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Abstract

In this paper, firstly, we generalize the definition of the bifractional Brownian motion 𝐵𝐻,𝐾 :=(
𝐵𝐻,𝐾 ; 𝑡 ≥ 0

)
, with parameters 𝐻 ∈ (0, 1) and 𝐾 ∈ (0, 1], to the case where 𝐻 is no longer a

constant, but a function 𝐻 ( · ) of the time index 𝑡 of the process. We denote this new process by 𝐵𝐻 ( · ) ,𝐾 .
Secondly, we study its time regularities, the local asymptotic self-similarity and the long-range dependence
properties.

1. Introduction

In recent years, the famous fractional Brownian motion 𝐵𝐻 :=
(
𝐵𝐻𝑡 ; 𝑡 ≥ 0

)
, (fBm for

short), with Hurst parameter 𝐻 ∈ (0, 1), has considerable interest due to its applications
in various scientific areas including: telecommunications, finance, turbulence and image
processing, (see for examples: Addison and Ndumu [1], Cheridito [9], Comegna et al. [13],
Samorodnitsky and Taqqu [29] and Taqqu [30]). The fBm was firstly introduced by
Kolmogorov [20], and was later made popular by Mandelbrot and Van Ness [26]. It
is the only centered and self-similar Gaussian process with stationary increments and
covariance function:

𝑅𝐻 (𝑡, 𝑠) := E
(
𝐵𝐻𝑡 𝐵

𝐻
𝑠

)
=

1
2
(
𝑡2𝐻 + 𝑠2𝐻 − |𝑡 − 𝑠 |2𝐻

)
, ∀ 𝑠, 𝑡 ≥ 0.

The case 𝐻 = 1
2 correspond to the standard Brownian motion.

For small increments, in models such as turbulence, fBm seems a good model but it is
inadequate for large increments. For this reason, Houdré and Villa [18] have explored the
existence of a Gaussian process which preserve some of the properties of the fBm such as
self-similarity and stationarity of small increments, and can enlarge modeling tool kit.
This process, denoted by 𝐵𝐻,𝐾 :=

(
𝐵
𝐻,𝐾
𝑡 ; 𝑡 ≥ 0

)
, is called the bifractional Brownian

Keywords: Gaussian process, Self similar process, Fractional Brownian motion; Bifractional Brownian motion;
Multifractional Brownian motion, Local asymptotic self-similarity, Long range dependence.
2020 Mathematics Subject Classification: 60G15, 60G17, 60G18, 60G22.
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motion, (bfBm for short), with parameters 𝐻 ∈ (0, 1) and 𝐾 ∈ (0, 1] and covariance
function:

𝑅𝐻,𝐾 (𝑡, 𝑠) := E
(
𝐵
𝐻,𝐾
𝑡 𝐵𝐻,𝐾𝑠

)
=

1
2𝐾

[ (
𝑡2𝐻 + 𝑠2𝐻

)𝐾
− |𝑡 − 𝑠 |2𝐻𝐾

]
, ∀ 𝑡, 𝑠 ≥ 0.

For large details about bfBm, we refer to [14, 18, 22, 28].
The increments of 𝐵𝐻,𝐾 are only independents in the case of the standard Brownian

motion: (𝐻 = 1
2 , 𝐾 = 1), and they are not stationary for any 𝐾 ∈ ]0, 1[, except the case of

the fBm: (𝐾 = 1), however, 𝐵𝐻,𝐾 is quasi-helix in the sense of Kahane [19]:

2−𝐾 |𝑡 − 𝑠 |2𝐻𝐾 ≤ E
(
𝐵
𝐻,𝐾
𝑡 − 𝐵𝐻,𝐾𝑠

)2 ≤ 21−𝐾 |𝑡 − 𝑠 |2𝐻𝐾 , ∀ 𝑠, 𝑡 ≥ 0. (1.1)

Moreover, according to [18], if we put: 𝜎2
𝜀 (𝑡) := E

(
𝐵
𝐻,𝐾
𝑡+𝜀 − 𝐵𝐻,𝐾𝑡

)2
, then,

lim
𝜀→0

𝜎2
𝜀 (𝑡)
𝜀2𝐻𝐾 = 21−𝐾 , 𝑡 > 0.

Therefore, the small increments of 𝐵𝐻,𝐾 are approximately stationary. For the large
increments, Maejima and Tudor [25] have proved that, when ℎ → +∞, the sequence of
increments process: (

𝐵
𝐻,𝐾

𝑡+ℎ − 𝐵𝐻,𝐾
ℎ

; 𝑡 ≥ 0
)

converges modulo a constant, in the sense of the finite dimensional distributions, to the
fBm

(
𝐵𝐻𝐾𝑡 ; 𝑡 ≥ 0

)
with Hurst parameter 𝐻𝐾. This result can be interpreted like the

bfBm has stationary increments for large increments. The key ingredient used in [25] is a
decomposition in law of the bfBm presented by Lei and Nualart [22] as follows:

Let𝑊 :=
(
𝑊𝜃 ; 𝜃 ≥ 0

)
be a standard Brownian motion independent of 𝐵𝐻,𝐾 . For any

𝐾 ∈ (0, 1), let 𝑋𝐾 :=
(
𝑋𝐾𝑡 ; 𝑡 ≥ 0

)
be the centered Gaussian process defined by:

𝑋𝐾𝑡 :=
∫ +∞

0

(
1 − 𝑒−𝜃𝑡

)
𝜃−

(1+𝐾 )
2 d𝑊𝜃 ,

with the covariance function:

E
(
𝑋𝐾𝑡 𝑋

𝐾
𝑠

)
=

Γ(1 − 𝐾)
𝐾

[
𝑡𝐾 + 𝑠𝐾 − (𝑡 + 𝑠)𝐾

]
, ∀ 𝑡, 𝑠 ≥ 0.

Γ is the well known Gamma function.
The authors in [22] showed by setting: 𝑋𝐻,𝐾𝑡 := 𝑋𝐾

𝑡2𝐻
, that:(

𝐶1 (𝐾)𝑋𝐻,𝐾𝑡 + 𝐵𝐻,𝐾𝑡 ; 𝑡 ≥ 0
)
𝑑
=

(
𝐶2 (𝐾)𝐵𝐻𝐾𝑡 ; 𝑡 ≥ 0

)
, (1.2)

where 𝐶1 (𝐾) =
√︃

2−𝐾𝐾
Γ (1−𝐾 ) , 𝐶2 (𝐾) = 2

(1−𝐾 )
2 , 𝑑= means equality of all finite dimensional

distributions and 𝑋𝐻,𝐾𝑡 and 𝐵𝐻,𝐾𝑡 are independent. The second application of (1.2) given
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in [25] is that the long-range dependence, (LRD for short), of the process 𝐵𝐻,𝐾 depends
on the value of the product 𝐻𝐾:

• Long-memory: for every 𝑎 ∈ N∗:
∑
𝑛≥0 cor𝐵𝐻,𝐾 (𝑎, 𝑎 + 𝑛) = +∞, if 2𝐻𝐾 > 1,

• Short-memory: for every 𝑎 ∈ N∗:
∑
𝑛≥0 cor𝐵𝐻,𝐾 (𝑎, 𝑎 + 𝑛) < +∞, if 2𝐻𝐾 ≤ 1,

where
cor𝐵𝐻,𝐾 (𝑎, 𝑎 + 𝑛) := E

[ (
𝐵
𝐻,𝐾

𝑎+1 − 𝐵𝐻,𝐾𝑎

) (
𝐵
𝐻,𝐾

𝑎+𝑛+1 − 𝐵
𝐻,𝐾
𝑎+𝑛

) ]
.

This result was appeared also in Remark 7 in [28]. Cioczek-Georges and Mandelbrot [10]
used a sum of micropulses to obtain limit processes with interesting properties, like
Brownian motion, fractional Brownian motion and bifractional Brownian motion. Recently,
Marouby [27] used this model in the case of bifractional Brownian sheet. The bfBm was
introduced in [18] with the aim of enriching the catalogue of the processes likely to be
used within the framework of modeling. Bardina and Es-sebaiy [5] enlarged the zone
of existence of bfBm. This extension was used by Lifshits et al. [24] for proving new
probabilistic inequalities.

Now, we are ready to introduce our new process: since the model of the fBm 𝐵𝐻 may
be restrictive for different phenomena due to the fact that all its interesting properties are
governed by the Hurst parameter 𝐻, this gave the motivation to Benassi et al. [6] and
Lévy-Véhel and Peltier [23] to introduce, independently, a new model to generalize the
fBm: It’s the multifractional Brownian motion, (mBm for short). Contrarily to the fBm,
the almost sure Hölder exponent of the mBm is allowed to vary along the trajectory, a
useful feature when one needs to model processes whose regularity evolves in time, such
as Internet traffic or images. The definition of the mBm in [23] is based on the moving
average representation of the fBm, where the constant Hurst parameter 𝐻 is substituted
by a functional 𝐻 ( · ) as follows:

𝐵
𝐻 (𝑡 )
𝑡 =

1
Γ
(
𝐻 (𝑡) + 1

2
) (∫ 0

−∞

[
(𝑡 − 𝑢)𝐻 (𝑡 )− 1

2 − (−𝑢)𝐻 (𝑡 )− 1
2

]
𝑊 (d𝑢)

+
∫ 𝑡

0
(𝑡 − 𝑢)𝐻 (𝑡 )− 1

2𝑊 (d𝑢)
)
, 𝑡 ≥ 0,

where 𝐻 ( · ) : [0, +∞) ↦→ [𝜇, 𝜈] ⊂ (0, 1) is a Hölder continuous function of exponent
𝛽 > 0, and𝑊 is a standard Brownian motion on R.

The authors in [6] defined the mBm by means of the harmonisable representation of
the fBm as follows:

𝐵
𝐻 (𝑡 )
𝑡 =

∫
R

𝑒𝑖𝑡 𝜉−1

|𝜉 |𝐻 (𝑡 )+ 1
2
𝑊 (d𝜉), 𝑡 ≥ 0,
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where 𝑊 (𝜉) is the Fourier transform of the series representation of white noise with
respect to an orthonormal basis of 𝐿2 (R). From these definitions, it’s easy to see that
the mBm is a zero mean Gaussian processes whose increments are in general neither
independents nor stationary. It is proved by Cohen [12] that the two representations
of mBm are equivalent, up to a multiplicative deterministic function. This function is
explicitly given by Boufoussi et al. [8]. Moreover, in Ayache et al. [4], the covariance
function of the standard mBm 𝐵𝐻 ( · ) : (i.e. the variance at time 1 is 1), has been deduced
from its harmonisable representation as follows:

E
(
𝐵
𝐻 (𝑡 )
𝑡 𝐵

𝐻 (𝑠)
𝑠

)
= 𝐷

(
𝐻 (𝑡), 𝐻 (𝑠)

) [
𝑡𝐻 (𝑡 )+𝐻 (𝑠) + 𝑠𝐻 (𝑡 )+𝐻 (𝑠) − |𝑡 − 𝑠 |𝐻 (𝑡 )+𝐻 (𝑠)

]
,

where,

𝐷 (𝑥, 𝑦) :=
√︁
Γ(2𝑥 + 1)Γ(2𝑦 + 1) sin(𝜋𝑥) sin(𝜋𝑦)

2Γ(𝑥 + 𝑦 + 1) sin
( 𝜋 (𝑥+𝑦)

2
) .

Clearly, if 𝐻 ( · ) ≡ 𝐻 a constant in (0, 1), 𝐷 (𝐻, 𝐻) = 1
2 , and we find the covariance

function of the fBm 𝐵𝐻 : the zero mean Gaussian process with stationary increments.
In the same spirit as [6] and [23], since all the properties of the bfBm 𝐵𝐻,𝐾 is

governed by the unique number 𝐻𝐾, we introduce in this note a generalization of 𝐵𝐻,𝐾 ,
by substituting to the parameter 𝐻 in the covariance function 𝑅𝐻,𝐾 , a Hölder function
𝐻 ( · ) : [0, +∞) ↦→ [𝜇, 𝜈] ⊂ (0, 1) with exponent 𝛽 > 0. More precisely:

Definition 1.1. We define a new centered Gaussian process, starting from zero and
denoted by 𝐵𝐻 ( · ) ,𝐾 :=

(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 ; 𝑡 ≥ 0

)
, by the covariance function:

𝑅𝐻 ( · ) ,𝐾 (𝑡, 𝑠) :=
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠)

)𝐾 [ (
𝑡𝐻 (𝑡 )+𝐻 (𝑠) + 𝑠𝐻 (𝑡 )+𝐻 (𝑠) )𝐾 − |𝑡 − 𝑠 | (𝐻 (𝑡 )+𝐻 (𝑠) )𝐾

]
.

Remark 1.2. Clearly, when 𝐾 = 1, 𝐵𝐻 ( · ) ,𝐾 is a standard mBm. When 𝐻 ( · ) ≡ 𝐻 a
constant in (0, 1), 𝐵𝐻 ( · ) ,𝐾 is a bfBm with parameters𝐻 ∈ (0, 1) and𝐾 ∈ (0, 1]. However,
if 𝐾 ≠ 1, 𝐵𝐻 ( · ) ,𝐾 does not have stationary increments and the fBm is the only Gaussian
self-similar process with stationary increments, (see for example [29]).

2. The existence of 𝐵𝐻 ( · ) ,𝐾

In this section we prove the existence of our process by using the same argument used
in [18] for the bfBm.

Proposition 2.1. For any 𝐾 ∈ (0, 1] and 𝐻 ( · ) : [0, +∞) ↦→ [𝜇, 𝜈] ⊂ (0, 1) a Hölder
continuous function, the covariance function 𝑅𝐻 ( · ) ,𝐾 appeared in Definition 1.1 is
positive-definite.
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Proof. We assume that 𝐾 ∈ (0, 1) since the special case 𝐾 = 1 is evident. We use the
following identity:

𝜗𝐾 =
𝐾

Γ(1 − 𝐾)

∫ +∞

0
(1 − 𝑒−𝜗𝑥)𝑥−1−𝐾d𝑥, ∀ 𝜗 ≥ 0,

where Γ is the gamma function. For any 𝑐1, . . . , 𝑐𝑛 ∈ R, we have:

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑐𝑖𝑐 𝑗𝑅

𝐻 ( · ) ,𝐾 (𝑡𝑖 , 𝑡 𝑗 )

=
𝐾

Γ(1 − 𝐾)

∫ +∞

0

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑐𝑖𝑐 𝑗

[
− 𝑒−𝑥𝐷

(
𝐻 (𝑡𝑖 ) ,𝐻 (𝑡 𝑗 )

) (
𝑡
𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )
𝑖

+𝑡
𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )
𝑗

)
+ 𝑒−𝑥𝐷

(
𝐻 (𝑡𝑖 ) ,𝐻 (𝑡 𝑗 )

) (
|𝑡𝑖−𝑡 𝑗 |𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )

) ]
𝑥−1−𝐾d𝑥

=
𝐾

Γ(1 − 𝐾)

∫ +∞

0

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑐𝑖𝑐 𝑗𝑒

−𝑥𝐷
(
𝐻 (𝑡𝑖 ) ,𝐻 (𝑡 𝑗 )

) (
𝑡
𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )
𝑖

+𝑡
𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )
𝑗

)
×

[
𝑒
𝑥𝐷 (𝐻 (𝑡𝑖 ) ,𝐻 (𝑡 𝑗 ) )

(
𝑡
𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )
𝑖

+𝑡
𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )
𝑗

−|𝑡𝑖−𝑡 𝑗 |𝐻 (𝑡𝑖 )+𝐻 (𝑡 𝑗 )
)
− 1

]
𝑥−1−𝐾d𝑥.

We know by [4] that 𝐷
(
𝐻 (𝑡), 𝐻 (𝑠)

) (
𝑡𝐻 (𝑡 )+𝐻 (𝑠) + 𝑠𝐻 (𝑡 )+𝐻 (𝑠) − |𝑡− 𝑠 |𝐻 (𝑡 )+𝐻 (𝑠) ) is positive-

definite, then so is:

𝑒𝑥𝐷
(
𝐻 (𝑡 ) ,𝐻 (𝑠)

) (
𝑡𝐻 (𝑡 )+𝐻 (𝑠)+𝑠𝐻 (𝑡 )+𝐻 (𝑠)−|𝑡−𝑠 |𝐻 (𝑡 )+𝐻 (𝑠)

)
− 1, ∀ 𝑥 ≥ 0,

which gives the proof of the proposition. □

3. Regularities of the trajectories of 𝐵𝐻 ( · ) ,𝐾

In this section, we deal with the regularities of the trajectories of 𝐵𝐻 ( · ) ,𝐾 . We follows
the same method used in the case of the mBm, (see [8]). For this, we need the following
regularity of the bfBm 𝐵𝐻,𝐾 with respect to the constant parameter 𝐻, we use (1.2) the
decomposition in law of the bfBm 𝐵𝐻,𝐾 .

Proposition 3.1. Let [𝑎, 𝑏] ⊂ [0, +∞) and [𝛼, 𝛾] ⊂ (0, 1], and consider 𝐵𝐻,𝐾 a bfBm
with parameters 𝐻 ∈ [𝛼, 𝛾] and 𝐾 ∈]0, 1] . Then, there exists a finite positive constant
𝐶 (𝛼, 𝛾, 𝐾) such that, for all 𝐻, 𝐻′ ∈ [𝛼, 𝛾], we have:

sup
𝑡∈[𝑎,𝑏]

E
(
𝐵
𝐻,𝐾
𝑡 − 𝐵𝐻

′ ,𝐾
𝑡

)2 ≤ 𝐶 (𝛼, 𝛾, 𝐾) |𝐻 − 𝐻′ |2.
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Proof. Using (1.2) and the elementary inequality: (𝑎 − 𝑏)2 ≤ 2𝑎2 + 2𝑏2, we obtain:

E
(
𝐵
𝐻,𝐾
𝑡 − 𝐵𝐻

′ ,𝐾
𝑡

)2 ≤ 2𝐶2
2 (𝐾)E

(
𝐵𝐻𝐾𝑡 − 𝐵𝐻′𝐾

𝑡

)2 + 2𝐶2
1 (𝐾)E

(
𝑋
𝐻,𝐾
𝑡 − 𝑋𝐻

′ ,𝐾
𝑡

)2
.

In view of Lemma 3.1 in [8], (see also [23]), we know that:

E
(
𝐵𝐻𝐾𝑡 − 𝐵𝐻′𝐾

𝑡

)2 ≤ 𝐶1 (𝛼, 𝛾, 𝐾) |𝐻 − 𝐻′ |2, (3.1)

where,

𝐶1 (𝛼, 𝛾, 𝐾) = 4𝐾2 sup
𝑡∈[𝑎,𝑏]

(∫ 1

0

1 − cos(𝑡𝜃)
𝜃2𝛾+1 (log(𝜃))2d𝜃 +

∫ +∞

1

1
𝜃2𝛼+1 (log(𝜃))2d𝜃

)
< +∞.

Now, let us deal with the process 𝑋𝐻,𝐾 . We have by the Itô’s isometry:

E
(
𝑋
𝐻,𝐾
𝑡 − 𝑋𝐻

′ ,𝐾
𝑡

)2
=

∫ +∞

0

(
𝑒−𝜃𝑡

2𝐻′
− 𝑒−𝜃𝑡2𝐻

)2
𝜃−(1+𝐾 )d𝜃.

Without loss of generality, we suppose that 𝐻 < 𝐻′.
Making use of the theorem on finite increments, (see for example [11]), for the function

𝑥 ↦→ 𝑒−𝜃𝑡
2𝑥 for 𝑥 ∈ (𝐻, 𝐻′), there exists 𝜉 ∈ (𝐻, 𝐻′) such that:

E
(
𝑋
𝐻,𝐾
𝑡 − 𝑋𝐻

′ ,𝐾
𝑡

)2
= 4|𝐻 − 𝐻′ |2𝑡4𝜉 log2 (𝑡)

∫ +∞

0
𝑒−2𝜃𝑡2𝜉 𝜃1−𝐾d𝜃.

• If 𝑡 ≤ 1, then |𝑡 log(𝑡) | ≤ 𝑒−1, and:

E
(
𝑋
𝐻,𝐾
𝑡 − 𝑋𝐻

′ ,𝐾
𝑡

)2 ≤ 1
(𝑒𝛼)2 |𝐻 − 𝐻′ |2

∫ +∞

0
𝑒−2𝜃𝑡2𝛾 𝜃1−𝐾d𝜃.

Then,
E
(
𝑋
𝐻,𝐾
𝑡 − 𝑋𝐻

′ ,𝐾
𝑡

)2 ≤ 𝐶2 (𝛼, 𝛾, 𝐾) |𝐻 − 𝐻′ |2,
where,

𝐶2 (𝛼, 𝛾, 𝐾) =
1

(𝑒𝛼)2 sup
𝑡∈[𝑎,𝑏]

(∫ 1

0
𝑒−2𝜃𝑡2𝛾 𝜃1−𝐾d𝜃 +

∫ +∞

1
𝑒−2𝜃𝑡2𝛾 𝜃1−𝐾d𝜃

)
< +∞.

• If 𝑡 ≥ 1, we obtain:

E
(
𝑋
𝐻,𝐾
𝑡 − 𝑋𝐻

′ ,𝐾
𝑡

)2 ≤ 𝐶3 (𝛼, 𝛾, 𝐾) |𝐻 − 𝐻′ |2.

where,

𝐶3 (𝛼, 𝛾, 𝐾) =
[

sup
𝑡∈[𝑎,𝑏]

(
4𝑡4𝛾 log2 (𝑡)

) ] [
sup

𝑡∈[𝑎,𝑏]

(∫ +∞

0
𝑒−2𝜃𝑡2𝛼𝜃1−𝐾d𝜃

)]
< +∞.
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Finally,
E
(
𝑋
𝐻,𝐾
𝑡 − 𝑋𝐻

′ ,𝐾
𝑡

)2 ≤ 𝐶 (𝛼, 𝛾, 𝐾) |𝐻 − 𝐻′ |2, (3.2)
where

𝐶 (𝛼, 𝛾, 𝐾) = max
(
𝐶2 (𝛼, 𝛾, 𝐾) ; 𝐶3 (𝛼, 𝛾, 𝐾)

)
.

Consequently, by combining (3.1) and (3.2), we conclude the lemma. □

Remark 3.2.

(1) A similar result is obtained by Ait Ouahra and Sghir [3, Lemma 3.2], for the
sub-fractional Brownian motion 𝑆𝐻 with parameter 𝐻 ∈ (0, 1). It’s a continuous
centered Gaussian process, starting from zero, with covariance function:

E(𝑆𝐻𝑡 𝑆𝐻𝑠 ) = 𝑡𝐻 + 𝑠𝐻 − 1
2

[
(𝑡 + 𝑠)𝐻 + |𝑡 − 𝑠 |𝐻

]
.

(2) In the case of fBm 𝐵𝐻 , (i.e. 𝐾 = 1), a similar result is given, independently,
in [8], by using the moving average representation of fBm, and in [23], by using
the harmonisable representation of fBm.

We turn now our interest to the study of the time regularities of our process.

Theorem 3.3. Let 𝐻 ( · ) : [0, +∞) ↦→ [𝜇, 𝜈] ⊂ (0, 1) be a Hölder continuous function
with exponent 𝛽 > 0 and sup𝑡≥0 𝐻 (𝑡) < 𝛽. Then, there exists a finite positive constant
𝐶 (𝜇, 𝜈, 𝐾) such that:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2 ≤ 𝐶 (𝜇, 𝜈, 𝐾) |𝑡 − 𝑠 |2
(
𝐻 (𝑡 )∨𝐻 (𝑠)

)
𝐾 , for all 𝑡, 𝑠 ∈ [0, 1] .

Proof. By the elementary inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, we have:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2
= E

(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑠 + 𝐵𝐻 (𝑡 ) ,𝐾
𝑠 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2

≤ 2E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑠

)2 + 2E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑠 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2
,

where 𝐵𝐻 (𝑡 ) ,𝐾
𝑠 is bfBm with parameters 𝐻 (𝑡) and 𝐾 .

By virtue of (1.1) and Proposition 3.1 and the fact that 𝐻 ( · ) : [0, +∞[ → [𝜇, 𝜈] ⊂
(0, 1), we get:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2 ≤ 22−𝐾 |𝑡 − 𝑠 |2𝐻 (𝑡 )𝐾 + 2𝐶 (𝜇, 𝜈, 𝐾) |𝐻 (𝑡) − 𝐻 (𝑠) |2.

≤ 22−𝐾 |𝑡 − 𝑠 |2𝐻 (𝑡 )𝐾 + 2𝐶′ (𝜇, 𝜈, 𝐾) |𝑡 − 𝑠 |2𝛽 .

Since sup𝑡≥0 𝐻 (𝑡) < 𝛽 and 𝐾𝐻 (𝑡) ∈ (0, 1), we deduce that: |𝑡 − 𝑠 |2𝛽 ≤ |𝑡 − 𝑠 |2𝐾𝐻 (𝑡 ) .
Thus,

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2 ≤ 𝐶4 (𝜇, 𝜈, 𝐾) |𝑡 − 𝑠 |2𝐾𝐻 (𝑡 ) ,

where 𝐶4 (𝜇, 𝜈, 𝐾) = 22−𝐾 + 2𝐶′ (𝜇, 𝜈, 𝐾).
Since the roles of 𝑡 and 𝑠 are symmetric, we obtain the desired result. □
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To prove the next result: Theorem 3.5, we need the following classical lemma.

Lemma 3.4. Let 𝑌 be a real centered Gaussian random variable. Then for all real 𝛼 > 0,
we have:

E|𝑌 |𝛼 = 𝑐(𝛼)
(
E|𝑌 |2

) 𝛼
2 , where 𝑐(𝛼) =

2 𝛼
2 Γ( 𝛼+1

2 )
Γ( 1

2 )

Theorem 3.5. Let 𝐻 ( · ) : [0, +∞) ↦→ [𝜇, 𝜈] ⊂ (0, 1) be a Hölder continuous function
with exponent 𝛽 > 0 and sup𝑡≥0 𝐻 (𝑡) < 𝛽. Then, there exists 𝛿 > 0, and for any integer
𝑚 ≥ 1, there exist 𝑀𝑚 > 0, such that:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)𝑚
≥ 𝑀𝑚 |𝑡 − 𝑠 |𝑚(𝐻 (𝑡 )∧𝐻 (𝑠) )𝐾 ,

for all 𝑠, 𝑡 ≥ 0 such that |𝑡 − 𝑠 | < 𝛿.

Proof. Using the elementary inequality: (𝑎 + 𝑏)2 ≥ 1
2𝑎

2 − 𝑏2, we obtain:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2
= E

(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑠 + 𝐵𝐻 (𝑡 ) ,𝐾
𝑠 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2

≥ 1
2
E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑠

)2
− E

(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑠 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2
.

Moreover, by using (1.1) and Proposition 3.1, we obtain:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2
≥ 1

21+𝐾 |𝑡 − 𝑠 |2𝐻 (𝑡 )𝐾 − E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑠 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2

≥ 1
21+𝐾 |𝑡 − 𝑠 |2𝐻 (𝑡 )𝐾 − 𝐶 (𝜇, 𝜈, 𝐾) |𝐻 (𝑡) − 𝐻 (𝑠) |2.

Since the function 𝐻 ( · ) is Hölder continuous with exponent 𝛽, we get:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2
≥ 1

21+𝐾 |𝑡 − 𝑠 |2𝐻 (𝑡 )𝐾 − 𝐶 (𝜇, 𝜈, 𝐾) |𝑡 − 𝑠 |2𝛽

= |𝑡 − 𝑠 |2𝐻 (𝑡 )𝐾
(

1
21+𝐾 − 𝐶 (𝜇, 𝜈, 𝐾) |𝑡 − 𝑠 |2(𝛽−𝐻 (𝑡 )𝐾 )

)
.

Since 𝐾𝐻 (𝑡) < 𝛽, we can choose 𝛿 small enough such that for all 𝑠, 𝑡 ≥ 0, and |𝑡 − 𝑠 | < 𝛿,
we have:

1
21+𝐾 − 𝐶 (𝜇, 𝜈, 𝐾) |𝑡 − 𝑠 |2(𝛽−𝐻 (𝑡 )𝐾 ) > 0.

Indeed, it suffices to choose 𝛿 <
(

1
21+𝐾𝐶 (𝜇,𝜈,𝐾 ) ∧1

) 𝜂
, where: 𝜂 = 1

2
(
𝛽−𝐾 sup𝑡≥0 𝐻 (𝑡)

)−1.
Finally, we get:

E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 − 𝐵𝐻 (𝑠) ,𝐾

𝑠

)2
≥ 𝑀 |𝑡 − 𝑠 |2𝐻 (𝑡 )𝐾 , for all |𝑡 − 𝑠 | < 𝛿,

where 𝑀 =

(
1

21+𝐾 − 𝐶′′ (𝜇, 𝜈, 𝐾)𝛿𝛾
)

and 𝛾 = 2(𝛽 − 𝐾𝜈).
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Since 𝐵𝐻 ( · ) ,𝐾 is a Gaussian process, then by Lemma 3.4 and the fact that the roles of
𝑡 and 𝑠 are symmetric, we obtain the desired result. □

Remark 3.6. It is well known by Berman [7] that, for a zero-mean Gaussian process
𝑋 :=

(
𝑋 (𝑡) ; 𝑡 ∈ [0, 𝑇]

)
with bounded variance, the variance condition:∫ 𝑇

0

∫ 𝑇

0

(
E|𝑋𝑡 − 𝑋𝑠 |2

)− 1
2 d𝑠d𝑡 < +∞,

is sufficient for the local time 𝐿 (𝑡, 𝑥) of 𝑋 to exist on [0, 𝑇] almost surely and to be square
integrable as a function of 𝑥:∫

R
𝐿2 ([𝑎, 𝑏], 𝑥)d𝑥 < +∞,

(
[𝑎, 𝑏] ⊂ [0, +∞[

)
.

For more information on local time, the reader is referred to [8, 17, 32] and the references
therein. In our case, we obtain for any interval 𝐼 with |𝐼 | < 𝛿:∫
𝐼

∫
𝐼

(
E
��𝐵𝐻 (𝑡 ) ,𝐾
𝑡 −𝐵𝐻 (𝑠) ,𝐾

𝑠

��2)− 1
2 d𝑠d𝑡 ≤ 𝐶′ (𝜇, 𝛾, 𝐾)

∫
𝐼

∫
𝐼

|𝑡−𝑠 |−𝐾 sup𝑟∈𝐼 𝐻 (𝑟 )d𝑠d𝑡 < +∞,

because 𝐾 sup𝑟∈𝐼 𝐻 (𝑟) < 1. Then 𝐵𝐻 ( · ) ,𝐾 possesses, on any interval 𝐼 ⊂ [𝑎, 𝑏] with
length |𝐼 | < 𝛿, a local time which is square integrable as function of 𝑥. Finally, since
[𝑎, 𝑏] is a finite interval, we can obtain the local time on [𝑎, 𝑏] by a patch-up procedure,
i.e., we partition [𝑎, 𝑏] into

⋃𝑛
𝑖=1 [𝑎𝑖−1, 𝑎𝑖], such that |𝑎𝑖 − 𝑎𝑖−1 | < 𝛿, and define:

𝐿 ( [𝑎, 𝑏], 𝑥) :=
∑𝑛
𝑖=1 𝐿 ( [𝑎𝑖 , 𝑎𝑖−1], 𝑥), where 𝑎0 = 𝑎 and 𝑎𝑛 = 𝑏.

4. Local asymptotic self similarity property

The dependence of 𝐻 ( · ) with respect to the time 𝑡 destroys all the invariance properties
that we had for the fBm. For example the mBm is no more self-similar, nor with stationary
increments. However, the authors in [22] showed that with the condition that 𝐻 ( · ) is
𝛽−Hölder continuous with exponent 𝛽 > 0 and sup𝑡∈R+ 𝐻 (𝑡) < 𝛽, the mBm is locally
asymptotically self-similar, (LASS for short), in the following sense:

lim
𝜌→0+

(
𝐵
𝐻 (𝑡+𝜌𝑢)
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 )

𝑡

𝜌𝐻 (𝑡 ) ; 𝑢 ≥ 0

)
𝑑′
=

(
𝐵
𝐻 (𝑡 )
𝑢 ; 𝑢 ≥ 0

)
,

where 𝐵𝐻 (𝑡 )
𝑢 is a fBm with Hurst parameter 𝐻 (𝑡), and 𝑑′

= stands for the convergence
of finite dimensional distributions. Some authors use the term localizability for locally
asymptotically self-similarity, (see Falconer [15, 16]).

Our process is an other example of Gaussian process who loses the self similarity
property when 𝐻 depend on 𝑡. However, we show in the following result that it is LASS.
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Before we deal with the proof of our result, we need the following lemma proved by Ait
Ouahra et al. [2, see Theorem 2.6].

Lemma 4.1. Let 𝐵𝐻,𝐾 a bfBm with parameters 𝐾 ∈ (0, 1) and 𝐻 ∈ (0, 1). Then,

E

(
𝐵
𝐻,𝐾
𝑡+𝜌𝑢 − 𝐵

𝐻,𝐾
𝑡

𝜌𝐻𝐾

)2

−−−→
𝜌→0

21−𝐾𝑢2𝐻𝐾 .

Now, we are ready to state and prove our result.

Proposition 4.2. Consider 𝐻 ( · ) a 𝛽-Hölder continuous function with exponent 𝛽 > 0
such that sup𝑡≥0 𝐻 (𝑡) < 𝛽, then 𝐵𝐻 ( · ) ,𝐾 is LASS:

lim
𝜌→0+

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾 ; 𝑢 ≥ 0

)
𝑑′
=

(
21−𝐾𝐵𝐻 (𝑡 )𝐾

𝑢 ; 𝑢 ≥ 0
)
,

where 𝐵𝐻 (𝑡 )𝐾 is a fBm with the Hurst parameter 𝐻 (𝑡)𝐾 .

Proof. We use the same arguments used in [23] in the case of the mBm, (see [23,
Proposition 5]). We prove the convergence in distribution by showing the following two
statements:

E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)
−−−→
𝜌→0

0, (4.1)

E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)2

−−−→
𝜌→0

𝜎2
𝑡 , (4.2)

where,

𝜎2
𝑡 = 21−𝐾 Var

(
𝐵
𝐻 (𝑡 )𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 )𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)
= 21−𝐾𝑢2𝐻 (𝑡 )𝐾 ,

and 𝐵𝐻 (𝑡 )𝐾 is a fBm with the Hurst parameter 𝐻 (𝑡)𝐾 .
We deal with (4.2) since (4.1) is obvious. We have:

E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)2

= E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡+𝜌𝑢

𝜌𝐻 (𝑡 )𝐾

)2

+ E
(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)2

+ 2E

[ (
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡+𝜌𝑢
) (
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

)
𝜌2𝐻 (𝑡 )𝐾

]
.
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In view of Proposition 3.1, and the fact that 𝐻 ( · ) is 𝛽−Hölder continuous function,
we have:

E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡+𝜌𝑢

𝜌𝐻 (𝑡 )𝐾

)2

≤ 𝐶 (𝐾) |𝐻 (𝑡 + 𝜌𝑢) − 𝐻 (𝑡) |2

𝜌2𝐾𝐻 (𝑡 )

≤ 𝐶′ (𝐾) (𝜌𝑢)2
(
𝛽−𝐾𝐻 (𝑡 )

)
.

Since 𝐾 sup𝑡 𝐻 (𝑡) < 𝛽, we get:

E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡+𝜌𝑢

𝜌𝐻 (𝑡 )𝐾

)2

−→ 0 as 𝜌 −→ 0.

In view of Lemma 4.1, we know that:

E

(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)2

−−−→
𝜌→0

21−𝐾𝑢2𝐻 (𝑡 )𝐾 .

Now, by Schwartz’s inequality, (1.1) and Proposition 3.1, we have:

E

[ (
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡+𝜌𝑢
) (
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

)
𝜌2𝐻 (𝑡 )𝐾

]

≤
E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡+𝜌𝑢

𝜌𝐻 (𝑡 )𝐾

)2
1
2 E

(
𝐵
𝐻 (𝑡 ) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)2
1
2

≤ 𝐶𝜌𝛽−𝐻 (𝑡 )𝐾𝑢𝛽+𝐻 (𝑡 )𝐾 −→ 0, for 𝜌 −→ 0, since 𝐾 sup
𝑡

𝐻 (𝑡) < 𝛽.

Hence, we deduce that:

E

(
𝐵
𝐻 (𝑡+𝜌𝑢) ,𝐾
𝑡+𝜌𝑢 − 𝐵𝐻 (𝑡 ) ,𝐾

𝑡

𝜌𝐻 (𝑡 )𝐾

)2

−−−→
𝜌→0

21−𝐾𝑢2𝐻 (𝑡 )𝐾 .

Consequently the LASS property is proved. □

5. Long range dependence

The long range dependence, (LRD for short), and long memory are synonymous notions.
LRD measures long-term correlated processes. LRD is a characteristic of phenomena
whose autocorrelation functions decay rather slowly. The presence and the extent of LRD
is usually measured by the parameters of the process. Most of the definitions of LRD
appearing in literature for stationary process are based on the second-order properties of
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a stochastic process. Such properties include asymptotic behavior of covariances, spectral
density, and variances of partial sums. The specialness of LRD is a connection between
long memory and stationarity, (see for example [29] in case of fBm and [25] and [28] in
case of bfBm). For our process 𝐵𝐻 ( · ) ,𝐾 , we use the same arguments used in [4] in case
of standard mBm. Of course, the definitions must be adapted in our case since mBm and
our extension does not have stationary increments, (see for example [4]):

Definition 5.1.

(a) Let 𝑌 be a second order process: i.e., E
(
𝑌2 (𝑡)

)
< +∞, for all 𝑡 ≥ 0. 𝑌 is said to

have a LRD if there exists a function 𝛼(𝑠) taking values in (−1, 0) such that:

∀ 𝑠 ≥ 0, cor𝑌 (𝑠, 𝑠 + ℎ) ≈ ℎ𝛼(𝑠) as ℎ tends to +∞,

where cor𝑌 (𝑠, 𝑡) := cov𝑌 (𝑠,𝑡 )√
E(𝑌2 (𝑠) )E(𝑌2 (𝑡 ) )

.

(b) Let 𝑌 be a second-order process. 𝑌 is said to have a LRD if:

∀ 𝑠 ≥ 0, ∀ 𝛿 ≥ 0,
+∞∑︁
𝑘=0

|cor𝑌 (𝑠, 𝑠 + 𝑘𝛿) | = +∞.

In the next propositions, we prove some results about covariances and correlations
of our process and its increments. In the sequel, we denote 𝑓 (𝑡) ≈ 𝑔(𝑡) if there exist
0 < 𝑐 < 𝑑 < +∞ such that for all sufficiently large 𝑡: 𝑐 ≤ 𝑓 (𝑡 )

𝑔 (𝑡 ) ≤ 𝑑. We put: cov(𝑡, 𝑠) :=
𝑅𝐻 ( · ) ,𝐾 (𝑡, 𝑠) the covariance function of our process 𝐵𝐻 ( · ) ,𝐾 and cor(𝑡, 𝑠) its correlation
function.

5.1. Asymptotic behavior of the covariance and the correlation of 𝐵𝐻 ( · ) ,𝐾

Proposition 5.2. When 𝑡 tends to infinity, and for all fixed 𝑠 ≥ 0, we have:

(i) 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) < 1 ⇒ cov(𝑡, 𝑠) ≈ 𝑡 (𝐻 (𝑡 )+𝐻 (𝑠) ) (𝐾−1) .

(ii) 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) > 1 ⇒ cov(𝑡, 𝑠) ≈ 𝑡𝐾 (𝐻 (𝑡 )+𝐻 (𝑠) )−1.

(iii) 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) < 1 ⇒ cor(𝑡, 𝑠) ≈ 𝑡−𝐻 (𝑡 ) .

(iv) 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) > 1 ⇒ cor(𝑡, 𝑠) ≈ 𝑡𝐾𝐻 (𝑠)−1.
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Proof.

(i) and (ii). Firstly, Recall that 𝐻 (𝑡) +𝐻 (𝑠) and
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠)

)𝐾 are bounded. We have:

cov(𝑡, 𝑠) =
(
𝐷

(
𝐻 (𝑡), 𝐻 (𝑠)

) ) 𝑘
𝑡 (𝐻 (𝑡 )+𝐻 (𝑠) )𝐾

[(
1+

( 𝑠
𝑡

)𝐻 (𝑡 )+𝐻 (𝑠)
)𝐾

−
���1− 𝑠

𝑡

���(𝐻 (𝑡 )+𝐻 (𝑠) )𝐾
]
.

Consequently, the Taylor expansion as 𝑡 → +∞, gives:

cov(𝑡, 𝑠) ≈ 𝐾𝐷
(
𝐻 (𝑡), 𝐻 (𝑠)

)𝐾 [
𝑠𝐻 (𝑡 )+𝐻 (𝑠) 𝑡 (𝐻 (𝑡 )+𝐻 (𝑠) ) (𝐾−1)

+ (𝐻 (𝑡) + 𝐻 (𝑠))𝑠𝑡𝐾 (𝐻 (𝑡 )+𝐻 (𝑠) )−1
]
,

where the leading term is:

𝐾
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠))

)𝐾
𝑠𝐻 (𝑡 )+𝐻 (𝑠) 𝑡 (𝐻 (𝑡 )+𝐻 (𝑠) ) (𝐾−1) if 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) < 1,

and,

𝐾
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠))

)𝐾 (𝐻 (𝑡) + 𝐻 (𝑠))𝑠𝑡𝐾 (𝐻 (𝑡 )+𝐻 (𝑠) )−1 if 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) > 1.

(iii) and (iv). Using once again a Taylor expansion of:

cor(𝑡, 𝑠) :=
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠))

)𝐾 (
𝑡𝐻 (𝑡 )+𝐻 (𝑠) + 𝑠𝐻 (𝑡 )+𝐻 (𝑠) )𝐾 − |𝑡 − 𝑠 | (𝐻 (𝑡 )+𝐻 (𝑠) )𝐾

𝑠𝐾𝐻 (𝑠) 𝑡𝐾𝐻 (𝑡 ) ,

where the leading term in this case is:

𝐾
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠))

)𝐾
𝑠𝐻 (𝑡 )+(1−𝐾 )𝐻 (𝑠) 𝑡−𝐻 (𝑡 )+(𝐾−1)𝐻 (𝑠) if 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) < 1,

and,

𝐾
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠))

)𝐾 (𝐻 (𝑡) + 𝐻 (𝑠))𝑡𝐾𝐻 (𝑠)−1𝑠1−𝐾𝐻 (𝑠) if 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) > 1. □

Since both −𝐻 (𝑡) and 𝐾𝐻 (𝑠) − 1 belong to (−1, 0) for all 𝑡, 𝑠, we have the following
result:

Corollary 5.3. For all admissible 𝐻 (𝑡), our process 𝐵𝐻 ( · ) ,𝐾 has LRD in the sense
of Definition 5.1(b). If for all 𝑠 𝐾 (𝐻 (𝑡) + 𝐻 (𝑠)) > 1 for all sufficiently large 𝑡, then
𝐵𝐻 ( · ) ,𝐾 has LRD in the sense of Definition 5.1(a), with functional LRD exponent:
𝛼(𝑠) = 𝐾𝐻 (𝑠) − 1.
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5.2. Asymptotic behavior of the covariance and the correlation of the incre-
ments of 𝐵𝐻 ( · ) ,𝐾

In the following results, to simplify the notation, let us denote:

𝐿 (𝑠, 𝑡) := max
(
𝐻 (𝑡) + 𝐻 (𝑠), 𝐻 (𝑡 + 1) + 𝐻 (𝑠), 𝐻 (𝑡) + 𝐻 (𝑠 + 1), 𝐻 (𝑡 + 1) + 𝐻 (𝑠 + 1)

)
.

Proposition 5.4. Let 𝑌 be the unit time increments of 𝐵𝐻 ( · ) ,𝐾 : 𝑌 (𝑡) = 𝐵
𝐻 (𝑡+1) ,𝐾
𝑡+1 −

𝐵
𝐻 (𝑡 ) ,𝐾
𝑡 . Then, when 𝑡 tends to infinity, and for all fixed 𝑠 ≥ 0 such that the four quantities:
𝐻 (𝑡) +𝐻 (𝑠), 𝐻 (𝑡 + 1) +𝐻 (𝑠), 𝐻 (𝑡) +𝐻 (𝑠 + 1), and 𝐻 (𝑡 + 1) +𝐻 (𝑠 + 1) are all different,
we have:

(i) 𝐾𝐿 (𝑠, 𝑡) < 1 ⇒ cov𝑌 (𝑡, 𝑠) ≈ 𝑡𝐿 (𝑠,𝑡 ) (𝐾−1) .

(ii) 𝐾𝐿 (𝑠, 𝑡) > 1 ⇒ cov𝑌 (𝑡, 𝑠) ≈ 𝑡𝐾𝐿 (𝑠,𝑡 )−1.

(iii) 𝐾𝐿 (𝑠, 𝑡) < 1 ⇒ cor𝑌 (𝑡, 𝑠) ≈ 𝑡−𝐾 max(𝐻 (𝑡 ) ,𝐻 (𝑡+1) ) .

(iv) 𝐾𝐿 (𝑠, 𝑡) > 1 ⇒ cor𝑌 (𝑡, 𝑠) ≈ 𝑡𝐾 max(𝐻 (𝑠) ,𝐻 (𝑠+1) )−1.

Proof.

(i) and (ii). By definition, we have:

cov𝑌 (𝑡, 𝑠) = cov(𝑡 + 1, 𝑠 + 1) − cov(𝑡 + 1, 𝑠) − cov(𝑡, 𝑠 + 1) + cov(𝑡, 𝑠).

Applying the Taylor expansion to each covariance, we obtain:

• if 𝐾𝐿 (𝑠, 𝑡) < 1, from Proposition 5.2, it follows that:

cov𝑌 (𝑡, 𝑠) ≈ 𝑡𝐿 (𝑠,𝑡 ) (𝐾−1) .

• if at least one of 𝐾
(
𝐻 (𝑡) + 𝐻 (𝑠)

)
; 𝐾

(
𝐻 (𝑡 + 1) + 𝐻 (𝑠)

)
; 𝐾

(
𝐻 (𝑡) + 𝐻 (𝑠 + 1)

)
and

𝐾
(
𝐻 (𝑡 + 1) + 𝐻 (𝑠 + 1))

)
is greater than one, the order of cov𝑌 (𝑡, 𝑠) will be the

maximum of these value, since they all differ. More precisely, denoting (𝑡′, 𝑠′)
the couple where the maximum of 𝐻 (𝑡) +𝐻 (𝑠); 𝐻 (𝑡 +1) +𝐻 (𝑠); 𝐻 (𝑡) +𝐻 (𝑠+1)
and 𝐻 (𝑡 + 1) + 𝐻 (𝑠 + 1) is attained, we get:

cov𝑌 (𝑡, 𝑠) = 𝐾
(
𝐷 (𝐻 (𝑡), 𝐻 (𝑠))

)𝐾 (
𝐻 (𝑡′) + 𝐻 (𝑠′)

)
𝑠′𝑡′𝐾 (𝐻 (𝑡 ′ )+𝐻 (𝑠′ ) )−1

+ 𝑜
(
𝑡′𝐾 (𝐻 (𝑡 ′ )+𝐻 (𝑠′ ) )−1) .
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(iii) and (iv). Again, this is simply obtained using Proposition 5.2 and the fact that
𝐸 (𝑌2 (𝑡)) = 𝑂

(
𝑡2𝐾 max(𝐻 (𝑡 ) ,𝐻 (𝑡+1) ) ) if 𝐻 (𝑡) and 𝐻 (𝑡 + 1) differ (otherwise cancellation

occur and the leading term is different). The exponent in the case where 𝐾𝐿 (𝑠, 𝑡) > 1
results from the identity :

max
(
𝐻 (𝑡) + 𝐻 (𝑠), 𝐻 (𝑡 + 1) + 𝐻 (𝑠), 𝐻 (𝑡) + 𝐻 (𝑠 + 1), 𝐻 (𝑡 + 1) + 𝐻 (𝑠 + 1)

)
−max

(
𝐻 (𝑡);𝐻 (𝑡 + 1)

)
= max

(
𝐻 (𝑠), 𝐻 (𝑠 + 1)

)
. □

Corollary 5.5. For all admissible 𝐻 (𝑡), our process 𝐵𝐻 ( · ) ,𝐾 has LRD in the sense of
Definition 5.1(b). If, for all 𝑠, 𝐾𝐿 (𝑠, 𝑡) > 1, for all sufficiently large 𝑡, the increments of
𝐵𝐻 ( · ) ,𝐾 have LRD in the sense of Definition 5.1. As well as in the sense of Definition 5.1(a),
with functional long range dependence exponent 𝛼(𝑠) = 𝐾 max

(
𝐻 (𝑠), 𝐻 (𝑠 + 1)

)
− 1.

Proof. Obviously, both 𝐾 max
(
𝐻 (𝑠), 𝐻 (𝑠 + 1)

)
− 1 and −𝐾 max

(
𝐻 (𝑡), 𝐻 (𝑡 + 1)

)
belong

to (−1; 0). □

5.3. Conclusion and Outlook

(i) It will be interesting to study a general case of Gaussian process of the form
𝐵𝐻 ( · ) ,𝐾 ( · ) where both the parameters 𝐻 and 𝐾 depend on the time 𝑡.

(ii) A response of the problem of the decomposition in law of our process will be
useful to generalize a popular results for the bfBm like the existence and the
Hölder regularities of its local time, (see [2] in case of bfBm and [8] in case of
mBm).

(iii) For future work, we plan to study the natural question of the local non-determinism
property of local time, (LND for short). This property is useful to prove the joint
continuity and the Höder regularity of local time. It is introduced by Berman [7],
and based on the relative conditioning error:

𝑉𝑝 =
Var

{
𝑋𝑡𝑝 − 𝑋𝑡𝑝−1 |𝑋𝑡1 , . . . 𝑋𝑡𝑝−1

}
Var

{
𝑋𝑡𝑝 − 𝑋𝑡𝑝−1

}
where for 𝑝 ≥ 2, 𝑡1 < . . . < 𝑡𝑝 are arbitrary ordered points in an open interval
𝐽. To estimate 𝑉𝑝 in the case of mBm, Boufoussi et al. [8] have used an integral
representation with respect to the Brownian motion. In case of bfBm, by using
the Lamperti’s transform [21] based on the self-similarity property, Tudor and
Xiao [31] have proved a strong property then LND, called the strongly locally
non-deterministic. Therefore they obtained the joint continuities of local times.
For our process, we propose study the LND property by using the LASS property.
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