[Koszulité de l’algèbre du monoïde dual de tresses via les complexes d’amas]
Le monoïde dual des tresses a été introduit par Bessis dans le contexte des arrangements d’hyperplans complexes. Le but de ce travail est de montrer que la dualité de Koszul fournit une interaction remarquable avec le complexe d’amas introduit par Fomin et Zelevinsky. Premièrement, nous démontrons la koszulité de l’algèbre du monoïde dual des tresses, en donnant explicitement la résolution libre minimale du corps de base. Cette construction utilise des complexes de chaînes définis grâce à la partie positive du complexe d’amas. Deuxièmement, nous examinons diverses propriétés de l’algèbre quadratique duale. Nous démontrons qu’elle est naturellement graduée par le treillis des partitions non-croisées. Nous obtenons une base explicite, indicée par les faces positives du complexe d’amas. Les constantes de structure peuvent être décrites explicitement en termes de l’éventail des amas. Enfin, nous réalisons cette algèbre duale comme un quotient d’une algèbre de Nichols. Ce dernier point se relie aux travaux de Zhang, qui a utilisé cette algèbre pour un calcul d’homologie des fibres de Milnor d’un arrangement de Coxeter.
The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the dual braid monoid algebra, by building explicitly the minimal free resolution of the ground field. This is done by using some chains complexes defined in terms of the positive part of the cluster complex. Secondly, we derive various properties of the quadratic dual algebra. We show that it is naturally graded by the noncrossing partition lattice. We get an explicit basis, naturally indexed by positive faces of the cluster complex. Moreover, we find the structure constants via a geometric rule in terms of the cluster fan. Eventually, we realize this dual algebra as a quotient of a Nichols algebra. This latter fact makes a connection with results of Zhang, who used the same algebra to compute the homology of Milnor fibers of reflection arrangements.
Matthieu Josuat-Vergès 1 ; Philippe Nadeau 2
@article{AMBP_2023__30_2_141_0, author = {Matthieu Josuat-Verg\`es and Philippe Nadeau}, title = {Koszulity of dual braid monoid algebras via cluster complexes}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {141--188}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {2}, year = {2023}, doi = {10.5802/ambp.420}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/} }
TY - JOUR AU - Matthieu Josuat-Vergès AU - Philippe Nadeau TI - Koszulity of dual braid monoid algebras via cluster complexes JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 141 EP - 188 VL - 30 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/ DO - 10.5802/ambp.420 LA - en ID - AMBP_2023__30_2_141_0 ER -
%0 Journal Article %A Matthieu Josuat-Vergès %A Philippe Nadeau %T Koszulity of dual braid monoid algebras via cluster complexes %J Annales mathématiques Blaise Pascal %D 2023 %P 141-188 %V 30 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/ %R 10.5802/ambp.420 %G en %F AMBP_2023__30_2_141_0
Matthieu Josuat-Vergès; Philippe Nadeau. Koszulity of dual braid monoid algebras via cluster complexes. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 141-188. doi : 10.5802/ambp.420. https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/
[1] Growth function for a class of monoids, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (Discrete Mathematics and Theoretical Computer Science. Proceedings), The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS), 2009, pp. 25-38 | Zbl
[2] Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Am. Math. Soc., Volume 202 (2009) no. 949, p. x+159 | MR | Zbl
[3] On some enumerative aspects of generalized associahedra, Eur. J. Comb., Volume 28 (2007) no. 4, pp. 1208-1215 | DOI | MR
[4] -vectors of generalized associahedra and noncrossing partitions, Int. Math. Res. Not. (2006), 69705, 28 pages | DOI | MR
[5] Shellability of noncrossing partition lattices, Proc. Am. Math. Soc., Volume 135 (2007) no. 4, pp. 939-949 | DOI | MR
[6] Fixed points in partially ordered sets, Adv. Math., Volume 31 (1979), pp. 263-287 | DOI | MR | Zbl
[7] The dual braid monoid, Ann. Sci. Éc. Norm. Supér., Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR
[8] A dual braid monoid for the free group, J. Algebra, Volume 302 (2006) no. 1, pp. 55-69 | DOI | MR
[9] Finite complex reflection arrangements are , Ann. Math., Volume 181 (2015) no. 3, pp. 809-904 | DOI | MR | Zbl
[10] Some properties of crossings and partitions, Discrete Math., Volume 175 (1997) no. 1-3, pp. 41-53 | DOI | MR
[11] Noncrossing partitions, Bruhat order and the cluster complex, Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2241-2289 | DOI | Numdam | MR | Zbl
[12] A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl
[13] ’s for Artin groups of finite type, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Volume 94 (2002), pp. 225-250 | MR | Zbl
[14] Non-crossing partition lattices in finite real reflection groups, Trans. Am. Math. Soc., Volume 360 (2008) no. 4, pp. 1983-2005 | DOI | MR | Zbl
[15] Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1993, xii+403 pages | MR
[16] Conjugacy classes in the Weyl group, Compos. Math., Volume 25 (1972), pp. 1-59 | Numdam | MR
[17] Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics, 85, Springer, 1969, iv+88 pages | DOI
[18] Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Volume 39 (2014) no. 1, pp. 17-51 | DOI | MR
[19] Enumerative properties of generalized associahedra, Sémin. Lothar. Comb., Volume 51 (2004), B51b, 16 pages | MR | Zbl
[20] Polytopal realizations of generalized associahedra, Can. Math. Bull., Volume 45 (2002) no. 4, pp. 537-566 (dedicated to Robert V. Moody) | DOI | MR
[21] Foundations of Garside theory, EMS Tracts in Mathematics, 22, European Mathematical Society, 2015, xviii+691 pages (author name on title page: Daan Kramer) | DOI | MR
[22] Configuration spaces of labeled particles and finite Eilenberg–MacLane complexes, Proc. Steklov Inst. Math., Volume 252 (2006), pp. 30-46 | DOI | Zbl
[23] Hecke algebras and shellings of Bruhat intervals, Compos. Math., Volume 89 (1993) no. 1, pp. 91-115 | Numdam | MR | Zbl
[24] Classifying spaces of topological monoids and categories, Am. J. Math., Volume 106 (1984), pp. 301-350 | DOI | MR | Zbl
[25] -systems and generalized associahedra, Ann. Math., Volume 158 (2003) no. 3, pp. 977-1018 | DOI | MR
[26] Koszul algebras, Advances in commutative ring theory (Fez, 1997) (Lecture Notes in Pure and Applied Mathematics), Volume 205, Marcel Dekker, 1999, pp. 337-350 | MR | Zbl
[27] Algebraic topology, Cambridge University Press, 2002, xii+544 pages | MR
[28] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990, xii+204 pages | DOI | MR
[29] Noncrossing partitions and representations of quivers, Compos. Math., Volume 145 (2009) no. 6, pp. 1533-1562 | DOI | MR
[30] Zero loci of skew-growth functions for dual Artin monoids, J. Algebra, Volume 480 (2017), pp. 1-21 | DOI | MR
[31] Partial commutation, homology, and the Möbius inversion formula, Words, languages and combinatorics (Kyoto, 1990), World Scientific, 1992, pp. 288-298 | MR | Zbl
[32] Combinatorial algebraic topology, Algorithms and Computation in Mathematics, 21, Springer, 2008, xx+389 pages | DOI | MR
[33] Notes on Koszul algebras (2011) (https://vdoc.pub/download/notes-on-koszul-algebras-2iej1b1443f0)
[34] Braid Groups (2005) (http://www.warwick.ac.uk/~masbal/MA4F2Braids/braids.pdf)
[35] Algebraic operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012, xxiv+634 pages | DOI
[36] Algebras and Hopf algebras in braided categories, Advances in Hopf algebras (Chicago, IL, 1992) (Lecture Notes in Pure and Applied Mathematics), Volume 158, Marcel Dekker, 1994, pp. 55-105 | MR | Zbl
[37] Noncrossing partitions in surprising locations, Am. Math. Mon., Volume 113 (2006) no. 7, pp. 598-610 | DOI | MR
[38] Artin groups of Euclidean type, Invent. Math., Volume 210 (2017) no. 1, pp. 231-282 | DOI | MR | Zbl
[39] Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory (La Falda, 1999) (Contemporary Mathematics), Volume 267, American Mathematical Society, 2000, pp. 215-236 | DOI | MR | Zbl
[40] EL-shellability and noncrossing partitions associated with well-generated complex reflection groups, Eur. J. Comb., Volume 43 (2015), pp. 249-278 | DOI | MR
[41] Combinatorics and topology of complements of hyperplanes, Invent. Math., Volume 56 (1980) no. 2, pp. 167-189 | DOI | MR | Zbl
[42] Discrete Morse theory and a reformulation of the -conjecture, Commun. Algebra, Volume 45 (2017) no. 4, pp. 1760-1784 | DOI | MR | Zbl
[43] Proof of the conjecture for affine Artin groups, Invent. Math., Volume 224 (2021) no. 2, pp. 487-572 | DOI | MR
[44] Quadratic algebras, University Lecture Series, 37, American Mathematical Society, 2005, xii+159 pages | DOI | MR
[45] Koszul resolutions, Trans. Am. Math. Soc., Volume 152 (1970), pp. 39-60 | DOI | MR | Zbl
[46] Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Am. Math. Soc., Volume 359 (2007) no. 12, pp. 5931-5958 | DOI | MR | Zbl
[47] Cambrian fans, J. Eur. Math. Soc., Volume 11 (2009) no. 2, pp. 407-447 | DOI | MR
[48] A survey on Nichols algebras, Algebraic structures and their representations (Contemporary Mathematics), Volume 376, American Mathematical Society, 2005, pp. 105-117 | DOI | MR | Zbl
[49] Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Mathematics Series), Volume 13, American Mathematical Society, 2007, pp. 497-615 | DOI | MR | Zbl
[50] Combinatorics of Milnor fibres of reflection arrangements, Ph. D. Thesis, University of Sidney (2020) https://ses.library.usyd.edu.au/handle/2123/22985?show=full#
[51] Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer, 1995, x+370 pages | DOI | MR
Cité par Sources :