Proposition 5.16, $\mathcal{H} = g \cdot \mathcal{G}$.

5.2. Centrality and primitive elements of $H^*(W)^\mathcal{G}$

Throughout this sub-section, we fix V and W two objects in \mathcal{V}^f , as well as an injection δ from V to W .

We consider K a *nil*-closed, noetherian unstable sub algebra of $H^*(W)$ of transcendence degree $\dim(W)$, such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. We start by explaining why the $H^*(V)$ -comodule structure on K induced by $\delta^* \phi$ is induced from the $H^*(V)$ -comodule structure on $H^*(W)$ given by $(\text{id}_W + \delta)^* : H^*(W) \rightarrow H^*(W) \otimes H^*(V)$.

Then, for $K = H^*(W)^\mathcal{G}$, we explain how to determine the primitive elements of this comodule structure from \mathcal{G} .

Proposition 5.18. *Let K be a noetherian unstable sub algebra of $H^*(W)$ of finite transcendence degree $\dim(W)$ such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. The $H^*(V)$ -comodule structure κ on K , induced by $\delta^* \phi$ and Corollary 2.16, fits into the following commutative diagram:*

$$\begin{array}{ccc} K & \xrightarrow{\kappa} & K \otimes H^*(V) \\ \phi \downarrow & & \downarrow \phi \otimes \text{id}_{H^*(V)} \\ H^*(W) & \xrightarrow{(\text{id}_W + \delta)^*} & H^*(W) \otimes H^*(V). \end{array}$$

Proof. We consider the following diagram:

$$\begin{array}{ccc}
 K & \xrightarrow{\kappa} & K \otimes H^*(V) \\
 \phi \downarrow & & \downarrow \phi \otimes \text{id}_{H^*(V)} \\
 H^*(W) & & H^*(W) \otimes H^*(V).
 \end{array}$$

The existence of a morphism ψ^* from $H^*(W)$ to $H^*(W) \otimes H^*(V)$ which turns it into a commutative diagram is a consequence of the surjectivity of ϕ^* from $\text{Hom}_{\mathcal{K}}(H^*(W), H^*(W \oplus V))$ to $\text{Hom}_{\mathcal{K}}(K, H^*(W \oplus V))$. We only have to justify why we can take $\psi = \text{id}_W + \delta$. We have that the composition of $(\phi \otimes \text{id}_{H^*(V)}) \circ \kappa$ with $\epsilon_K \otimes \text{id}_{H^*(V)}$ is equal to $\delta^* \phi$ and that with $\text{id}_{H^*(W)} \otimes \epsilon_{H^*(V)}$ is equal to ϕ . Hence, since $\delta^* \phi$ is central, $(\phi \otimes \text{id}_{H^*(V)}) \circ \kappa$ is the unique element in the inverse image of ϕ under $\rho_{\text{Hom}_{\mathcal{K}}(K, H^*(W)), (V, \delta^* \phi)}$. But $(\text{id}_W + \delta)^* \phi$ is also in this inverse image of ϕ , hence the diagram commutes. \square

We consider $(\text{id}_W + \delta)^* : H^*(W) \rightarrow H^*(W) \otimes H^*(V)$ which is the $H^*(V)$ -comodule structure on $H^*(W)$ associated with $(V, \delta^*) \in \mathbf{C}(H^*(W))$.

Proposition 5.19. *Let K be a noetherian unstable sub algebra of $H^*(W)$ of finite transcendence degree $\dim(W)$ such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. Then, we have a pullback diagram of the following form:*

$$\begin{array}{ccc}
 P(K, \delta^* \phi) & \xhookrightarrow{\quad} & K \\
 \downarrow & & \downarrow \phi \\
 H^*(W/\text{Im}(\delta)) & \xhookrightarrow{\quad} & H^*(W).
 \end{array}$$

Proof. Proposition 5.18 says that the following diagram commutes:

$$\begin{array}{ccc}
 K & \xrightarrow{\kappa} & K \otimes H^*(V) \\
 \phi \downarrow & & \downarrow \phi \otimes \text{id}_{H^*(V)} \\
 H^*(W) & \xrightarrow{(\text{id}_W + \delta)^*} & H^*(W) \otimes H^*(V).
 \end{array}$$

This means that the $H^*(V)$ -comodule structure on K is induced by that on $H^*(W)$. Hence, the primitive elements of K are simply the primitive elements of $H^*(W)$ that are in K . But the comodule structure on $H^*(W)$ is the morphism $(\text{id}_W + \delta)^*$ whose algebra of primitive elements is the image of $H^*(W/\text{Im}(\delta))$ under π^* , for π the projection from W to $W/\text{Im}(\delta)$. \square

Corollary 5.20. *Let K be a noetherian unstable sub algebra of $H^*(W)$ of finite transcendence degree $\dim(W)$ such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. Then, the following is a pushout diagram in $\mathbf{Set}^{(V^f)^{\text{op}}}$:*

$$\begin{array}{ccc} \text{Hom}_{V^f}(_, W) & \longrightarrow & \text{Hom}_K(K, H^*(_)) \\ \downarrow & & \downarrow \\ \text{Hom}_{V^f}(_, W/\text{Im}(\delta)) & \longrightarrow & \text{Hom}_K(P(K, \delta^* \phi), H^*(_)). \end{array}$$

Proof. It is a direct consequence of Lemma 2.10 and of Proposition 5.19. \square

We can thus identify $\text{Hom}_K(P(K, \delta^* \phi), H^*(_))$ in this context. In particular, we show that P is always noetherian.

Lemma 5.21. *For S a set, and \sim_1 and \sim_2 two equivalence relations on S , we denote by \sim the smallest equivalence relation on S (in the sense that $\{(a, b) \in S \times S ; a \sim b\} \subset S \times S$ is the smallest) such that, for all a and b in S such that $a \sim_1 b$ or $a \sim_2 b$, $a \sim b$. Then, the following is a pushout in \mathbf{Set} :*

$$\begin{array}{ccc} S & \longrightarrow & S/\sim_1 \\ \downarrow & & \downarrow \\ S/\sim_2 & \longrightarrow & S/\sim. \end{array}$$

Proof. Let Σ denote the pushout of

$$\begin{array}{ccc} S & \longrightarrow & S/\sim_1 \\ \downarrow & & \\ S/\sim_2 & & . \end{array}$$

Then, for $s : S \rightarrow \Sigma$ the composition of the projection from S to S/\sim_1 with the surjective application $S/\sim_1 \rightarrow \Sigma$, s is surjective. We define \sim' the equivalence relation on S defined by $a \sim' b$ if and only if $s(a) = s(b)$. Σ is isomorphic in \mathbf{Set} with S/\sim' and we will show that $\sim' = \sim$.

By commutativity of the pushout diagram, for a and b in S such that $a \sim_1 b$ or $a \sim_2 b$, $s(a) = s(b)$. Suppose that \sim' is not the smallest such equivalence relation. Then, there exists x and y with $x \sim' y$ and an equivalence relation \sim'' , satisfying that for a and b such that $a \sim_1 b$ or $a \sim_2 b$, $a \sim'' b$, and such that x is not equivalent to y for \sim'' . Then, the

following diagram is commutative:

$$\begin{array}{ccc} S & \xrightarrow{\quad} & S/\sim_1 \\ \downarrow & & \downarrow \\ S/\sim_2 & \xrightarrow{\quad} & S/\sim'', \end{array}$$

and factorise by a morphism $S/\sim' \rightarrow S/\sim''$. This is a contradiction, so $\sim' = \sim$. \square

Remark 5.22. For \sim_1 and \sim_2 as in Lemma 5.21, and for S finite, the smallest equivalence relation \sim on S such that, for all a and b in S such that $a \sim_1 b$ or $a \sim_2 b$, $a \sim b$, is the equivalence relation defined by $a \sim b$ if there is a finite family $(s_i)_{i \in \llbracket 1, n \rrbracket}$ of objects in S such that:

- (1) $s_1 = a$,
- (2) $s_n = b$,
- (3) for all $1 \leq i \leq n$, if i is odd $s_i \sim_1 s_{i+1}$ and if i is even $s_i \sim_2 s_{i+1}$.

We deduce the following proposition.

Proposition 5.23. *Let K be a noetherian unstable sub algebra of $H^*(W)$ of finite transcendence degree $\dim(W)$ such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. Then, for ζ and γ in $\text{Hom}_{\mathcal{V}f}(U, V)$, $\gamma^* \phi|_{P(K, \delta^* \phi)} = \zeta^* \phi|_{P(K, \delta^* \phi)} \in \text{Hom}_{\mathcal{K}}(P(K, \delta^* \phi), H^*(U))$ if and only if there exists a family $(\epsilon_i)_{i \in \llbracket 1, n \rrbracket} \in \text{Hom}_{\mathcal{V}f}(U, W)^n$ with $n \in \mathbb{N}$ greater than 1, such that:*

- (1) $\gamma = \epsilon_1$,
- (2) $\zeta = \epsilon_n$,
- (3) for all $1 \leq i \leq n-1$, $\epsilon_i^* \phi = \epsilon_{i+1}^* \phi$ if i is odd and $\pi \circ \epsilon_i = \pi \circ \epsilon_{i+1}$ if i is even.

Proof. By Corollary 5.20, the following is a pushout:

$$\begin{array}{ccc} \text{Hom}_{\mathcal{V}f}(_, W) & \xrightarrow{\quad k \quad} & \text{Hom}_{\mathcal{K}}(K, H^*(_)) \\ \pi_* \downarrow & & \downarrow p \\ \text{Hom}_{\mathcal{V}f}(_, W/\text{Im}(\delta)) & \xrightarrow{\quad} & \text{Hom}_{\mathcal{K}}(P(K, \delta^* \phi), H^*(_)), \end{array}$$

where k maps $\zeta: U \rightarrow W$ to $\zeta^* \phi: K \rightarrow H^*(U)$, p maps $\psi: K \rightarrow H^*(U)$ to $\psi|_{P(K, \delta^* \phi)}$ and π_* maps $\zeta: U \rightarrow W$ to $\pi \circ \zeta: U \rightarrow W/\text{Im}(\delta)$. Then, by Lemma 5.21, $p \circ k(\zeta) =$

$p \circ k(\gamma)$ if and only if there exists a family $(\epsilon_i)_{i \in \llbracket 1, n \rrbracket} \in \text{Hom}_{\mathcal{V}^f}(U, W)^n$ with $n \in \mathbb{N}$ greater than 1, such that $\gamma = \epsilon_1, \zeta = \epsilon_n$ and for all $1 \leq i \leq n-1$, $k(\epsilon_i) = k(\epsilon_{i+1})$ if i is odd and $\pi_*(\epsilon_i) = \pi_*(\epsilon_{i+1})$ if i is even. \square

Corollary 5.24. *Let K be a noetherian unstable sub algebra of $H^*(W)$ of finite transcendence degree $\dim(W)$ such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. Then, for $\zeta \in \text{Hom}_{\mathcal{V}^f}(U, W)$, $\ker(\zeta^* \phi|_{P(K, \delta^* \phi)}) = \ker(\pi \circ \zeta)$.*

Proof. Let $\zeta_0 \in \text{Hom}_{\mathcal{V}^f}(U/\ker(\zeta^* \phi|_{P(K, \delta^* \phi)}), W)$ such that $\zeta^* \phi|_{P(K, \delta^* \phi)} = \pi_U^* \zeta_0^* \phi|_{P(K, \delta^* \phi)}$, with π_U the projection from U to $U/\ker(\zeta^* \phi|_{P(K, \delta^* \phi)})$. Let $\epsilon_1 = \zeta_0 \circ \pi_U$, $\epsilon_n = \zeta$ and for all i $\epsilon_i^* \phi = \epsilon_{i+1}^* \phi$ if i is odd and $\pi \circ \epsilon_i = \pi \circ \epsilon_{i+1}$ if i is even. Then, since $\text{Hom}_K(K, H^*(_))$ is noetherian, $\ker(\pi \circ \epsilon_i) = \ker(\pi \circ \epsilon_{i+1})$ for all $1 \leq i \leq n-1$. Hence, $\ker(\pi \circ \zeta) = \ker(\pi \circ \zeta_0 \circ \pi_U) = \ker(\zeta^* \phi|_{P(K, \delta^* \phi)})$. \square

Corollary 5.25. *Let K be a noetherian unstable sub algebra of $H^*(W)$ of finite transcendence degree $\dim(W)$ such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. Then, $\mathfrak{S}_{P(K, \delta^* \phi)}$ is noetherian.*

Proof. The two first conditions are straightforward. Let $\zeta^* \phi|_{P(K, \delta^* \phi)}$ in $\text{Hom}_K(P(K, \delta^* \phi), H^*(U))$ and let α be a morphism from a vector space Y to U . Then, by Corollary 5.24

$$\ker(\alpha^* \zeta^* \phi|_{P(K, \delta^* \phi)}) = \ker(\pi \circ \zeta \circ \alpha).$$

This is equal to

$$\alpha^{-1}(\ker(\pi \circ \zeta)) = \alpha^{-1}(\ker(\zeta^* \phi|_{P(K, \delta^* \phi)})). \quad \square$$

Theorem 5.26. *Let K be a noetherian unstable sub algebra of $H^*(W)$ of finite transcendence degree $\dim(W)$ such that $(V, \delta^* \phi) \in \mathbf{C}(K)$, for ϕ the inclusion of K in $H^*(W)$. Then, $P(K, \delta^* \phi)$ is nil-closed and noetherian.*

Proof. Since, $P(K, \delta^* \phi)$ is the kernel of $\kappa - \text{id}_K \otimes 1$ from K to $K \otimes H^*(V)$ which are nil-closed, for κ the comodule structure of K associated with $\delta^* \phi$, and since f is exact and m is left-exact, the following is an exact sequence:

$$0 \longrightarrow l_1(P(K, \delta^* \phi)) \longrightarrow l_1(K) \xrightarrow{l_1(\kappa - \text{id}_K \otimes 1)} l_1(K \otimes H^*(V)).$$

Therefore, since K is nil-closed, $P(K, \delta^* \phi)$ is also nil-closed. Then, the noetherianity of $P(K, \delta^* \phi)$ is a consequence of the noetherianity of $\mathfrak{S}_{P(K, \delta^* \phi)}$ and of Proposition 3.12. \square

Remark 5.27. We have identified $P(K, \delta^* \phi)$ with a sub-algebra of $H^*(W/\text{Im}(\delta))$. Furthermore, we proved that $P(K, \delta^* \phi)$ is nil-closed and noetherian, and (because we took δ to be an injection) Corollary 5.24 implies that the inclusion from $P(K, \delta^* \phi)$ into $H^*(W/\text{Im}(\delta))$ is regular. Therefore, by Theorem 5.7, $P(K, \delta^* \phi)$ has the form $H^*(W/\text{Im}(\delta))^{\mathcal{G}'}$, for some $\mathcal{G}' \in \text{Groupoid}(W/\text{Im}(\delta))$.

This leads to the following question: for W and V in \mathcal{V}^f , for δ an inclusion from V to W and for \mathcal{G}' a groupoid with the restriction property and whose objects are the sub-spaces of $(W/\text{Im}(\delta))$, which are the groupoids $\mathcal{G} \in \text{Groupoid}(W)$, such that

- (1) $H^*(W)^\mathcal{G}$ is a sub $H^*(V)$ -comodule of $H^*(W)$ for the comodule structure induced by δ ,
- (2) the intersection of $H^*(W)^\mathcal{G}$ with $\pi^*(H^*(W/\text{Im}(\delta)))$ is the image under $\pi^*: H^*(W/\text{Im}(\delta)) \rightarrow H^*(W)$ of $H^*(W/\text{Im}(\delta))^\mathcal{G}'$.

Remark 5.28. $H^*(W)^\mathcal{G}$ is a sub $H^*(V)$ -comodule of $H^*(W)$ for the comodule struture induced by δ if and only if \mathcal{G} satisfies the two conditions of Theorem 4.11.

We recall that, from the beginning of this sub-section, V and W are fixed objects of \mathcal{V}^f and δ a fixed injective morphism from V to W .

Theorem 5.29. *Let \mathcal{G} be a groupoid with the restriction property and whose objects are the sub-vector spaces of W , such that $H^*(W)^\mathcal{G}$ is a sub $H^*(V)$ -comodule of $(H^*(W), (\text{id}_W + \delta)^*)$. For \mathcal{G}' the only object of $\text{Groupoid}(W/\text{Im}(\delta))$ which satisfies that $\pi^*(H^*(W/\text{Im}(\delta))^\mathcal{G}')$ is the algebra of primitive elements of $H^*(W)^\mathcal{G}$, the two following conditions are equivalent:*

- (1) $\alpha \in \mathcal{G}'(U, U')$, where U and U' are sub-vector spaces of $W/\text{Im}(\delta)$ and α is an isomorphism from U to U' ,
- (2) there exists N and N' sub spaces of W such that π induce isomorphisms from N and N' to U and U' , as well as an element $\beta \in \mathcal{G}(N, N')$ such that $\alpha = \pi|_{N'}^{U'} \circ \beta \circ (\pi|_N^U)^{-1}$.

Proof. We consider the pushout diagram of Corollary 5.20:

$$\begin{array}{ccc}
 \text{Hom}_{\mathcal{V}^f}(_, W) & \xrightarrow{k} & \text{Hom}_{\mathcal{K}}(H^*(W)^\mathcal{G}, H^*(_)) \\
 \pi^* \downarrow & & \downarrow q \\
 \text{Hom}_{\mathcal{V}^f}(_, W/\text{Im}(\delta)) & \xrightarrow{p} & \text{Hom}_{\mathcal{K}}(H^*(W/\text{Im}(\delta))^\mathcal{G}', H^*(_)),
 \end{array}$$

where π_* maps $\gamma: U \rightarrow W$ to $\pi \circ \gamma$, k maps γ to $\gamma^* \phi_{\mathcal{G}}$ for $\phi_{\mathcal{G}}$ the inclusion from $H^*(W)^\mathcal{G}$, q maps $\psi: H^*(W)^\mathcal{G} \rightarrow H^*(U)$ to $\psi|_{\pi^*(H^*(W/\text{Im}(\delta)))}$ the restriction of ψ to $\pi^*(H^*(W/\text{Im}(\delta)))$ and, finally, p maps ζ from U to $W/\text{Im}(\delta)$ to $\zeta^* \phi_{\mathcal{G}'}$, for $\phi_{\mathcal{G}'}$ the inclusion of $H^*(W/\text{Im}(\delta))^\mathcal{G}'$ into $H^*(W/\text{Im}(\delta))$.

We fix a section s from $W/\text{Im}(\delta)$ to W . Since $\pi \circ s = \text{id}_{W/\text{Im}(\delta)}$, $\pi_*(s) = \text{id}_{W/\text{Im}(\delta)}$. Then, by commutativity of the pushout diagram, we have $\phi_{\mathcal{G}'} = q(s^*\phi_{\mathcal{G}}) = s^*\phi_{\mathcal{G}}|_{\pi^*(H^*(W/\text{Im}(\delta)))}$.

By construction, there are natural isomorphisms $\mathfrak{R}_{H^*(W)\mathcal{G}} \cong \mathfrak{R}_{W/\sim_{\mathcal{G}}}$ and $\mathfrak{R}_{H^*(W/\text{Im}(\delta))\mathcal{G}'} \cong \mathfrak{R}_{W/\text{Im}(\delta)/\sim_{\mathcal{G}'}}$. These are the isomorphisms that map $(W, \phi_{\mathcal{G}})$ to $[W, \text{id}_W]_{\mathcal{G}}$ and $(W/\text{Im}(\delta), \phi_{\mathcal{G}'})$ to $[W/\text{Im}(\delta), \text{id}_{W/\text{Im}(\delta)}]_{\mathcal{G}'}$ respectively.

Let us first prove (2) \Rightarrow (1). We consider, $\beta \in \mathcal{G}(N, N')$ such that π induces isomorphisms $\pi|_N^U$ and $\pi|_{N'}^{U'}$ between N and U and between N' and U' . Let α be an isomorphism from U to U' such that $\alpha = \pi|_{N'}^{U'} \circ \beta \circ (\pi|_N^U)^{-1}$. Then, $(\pi|_{N'}^{U'})^{-1} \circ \alpha = \beta \circ (\pi|_N^U)^{-1}$. Therefore,

$$\begin{aligned} \alpha^*((\pi|_{N'}^{U'})^{-1})^* \iota_{N'}^* \phi_{\mathcal{G}} &= ((\pi|_N^U)^{-1})^* \beta^* \iota_N^* \phi_{\mathcal{G}} \\ &= ((\pi|_N^U)^{-1})^* \iota_N^* \phi_{\mathcal{G}}. \end{aligned}$$

We can choose the section s in such a way that $s \circ \iota_{U'} = \iota_{N'} \circ ((\pi|_{N'}^{U'})^{-1})$, then

$$\alpha^* \iota_{U'}^* s^* \phi_{\mathcal{G}} = ((\pi|_N^U)^{-1})^* \iota_N^* \phi_{\mathcal{G}}.$$

This implies that $\alpha^* \iota_{U'}^* s^* q(\phi_{\mathcal{G}}) = ((\pi|_N^U)^{-1})^* \iota_N^* q(\phi_{\mathcal{G}})$. Furthermore, $\pi \circ s \circ \iota_U = \pi \circ \iota_N \circ (\pi|_N^U)^{-1}$. Hence, we also have, by Proposition 5.23, that $\iota_U^* s^* q(\phi_{\mathcal{G}}) = ((\pi|_N^U)^{-1})^* \iota_N^* q(\phi_{\mathcal{G}})$. Hence,

$$\alpha^* \iota_{U'}^* s^* q(\phi_{\mathcal{G}}) = \iota_U^* s^* q(\phi_{\mathcal{G}}).$$

Since $s^* q(\phi_{\mathcal{G}}) = \phi_{\mathcal{G}'}$, this implies that $\alpha \in \mathcal{G}'(U, U')$, as required.

Now, let us prove the far more challenging (1) \Rightarrow (2).

We consider $\alpha \in \mathcal{G}'(U, U')$ where U and U' are two sub-spaces of $W/\text{Im}(\delta)$. Then,

$$\alpha^* \iota_{U'}^* \phi_{\mathcal{G}'} = \iota_U^* \phi_{\mathcal{G}'},$$

or, equivalently,

$$[U, \iota_{U'} \circ \alpha]_{\mathcal{G}'} = [U, \iota_U]_{\mathcal{G}'}$$

By Proposition 5.23, since $\phi_{\mathcal{G}'} = s^* q(\phi_{\mathcal{G}})$, we have that $[H, \zeta]_{\mathcal{G}'} = [H, \gamma]_{\mathcal{G}'}$, for some $H \in \mathcal{V}^f$ and ζ and γ injectives from H to $W/\text{Im}(\delta)$, if and only if there exists a family $(\epsilon_i)_{i \in \llbracket 1, n \rrbracket} \in \text{Hom}_{\mathcal{V}^f}(U, W)^n$ with $n \in \mathbb{N}$ greater than 1, such that $s \circ \gamma = \epsilon_1$, $s \circ \zeta = \epsilon_n$ and, for all $1 \leq i \leq n-1$, $\epsilon_i^* \phi_{\mathcal{G}} = \epsilon_{i+1}^* \phi_{\mathcal{G}}$ if i is odd and $\pi \circ \epsilon_i = \pi \circ \epsilon_{i+1}$ if i is even.

So let $(\epsilon_i)_{i \in \llbracket 1, n \rrbracket} \in \text{Hom}_{\mathcal{V}^f}(U, W)^n$ be such that $\epsilon_1 = s \circ \iota_U$, $\epsilon_n = s \circ \iota_{U'} \circ \alpha$ and for all $1 \leq i \leq n-1$, $\epsilon_i^* \phi_{\mathcal{G}} = \epsilon_{i+1}^* \phi_{\mathcal{G}}$ if i is odd and $\pi \circ \epsilon_i = \pi \circ \epsilon_{i+1}$ if i is even.

By induction, for all $i \in \llbracket 1, n \rrbracket$, $\epsilon_i^* \phi_{\mathcal{G}}$ and $\pi \circ \epsilon_i$ are regular elements respectively of $\mathfrak{S}_{H^*(W)\mathcal{G}}$ and $\mathfrak{S}_{\text{Hom}_{\mathcal{V}^f}(U, W/\text{Im}(\delta))}$. Hence, ϵ_i and $\pi \circ \epsilon_i$ are injections. For all i , let N_i denote the image of ϵ_i in W , we denote also by $\tilde{\epsilon}_i$ the corestriction of ϵ_i to N_i . Then, for i odd, $\epsilon_i^* \phi_{\mathcal{G}} = \epsilon_{i+1}^* \phi_{\mathcal{G}}$ implies that there exists β_i in $\mathcal{G}(N_i, N_{i+1})$ such that $\tilde{\epsilon}_{i+1} = \beta_i \circ \tilde{\epsilon}_i$.

We take some moment to explain a subtlety in the proof. We would like, for i even, to have $\epsilon_i = \epsilon_{i+1}$. Then, the composition of the β_i with i odd would give an isomorphism β between $N_1 = s(U)$ and $N_n = s(U')$ such that $\beta \in \mathcal{G}(N_1, N_n)$, since \mathcal{G} is a groupoid and we would have $(s \circ \iota_{U'})|^{N_n} \circ \alpha = \beta \circ (s \circ \iota_U)|^{N_1}$. Since $(s \circ \iota_U)|^{N_1}$ and $(s \circ \iota_{U'})|^{N_n}$ are inverse isomorphisms of $\pi|_{N_1}^U$ and $\pi|_{N_n}^{U'}$, we would have $\alpha = \pi|_{N_n}^{U'} \circ \beta \circ (\pi|_{N_1}^U)^{-1}$. If this were the case, we would have found a β for any N and N' such that π induces isomorphisms between U and N and between U' and N' , and we would have done so without using the assumption that $\delta^* \phi_{\mathcal{G}}$ is central. Unfortunately, this naive approach fails, and N and N' must be chosen carefully. The hypothesis on the ϵ_i for i even indicates how to modify our original N_1 and N_n to make it work, using the centrality of $\delta^* \phi_{\mathcal{G}}$.

First notice that, since $\pi \circ \epsilon_i$ is injective for all i , we always have $N_i \cap \text{Im}(\delta) = \{0\}$. Then, the assumption that, for i even, $\pi \circ \epsilon_i = \pi \circ \epsilon_{i+1}$ implies that there exists ρ_i from U to W whose image is inside $\text{Im}(\delta)$ and such that $\epsilon_{i+1} = \epsilon_i + \rho_i$. Now, since $H^*(W)^{\mathcal{G}}$ is a sub $H^*(V)$ -comodule of $(H^*(W), (\text{id}_W + \delta)^*)$ we know that $[V, \delta]_{\mathcal{G}}$ is a central element of $\mathfrak{R}_{W/\sim_{\mathcal{G}}}$. Then, by Theorem 4.11, for i odd, we know that the isomorphisms $\bar{\beta}_i$ from $N_i \oplus \text{Im}(\delta)$ to $N_{i+1} \oplus \text{Im}(\delta)$ defined by $\bar{\beta}_i(n) = \beta_i(n)$ for $n \in N_i$ and $\bar{\beta}_i(v) = v$ for $v \in \text{Im}(\delta)$ satisfy $\bar{\beta}_i \in \mathcal{G}(N_i \oplus \text{Im}(\delta), N_{i+1} \oplus \text{Im}(\delta))$. Moreover, for i even, $\pi \circ \epsilon_i = \pi \circ \epsilon_{i+1}$ implies that $N_i \oplus \text{Im}(\delta) = N_{i+1} \oplus \text{Im}(\delta)$. Then, at each even step i , we can “correct” ϵ_{i-1} to get $\beta_{i-1} \circ \tilde{\epsilon}_{i-1} = \tilde{\epsilon}_{i+1}$ instead of $\tilde{\epsilon}_i$.

For each $i \in \llbracket 1, n \rrbracket$, we define ϵ'_i (the “corrected” ϵ_i) by

$$\epsilon'_i := \iota_{N_i \oplus \text{Im}(\delta)}^W \circ \left(\tilde{\epsilon}_i \oplus \sum_{\{j \text{ even} ; i \leq j < n\}} \beta_{i \rightarrow j}^{-1} \circ \rho_j|^{N_j \oplus \text{Im}(\delta)} \right),$$

where $\beta_{i \rightarrow j}$ is the composition of all the $\bar{\beta}_k$ with k odd and $i \leq k < j$. The family $(\epsilon'_i)_{i \in \llbracket 1, n \rrbracket}$ satisfies the following:

- (1) $\pi \circ \epsilon'_1 = \iota_U, \pi \circ \epsilon'_n = \iota_{U'} \circ \alpha,$
- (2) for all i , if we denote by N'_i the image of ϵ'_i , then $N'_i \oplus \text{Im}(\delta) = N_i \oplus \text{Im}(\delta),$
- (3) for i odd, if we denote by β'_i the restriction of $\bar{\beta}_i$ to N'_i corestricted to N'_{i+1} , $\tilde{\epsilon}'_{i+1} = \beta'_i \circ \tilde{\epsilon}'_i$, with $\beta'_i \in \mathcal{G}(N'_i, N'_{i+1})$, since $\bar{\beta}_i \in \mathcal{G}(N_i \oplus \text{Im}(\delta), N_{i+1} \oplus \text{Im}(\delta))$ and \mathcal{G} has the restriction property,
- (4) for i even, $\epsilon'_i = \epsilon'_{i+1}.$

Then, let $N = N'_1, N' = N'_n$ and $\beta = (\beta'_k \circ \cdots \circ \beta'_3 \circ \beta'_1)$, where $k = n - 2$ if n is odd, $k = n - 1$ otherwise. Then, $\beta \in \mathcal{G}(N, N')$ and $\beta \circ \tilde{\epsilon}'_1 = \tilde{\epsilon}'_n$. Finally, $\pi \circ \epsilon'_1 = \iota_U$ implies that $\tilde{\epsilon}'_1 = (\pi|_N^U)^{-1}$ and $\pi \circ \epsilon'_n = \iota_{U'} \circ \alpha$ implies that $\tilde{\epsilon}'_n = (\pi|_{N'}^{U'})^{-1} \circ \alpha$. Hence, $\alpha = \pi|_{N'}^{U'} \circ \beta \circ (\pi|_N^U)^{-1}$. \square

5.3. Applications

We end this section by presenting some applications of Theorem 5.29. We consider some algebras $H^*(W)^G$ that satisfy some conditions on their centre and associated sub-algebras of primitive elements.

We consider first the case where the centre of $H^*(W)^G$ has dimension $\dim(W)$. Since the centre is a regular element of $H^*(W)^G$, we can take it to be (W, ϕ_G) for ϕ_G the inclusion in $H^*(W)$. By Theorem 4.11, W is invariant under any morphism in G . Therefore, G is the groupoid in $Groupoid(W)$ that contains only trivial morphisms and $H^*(W)^G = H^*(W)$. We get the following Proposition (that was already known).

Proposition 5.30. *Let K be a noetherian, nil-closed, integral, unstable algebra of transcendence degree d . We assume that the centre of K is of dimension d . Then, $K \cong H^*(W)$ with $\dim(W) = d$.*

Let us now consider the case where the centre is of dimension $\dim(W) - 1$. Up to isomorphism, the centre is induced by the inclusion in W of a sub-vector space C . Then, the elements of C are invariant under any morphism in G . From condition (2) in Theorem 4.11 and since G satisfies the restriction property, any morphism in G is the restriction of a morphism in $G(C \oplus S, C \oplus S')$ with S and S' complementary sub-spaces of C in W , hence, they are the restriction of a morphism in $G(W, W)$. Therefore, $G = g(G(W, W))$. We get the following Theorem.

Theorem 5.31. *Let K be a noetherian, nil-closed, integral, unstable algebra of transcendence degree d . Then, the centre of K has dimension $d - 1$ if and only if, for W such that $\dim(W) = d$, there exists G a sub-group of $Gl(W)$ such that K is isomorphic to $H^*(W)^G$ and such that the sub-vector space of W of invariant elements under G has dimension $d - 1$.*

A nil-closed, noetherian, integral unstable algebra that is not an algebra of invariant elements of the form $H^*(W)^G$, must have a centre of dimension at most $d - 2$, with d the transcendence degree of K . We give such examples for $p = 2$, using Theorems 5.7 and 5.29.

Proposition 5.32. *There are, up to isomorphism, 5 nil-closed, noetherian, unstable algebras K of transcendence degree 3, whose centre has dimension 1 and such that the algebra of primitive elements of K is isomorphic to $H^*(V_2)$ for V_k the vector space of dimension k . They can be realised as sub-algebras of $H^*(V_3) \cong \mathbb{F}_2[x, y, z]$ as:*

- (1) $\mathbb{F}_2[y, z, x(x+y)(x+z)(x+y+z)]$,
- (2) $\mathbb{F}_2[y, z, x(x+y)(x+z)(x+y+z)] + \mathbb{F}_2[y, z, x(x+y)]y$,

- (3) $\mathbb{F}_2[x, y, z](y+z) \oplus \mathbb{F}_2[z, x(x+z)],$
- (4) $\mathbb{F}_2[z, x(x+z)] \oplus \mathbb{F}_2[x, y, z](y+z)y \oplus \mathbb{F}_2[y, x(x+y)]y,$
- (5) $\mathbb{F}_2[z, x(x+z)]z \oplus \mathbb{F}_2[y, x(x+y)]y \oplus \mathbb{F}_2[y, x(x+y)](y+z)y \oplus \mathbb{F}_2[x, y, z](y+z)yz.$

Among them, only the first one is an algebra of invariant elements.

References

- [1] John Adams and Clarence W. Wilkerson. Finite H-spaces and algebras over the Steenrod algebra. *Ann. Math.*, 111:95–143, 1980.
- [2] William G. Dwyer and Clarence W. Wilkerson. Spaces of null homotopic maps. In H.-R. Miller, J.-M. Lemaire, L. Schwartz, and M. Zisman, editors, *Théorie de l'homotopie*, number 191 in Astérisque, pages 97–108. Société Mathématique de France, 1990.
- [3] William G. Dwyer and Clarence W. Wilkerson. A cohomology decomposition theorem. *Topology*, 31:433–443, 1992.
- [4] William G. Dwyer and Clarence W. Wilkerson. A New Finite Loop Space at the Prime Two. *J. Am. Math. Soc.*, 6(1):37–64, 1992.
- [5] J. Gunawardena, Jean Lannes, and Saïd Zarati. Cohomologie des groupes symétriques et application de Quillen. In *Advances In Homotopy Theory*, volume 139 of *London Mathematical Society Lecture Note Series*, pages 61–68. Cambridge University Press, 1989.
- [6] Drew Heard. Depth and detection for Noetherian unstable algebras. *Trans. Am. Math. Soc.*, 373(10):7429–7454, 2020.
- [7] Drew Heard. The topological nilpotence degree of a Noetherian unstable algebra. *Sel. Math., New Ser.*, 27(2): article no. 17 (56 pages), 2021.
- [8] Hans-Werner Henn, Jean Lannes, and Lionel Schwartz. The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects. *Math. Ann.*, 115(5):1053–1106, 1993.
- [9] Hans-Werner Henn, Jean Lannes, and Lionel Schwartz. Localizations of unstable A-modules and equivariant mod p cohomology. *Am. J. Math.*, 301(1):23–68, 1995.
- [10] Mazaki Kashiwara and Pierre Schapira. *Categories and Sheaves*, volume 332 of *Grundlehren der Mathematischen Wissenschaften*. Springer, 2006.

- [11] Nicholas J. Kuhn. Primitives and central detection numbers in group cohomology. *Adv. Math.*, 216(1):387–442, 2007.
- [12] Nicholas J. Kuhn. Nilpotence in group cohomology. *Proc. Edinb. Math. Soc.*, 56(1):151–175, 2013.
- [13] Jean Lannes and Saïd Zarati. Sur les \mathcal{U} -injectifs. *Ann. Sci. Éc. Norm. Supér. (4)*, 19(2):303–333, 1986.
- [14] David L. Rector. Noetherian cohomology rings and finite loop spaces with torsion. *J. Pure Appl. Algebra*, 32(2):191–217, 1984.
- [15] Lionel Schwartz. *Unstable modules over the Steenrod Algebra and Sullivan's fixed point set conjecture*. Chicago Lectures in Mathematics. Univ. of Chicago Press, 1994.

OURIEL BLÆDÉ
École Polytechnique de Nantes Université
Bâtiment IHT
Campus Chantrerie
Rue Christian Pauc CS 50609
44306 Nantes cedex 3
FRANCE
aacde13@live.fr