An extension of the standard multifractional Brownian motion
Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 167-184.

In this paper, firstly, we generalize the definition of the bifractional Brownian motion $B^{H,K}:=\bigl (B^{H,K}\,;\,t\ge 0\bigr )$, with parameters $H\in (0,1)$ and $K\in (0,1]$, to the case where $H$ is no longer a constant, but a function $H(\,\cdot \,)$ of the time index $t$ of the process. We denote this new process by $B^{H(\,\cdot \,),K}$. Secondly, we study its time regularities, the local asymptotic self-similarity and the long-range dependence properties.

Publié le :
DOI : 10.5802/ambp.436
Classification : 60G15, 60G17, 60G18, 60G22
Keywords: Gaussian process, Self similar process, Fractional Brownian motion, Bifractional Brownian motion, Multifractional Brownian motion, Local asymptotic self-similarity, Long range dependence

Mohamed Ait Ouahra 1 ; Mohamed Mellouk 2 ; Hanae Ouahhabi 3 ; Aissa Sghir 1

1 Mohammed First University. Faculty of Sciences Oujda. Department of Mathematics. Stochastic and Deterministic Modelling Laboratory. B.P. 717. Morocco.
2 MAP5, UMR CNRS 8145, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
3 Department of Statistics. College of Business and Economics. United Arab Emirates University.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2025__32_1_167_0,
     author = {Mohamed Ait Ouahra and Mohamed Mellouk and Hanae Ouahhabi and Aissa Sghir},
     title = {An extension of the standard multifractional {Brownian} motion},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {167--184},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {32},
     number = {1},
     year = {2025},
     doi = {10.5802/ambp.436},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/}
}
TY  - JOUR
AU  - Mohamed Ait Ouahra
AU  - Mohamed Mellouk
AU  - Hanae Ouahhabi
AU  - Aissa Sghir
TI  - An extension of the standard multifractional Brownian motion
JO  - Annales mathématiques Blaise Pascal
PY  - 2025
SP  - 167
EP  - 184
VL  - 32
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/
DO  - 10.5802/ambp.436
LA  - en
ID  - AMBP_2025__32_1_167_0
ER  - 
%0 Journal Article
%A Mohamed Ait Ouahra
%A Mohamed Mellouk
%A Hanae Ouahhabi
%A Aissa Sghir
%T An extension of the standard multifractional Brownian motion
%J Annales mathématiques Blaise Pascal
%D 2025
%P 167-184
%V 32
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/
%R 10.5802/ambp.436
%G en
%F AMBP_2025__32_1_167_0
Mohamed Ait Ouahra; Mohamed Mellouk; Hanae Ouahhabi; Aissa Sghir. An extension of the standard multifractional Brownian motion. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 1, pp. 167-184. doi : 10.5802/ambp.436. https://ambp.centre-mersenne.org/articles/10.5802/ambp.436/

[1] P. S. Addison; A. S. Ndumu Engineering applications of fractional Brownian motion: self-affine and self-similar random processes, Fractals, Volume 7 (1999) no. 2, pp. 151-157 | DOI

[2] Mohamed Ait Ouahra; Hanae Ouahhabi; Aissa Sghir Continuity in law of some additive functionals of bifractional Brownian motion, Stochastics, Volume 91 (2019) no. 4, pp. 613-628 | DOI | MR | Zbl

[3] Mohamed Ait Ouahra; Aissa Sghir Continuity in law with respect to the Hurst index of some additive functionals of sub-fractional Brownian motion, Stochastic Anal. Appl., Volume 35 (2017) no. 4, pp. 677-690 | MR | Zbl

[4] Antoine Ayache; Serge Cohen; Jacques Lévy Véhel The covariance structure of multifractional Brownian motion, with application to long range dependence, ICASSP 2000 (Istanbul, Turkey, 2000), IEEE (2002)

[5] Xavier Bardina; Khalifa Es-Sebaiy An extension of bifractional Brownian motion, Commun. Stoch. Anal., Volume 5 (2011) no. 2, pp. 333-340 | MR | Zbl

[6] Albert Benassi; Stéphane Jaffard; Daniel Roux Elliptic Gaussian random processes, Rev. Mat. Iberoam., Volume 13 (1997), pp. 19-90 | DOI | MR | Zbl

[7] Simeon M. Berman Local times and sample function properties of stationary Gaussian processes, Trans. Am. Math. Soc., Volume 137 (1969), pp. 277-299 | DOI | MR | Zbl

[8] Brahim Boufoussi; Marco Dozzi; Raby Guerbaz On the local time of multifractional Brownian motion, Stochastics, Volume 78 (2006) no. 1, pp. 33-49 | DOI | MR | Zbl

[9] Patrick Cheridito Mixed fractional Brownian motion, Bernoulli, Volume 7 (2001) no. 6, pp. 913-934 | DOI | MR | Zbl

[10] Renata Cioczek-Georges; Benoît B. Mandelbrot Alternative micropulses and fractional Brownian motion, Stochastic Processes Appl., Volume 64 (1996) no. 2, pp. 143-152 | DOI | MR | Zbl

[11] Michael J. Cloud; Byron C. Drachman Inequalities: With Applications to Engineering, Springer, 1998, viii+150 pages | MR | Zbl

[12] Serge Cohen From self-similarity to local self-similarity: the estimation problem, Fractals: Theory and Applications in Engineering (M. Dekking; J. Lévy-Véhel; E. Lutton; C. Tricot, eds.), Springer, 1999, pp. 3-16 | DOI | Zbl

[13] A. Comegna; A. Coppola; V. Comegna; A. Sommella; C. D. Vitale Use of a fractional Brownian motion model to mimic spatial horizontal variation of soil physical and hydraulic properties displaying a power-law variogram, Procedia Environ. Sci., Volume 19 (2013), pp. 416-425 | DOI

[14] Khalifa Es-Sebaiy; Ciprian A. Tudor Multidimensional bifractional Brownian Motion. Itô and Tanaka formulas, Stoch. Dyn., Volume 7 (2007) no. 3, pp. 365-388 | DOI | MR | Zbl

[15] Kenneth J. Falconer Tangent fields and the local structure of random fields, J. Theor. Probab., Volume 15 (2002) no. 3, pp. 731-750 | DOI | MR | Zbl

[16] Kenneth J. Falconer The local structure of random processes, J. Lond. Math. Soc., Volume 67 (2003) no. 3, pp. 657-672 | DOI | MR | Zbl

[17] Donald Geman; Joseph Horowitz Occupation densities, Ann. Probab., Volume 8 (1980) no. 1, pp. 1-67 | MR | Zbl

[18] Christian Houdré; José Villa An example of infinite dimensional quasi-helix, Stochastic models. Seventh symposium on probability and stochastic processes (Contemporary Mathematics), Volume 336, American Mathematical Society, 2003, pp. 195-201 | Zbl

[19] Jean-Pierre Kahane Hélices et quasi-hélices, Adv. Math., Volume 7B (1981), pp. 417-433 | Zbl

[20] Andrei N. Kolmogorov The Wiener spiral and some other interesting curves in Hilbert space, Dokl. Akad. Nauk SSSR, Volume 26 (1940) no. 2, pp. 115-118

[21] John Lamperti Semi-stable stochastic processes, Trans. Am. Math. Soc., Volume 104 (1962), pp. 64-78 | MR | Zbl

[22] Pedro Lei; David Nualart A decomposition of the bifractional Brownian motion and some applications, Stat. Probab. Lett., Volume 79 (2009) no. 5, pp. 619-624 | MR | Zbl

[23] Jacques Lévy-Vehel; Romain F. Peltier Multifractional Brownian motion: definition and preliminary results (1996) no. RR-2645 (Technical report)

[24] Mikhail Lifshits; René L. Schilling; Ilya Tyurin A Probabilistic Inequality Related to Negative Definite Functions, High Dimensional Probability VI (Progress in Probability), Volume 66, Birkhäuser, 2013, pp. 73-80 | DOI | Zbl

[25] Makoto Maejima; Ciprian A. Tudor Limits of bifractional Brownian noises, Commun. Stoch. Anal., Volume 2 (2008) no. 3, pp. 369-383 | MR | Zbl

[26] Benoît B. Mandelbrot; John W. Van Ness Fractional Brownian Motions, Fractional Noises and Applications, SIAM Rev., Volume 10 (1968), pp. 422-437 | DOI | MR | Zbl

[27] Matthieu Marouby Micropulses and different types of Brownian motion, J. Appl. Probab., Volume 48 (2011) no. 3, pp. 792-810 | DOI | MR | Zbl

[28] Francesco Russo; Ciprian A. Tudor On bifractional Brownian motion, Stochastic Processes Appl., Volume 116 (2006) no. 5, pp. 830-856 | DOI | MR | Zbl

[29] Gennady Samorodnitsky; Murad S. Taqqu Stable non-Gaussian random processes: Stochastic models with infinite variance, Stochastic Modeling, Chapman & Hall, 1994 | MR | Zbl

[30] Murad S. Taqqu The modelling of ethernet data and of signals that are heavy-tailed with infinite variance, Scand. J. Stat., Volume 29 (2002) no. 2, pp. 273-295 | DOI | MR | Zbl

[31] Ciprian A. Tudor; Yimin Xiao Sample path properties of bifractional Brownian motion, Bernoulli, Volume 13 (2007) no. 4, pp. 1023-1052 | MR | Zbl

[32] Yimin Xiao Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Theory Relat. Fields, Volume 109 (1997) no. 1, pp. 129-157 | DOI | MR | Zbl

Cité par Sources :