In this paper, firstly, we generalize the definition of the bifractional Brownian motion $B^{H,K}:=\bigl (B^{H,K}\,;\,t\ge 0\bigr )$, with parameters $H\in (0,1)$ and $K\in (0,1]$, to the case where $H$ is no longer a constant, but a function $H(\,\cdot \,)$ of the time index $t$ of the process. We denote this new process by $B^{H(\,\cdot \,),K}$. Secondly, we study its time regularities, the local asymptotic self-similarity and the long-range dependence properties.
Keywords: Gaussian process, Self similar process, Fractional Brownian motion, Bifractional Brownian motion, Multifractional Brownian motion, Local asymptotic self-similarity, Long range dependence
Mohamed Ait Ouahra 1 ; Mohamed Mellouk 2 ; Hanae Ouahhabi 3 ; Aissa Sghir 1

@article{AMBP_2025__32_1_167_0, author = {Mohamed Ait Ouahra and Mohamed Mellouk and Hanae Ouahhabi and Aissa Sghir}, title = {An extension of the standard multifractional {Brownian} motion}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {167--184}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {32}, number = {1}, year = {2025}, doi = {10.5802/ambp.436}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/} }
TY - JOUR AU - Mohamed Ait Ouahra AU - Mohamed Mellouk AU - Hanae Ouahhabi AU - Aissa Sghir TI - An extension of the standard multifractional Brownian motion JO - Annales mathématiques Blaise Pascal PY - 2025 SP - 167 EP - 184 VL - 32 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/ DO - 10.5802/ambp.436 LA - en ID - AMBP_2025__32_1_167_0 ER -
%0 Journal Article %A Mohamed Ait Ouahra %A Mohamed Mellouk %A Hanae Ouahhabi %A Aissa Sghir %T An extension of the standard multifractional Brownian motion %J Annales mathématiques Blaise Pascal %D 2025 %P 167-184 %V 32 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/ %R 10.5802/ambp.436 %G en %F AMBP_2025__32_1_167_0
Mohamed Ait Ouahra; Mohamed Mellouk; Hanae Ouahhabi; Aissa Sghir. An extension of the standard multifractional Brownian motion. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 167-184. doi : 10.5802/ambp.436. https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/
[1] Engineering applications of fractional Brownian motion: self-affine and self-similar random processes, Fractals, Volume 7 (1999) no. 2, pp. 151-157 | DOI
[2] Continuity in law of some additive functionals of bifractional Brownian motion, Stochastics, Volume 91 (2019) no. 4, pp. 613-628 | DOI | MR | Zbl
[3] Continuity in law with respect to the Hurst index of some additive functionals of sub-fractional Brownian motion, Stochastic Anal. Appl., Volume 35 (2017) no. 4, pp. 677-690 | MR | Zbl
[4] The covariance structure of multifractional Brownian motion, with application to long range dependence, ICASSP 2000 (Istanbul, Turkey, 2000), IEEE (2002)
[5] An extension of bifractional Brownian motion, Commun. Stoch. Anal., Volume 5 (2011) no. 2, pp. 333-340 | MR | Zbl
[6] Elliptic Gaussian random processes, Rev. Mat. Iberoam., Volume 13 (1997), pp. 19-90 | DOI | MR | Zbl
[7] Local times and sample function properties of stationary Gaussian processes, Trans. Am. Math. Soc., Volume 137 (1969), pp. 277-299 | DOI | MR | Zbl
[8] On the local time of multifractional Brownian motion, Stochastics, Volume 78 (2006) no. 1, pp. 33-49 | DOI | MR | Zbl
[9] Mixed fractional Brownian motion, Bernoulli, Volume 7 (2001) no. 6, pp. 913-934 | DOI | MR | Zbl
[10] Alternative micropulses and fractional Brownian motion, Stochastic Processes Appl., Volume 64 (1996) no. 2, pp. 143-152 | DOI | MR | Zbl
[11] Inequalities: With Applications to Engineering, Springer, 1998, viii+150 pages | MR | Zbl
[12] From self-similarity to local self-similarity: the estimation problem, Fractals: Theory and Applications in Engineering (M. Dekking; J. Lévy-Véhel; E. Lutton; C. Tricot, eds.), Springer, 1999, pp. 3-16 | DOI | Zbl
[13] Use of a fractional Brownian motion model to mimic spatial horizontal variation of soil physical and hydraulic properties displaying a power-law variogram, Procedia Environ. Sci., Volume 19 (2013), pp. 416-425 | DOI
[14] Multidimensional bifractional Brownian Motion. Itô and Tanaka formulas, Stoch. Dyn., Volume 7 (2007) no. 3, pp. 365-388 | DOI | MR | Zbl
[15] Tangent fields and the local structure of random fields, J. Theor. Probab., Volume 15 (2002) no. 3, pp. 731-750 | DOI | MR | Zbl
[16] The local structure of random processes, J. Lond. Math. Soc., Volume 67 (2003) no. 3, pp. 657-672 | DOI | MR | Zbl
[17] Occupation densities, Ann. Probab., Volume 8 (1980) no. 1, pp. 1-67 | MR | Zbl
[18] An example of infinite dimensional quasi-helix, Stochastic models. Seventh symposium on probability and stochastic processes (Contemporary Mathematics), Volume 336, American Mathematical Society, 2003, pp. 195-201 | Zbl
[19] Hélices et quasi-hélices, Adv. Math., Volume 7B (1981), pp. 417-433 | Zbl
[20] The Wiener spiral and some other interesting curves in Hilbert space, Dokl. Akad. Nauk SSSR, Volume 26 (1940) no. 2, pp. 115-118
[21] Semi-stable stochastic processes, Trans. Am. Math. Soc., Volume 104 (1962), pp. 64-78 | MR | Zbl
[22] A decomposition of the bifractional Brownian motion and some applications, Stat. Probab. Lett., Volume 79 (2009) no. 5, pp. 619-624 | MR | Zbl
[23] Multifractional Brownian motion: definition and preliminary results (1996) no. RR-2645 (Technical report)
[24] A Probabilistic Inequality Related to Negative Definite Functions, High Dimensional Probability VI (Progress in Probability), Volume 66, Birkhäuser, 2013, pp. 73-80 | DOI | Zbl
[25] Limits of bifractional Brownian noises, Commun. Stoch. Anal., Volume 2 (2008) no. 3, pp. 369-383 | MR | Zbl
[26] Fractional Brownian Motions, Fractional Noises and Applications, SIAM Rev., Volume 10 (1968), pp. 422-437 | DOI | MR | Zbl
[27] Micropulses and different types of Brownian motion, J. Appl. Probab., Volume 48 (2011) no. 3, pp. 792-810 | DOI | MR | Zbl
[28] On bifractional Brownian motion, Stochastic Processes Appl., Volume 116 (2006) no. 5, pp. 830-856 | DOI | MR | Zbl
[29] Stable non-Gaussian random processes: Stochastic models with infinite variance, Stochastic Modeling, Chapman & Hall, 1994 | MR | Zbl
[30] The modelling of ethernet data and of signals that are heavy-tailed with infinite variance, Scand. J. Stat., Volume 29 (2002) no. 2, pp. 273-295 | DOI | MR | Zbl
[31] Sample path properties of bifractional Brownian motion, Bernoulli, Volume 13 (2007) no. 4, pp. 1023-1052 | MR | Zbl
[32] Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Theory Relat. Fields, Volume 109 (1997) no. 1, pp. 129-157 | DOI | MR | Zbl
Cité par Sources :