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Koszulity of dual braid monoid algebras via cluster complexes

Matthieu Josuat-Vergès
Philippe Nadeau

Abstract

The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements.
The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid
monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the
dual braid monoid algebra, by building explicitly the minimal free resolution of the ground field. This
is done by using some chains complexes defined in terms of the positive part of the cluster complex.
Secondly, we derive various properties of the quadratic dual algebra. We show that it is naturally graded
by the noncrossing partition lattice. We get an explicit basis, naturally indexed by positive faces of the
cluster complex. Moreover, we find the structure constants via a geometric rule in terms of the cluster
fan. Eventually, we realize this dual algebra as a quotient of a Nichols algebra. This latter fact makes a
connection with results of Zhang, who used the same algebra to compute the homology of Milnor fibers
of reflection arrangements.

Koszulité de l’algèbre du monoïde dual de tresses via les complexes d’amas
Résumé

Le monoïde dual des tresses a été introduit par Bessis dans le contexte des arrangements d’hyperplans
complexes. Le but de ce travail est de montrer que la dualité de Koszul fournit une interaction remarquable
avec le complexe d’amas introduit par Fomin et Zelevinsky. Premièrement, nous démontrons la koszulité
de l’algèbre du monoïde dual des tresses, en donnant explicitement la résolution libre minimale du
corps de base. Cette construction utilise des complexes de chaînes définis grâce à la partie positive du
complexe d’amas. Deuxièmement, nous examinons diverses propriétés de l’algèbre quadratique duale.
Nous démontrons qu’elle est naturellement graduée par le treillis des partitions non-croisées. Nous
obtenons une base explicite, indicée par les faces positives du complexe d’amas. Les constantes de
structure peuvent être décrites explicitement en termes de l’éventail des amas. Enfin, nous réalisons cette
algèbre duale comme un quotient d’une algèbre de Nichols. Ce dernier point se relie aux travaux de
Zhang, qui a utilisé cette algèbre pour un calcul d’homologie des fibres de Milnor d’un arrangement de
Coxeter.

1. Introduction

In this work we study the algebra of the dual braid monoid. We exhibit several properties
that this algebra has, as well as properties of its Koszul dual. To motivate this study,
let us briefly recall some of the objects that will be involved: the dual braid monoid
and noncrossing partitions on the one hand, and the cluster complex and its associated
geometry on the other.

Both authors are partially supported by the French ANR grant COMBINÉ (19-CE48-0011).
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1.1. Context

The dual braid monoid D(𝑊) of a finite Coxeter group 𝑊 (with respect to a Coxeter
element 𝑐) was introduced by Bessis [7], as a certain generating set of positive elements
inside the braid group B(𝑊). In its more general form associated to a well-generated
complex reflection group, this monoid turned out to be an important tool in Bessis’
solution of the 𝐾 (𝜋, 1) problem for complex reflection arrangements [9]. This monoid has
a rich structure. Like the braid group, it can be defined algebraically or topologically. It is
a Garside monoid [21], a property that implies in particular the existence of canonical
factorizations of each element.

A combinatorial byproduct of this Garside structure is the definition of generalized
noncrossing partitions inside D(𝑊); these are also known as simple braids. They were
introduced independently by Brady and Watt [13], also in the context of the 𝐾 (𝜋, 1)
problem for finite type Artin groups. The same authors proved in [14] that the poset
𝑁𝐶 (𝑊) of noncrossing partitions is a lattice, a property that is an important ingredient
of the Garside structure of D(𝑊). The cardinality of 𝑁𝐶 (𝑊) is a generalized Catalan
number, called𝑊-Catalan number, see [2] for a survey.

Fomin and Zelevinsky [25] introduced the cluster complex Δ(Φ) of a finite type
root system Φ, in the context of cluster algebras and Zamolodchikov’s conjecture about
𝑌 -systems. Its vertices can be identified with cluster variables of the cluster algebra
of type Φ, and its facets with clusters of the same cluster algebra. This complex can
be realized geometrically using a correspondence between cluster variables and almost
positive roots: each cluster corresponds to a simplicial cone and together they form a
complete simplicial fan, the cluster fan. Fomin and Zelevinsky [25] also conjectured
that this fan is the normal fan of a polytope. These polytopes, called the generalized
associahedra, were constructed by them in a joint work with Chapoton [20].

The number of clusters (equivalently, the number of vertices in the generalized
associahedron) turns out to be the 𝑊-Catalan number associated to the Weyl group 𝑊
of Φ. Following this observation, there has been an important combinatorial interplay
between noncrossing partitions and clusters (see for example [2, 3, 4, 5, 19, 37]).

A more specific connection is the link obtained in [3, 19] between the characteristic
polynomial of 𝑁𝐶 (𝑊) and the 𝑓 -polynomial of Δ+ (𝑊). Here, Δ+ (𝑊) is the positive part
of Δ(𝑊), the full subcomplex obtained by keeping only positive roots as its vertices (and
we refer to the group𝑊 rather than its root system). It can be stated as follows:∑︁

𝐹∈Δ+ (𝑊 )
(−𝑞)dim(𝐹 )+1 =

∑︁
𝑤∈𝑁𝐶 (𝑊 )

𝜇𝑁𝐶 (𝑤)𝑞ℓ𝑇 (𝑤) (1.1)

where 𝜇𝑁𝐶 and ℓ𝑇 are respectively the Möbius function and the rank function of 𝑁𝐶 (𝑊),
see next section for details. This is particularly relevant in the context of the dual braid
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monoid, as the growth function of D(𝑊) is the inverse of the polynomial in (1.1). This is
part of the Cartier–Foata theory [17]; see also Ishibe and Saito [30] for a recent exposition
and related developments.

Explicitly, the growth function
∑

b∈D(𝑊 ) 𝑞
deg(𝑏) of D(𝑊) is given by∑︁

b∈D(𝑊 )
𝑞deg(𝑏) =

( ∑︁
b∈D

𝜇D(𝑊 ) (b)𝑞 |b |
)−1

(1.2)

where 𝜇 and | · | are respectively the Möbius function and the rank function of D(𝑊),
endowed with divisibility order. Following Albenque and Nadeau [1], the Möbius function
of D(𝑊) vanishes outside the set of simple braids, so that the right hand sides of (1.1)
and (1.2) are inverse of each other. We refer to the next section for details.

1.2. Outline of the results

We will see through this work that there is an algebraic relation between the dual
braid monoid and the positive part of the cluster complex, via the notion of Koszul
duality [26, 34, 44].

Consider the monoid algebra 𝑘 [D(𝑊)] over a ground field 𝑘 . Throughout, it will be
denoted:

A(𝑊) := 𝑘 [D(𝑊)] .
It follows from the algebraic definition of D(𝑊) that A(𝑊) is a quadratic algebra, and in
particular a connected graded algebra. This gives 𝑘 a structure of A(𝑊)-module via the
augmentation map 𝜖 , which by definition is the projection on the degree 0 component.
Koszulity of A(𝑊) is then characterized by a property of the minimal free resolution of
𝑘 , namely all boundary maps have homogeneous degree 1.

Our first goal is to show:

Theorem 1.1. A(𝑊) is a Koszul algebra.

To describe our method, introduce for −1 ≤ 𝑖 ≤ 𝑛 − 1 the free A(𝑊)-module with
basis indexed by Δ+

𝑖
(𝑊), the set of 𝑖-dimensional faces in Δ+ (𝑊). This free module is

denoted C𝑖 . We will prove the existence of explicit boundary maps 𝜕𝑖 : C𝑖 → C𝑖−1 such
that the minimal free resolution of 𝑘 is

0 −→ C𝑛−1
𝜕𝑛−1−→ · · · 𝜕0−→ C−1

𝜖−→ 𝑘 −→ 0.

The nontrivial part consists in checking that the complex is exact. This is done by
seeing it as a direct sum of exact complexes, where each summand is the chain complex
of a (topologically trivial) subcomplex of Δ+ (𝑊). As these maps are homogeneous of
degree 1, we get Theorem 1.1.
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Our second goal is to study the quadratic dual of A(𝑊). Throughout, it will be denoted

P(𝑊) := A(𝑊)!.

From the construction of the minimal resolution, it follows that the Hilbert series of this
algebra is the 𝑓 -polynomial of Δ+ (𝑊):

𝑛∑︁
𝑖=0

dim(P𝑖 (𝑊))𝑞𝑖 =
∑︁

𝐹∈Δ+ (𝑊 )
𝑞dim(𝐹 )+1. (1.3)

It follows that we have managed to lift Equation (1.2) from an enumerative level to an
algebraic one: it can now be interpreted as an instance of the relation between the Hilbert
series of a Koszul algebra and that of its quadratic dual.

A presentation of P(𝑊) is easily obtained in terms of the presentation of A(𝑊) (see
Theorem 5.1). We will also show that P(𝑊) is naturally graded by 𝑁𝐶 (𝑊), and give the
construction of an explicit basis indexed by Δ+ (𝑊): note that the existence of such a basis
was suggested by (1.3).

In Section 6, we obtain a formula for the structure constants of P(𝑊) with respect
to the basis obtained in the preceding section. This is a geometric rule that relies on the
cluster fan. More precisely, each face of the complex Δ+ (𝑊) corresponds to a cone in
this fan, and finding the expansion of a product in the algebra is given by such cones
contained in some bigger cone.

In the remainder of the article, we give additional developments that shed a new light
on these algebras, and also make a connection with results of Zhang [50]. In Section 7,
we introduce a Nichols algebra N(𝑊) that is particularly relevant: it will be shown that
P(𝑊) is a quotient of N(𝑊) (Theorem 7.12), and some properties are more easily seen
from this construction than from the presentation of P(𝑊). This point of view makes the
link with Zhang’s thesis [50] where the same algebra was introduced in order to compute
the homology of Milnor fibers of reflection arrangements. In particular, we explain how
this gives an alternative path to the koszulity of A(𝑊) and P(𝑊).

In Section 8, we investigate the cyclic action generated by the Coxeter element on the
algebras A(𝑊) and P(𝑊). We get explicit formulas for the characters. We get a new
simple proof of a result of Zhang’s thesis [50] that makes a connection with the homology
of the noncrossing partition lattice.

Note. While this manuscript was in the latter stages of redaction, the authors were made
aware of the PhD thesis recently defended by Yang Zhang [50]. Quite remarkably, the
algebras P(𝑊) are also introduced in this work, albeit via a completely different path. In
particular, it does not arise as the quadratic dual of A(𝑊). We will mention the results of
this work pertinent to ours in the course of the manuscript.
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1.3. Organization of the paper

Sections 2 and 3 contain background material. In the former, we recall preliminary notions
related with finite Coxeter groups, noncrossing partitions, the dual braid monoid and its
growth function. In the latter, we recall the concept of Koszul duality and the role of the
quadratic dual in this context.

In Section 4, we show that A(𝑊) is a Koszul algebra (Corollary 4.5), via the explicit
construction of the minimal free resolution of 𝑘 (Theorem 4.4). This section relies
on Appendix A, where we gather relevant material and bibliography about the cluster
complex.

In Sections 5 and 6, we give the main structural properties of the dual algebra P(𝑊)
(as outlined in Section 1.2 above). Theorem 5.1 gives a presentation of the dual algebra
P(𝑊), and Theorem 5.12 gives an explicit basis. We give in Theorem 6.5 a geometric
rule for the multiplicative structure constants in this basis.

Sections 7 contains an alternative construction of the algebra P(𝑊) as a quotient of a
Nichols algebra. Section 8 investigates the cyclic action of the Coxeter element on the
algebras A(𝑊) and P(𝑊).

Finally, in Section 9 we discuss possible extensions of this work to other kind of braid
groups, beyond finite type Artin groups.

1.4. Motivations (summary)

Koszul algebras are not scarce among quadratic algebras. However, it can be difficult to
build an explicit minimal free resolution in a concrete situation. Here, it is remarkable
that it can be done explicitly in a uniform way (i.e., without relying on the finite type
classification).

It is well-known that cluster algebras have found many applications in various fields.
In this vein, it is interesting to solve a problem about braids using a simplicial complex
coming from cluster theory.

From the point of view of braid theory, it is increasingly apparent that braid monoids
are useful (see for example [22, 42] in the context of the 𝐾 (𝜋, 1)-conjecture). Similarly,
we hope that the present results about the dual braid monoid fit in a bigger perspective.

Eventually, the dual algebra is interesting on its own through its various combinatorial
properties. For example, it has been studied in [50] in connection with Milnor fibers.
Leaving aside the braid monoid, we hope there is more to investigate on this algebra.
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2. The dual braid monoid

We review useful definitions and properties, and refer to [28] for basic facts about finite
Coxeter groups. In the rest of this work, (𝑊, 𝑆) is a finite type Coxeter system of rank 𝑛,
which means that𝑊 is finite and 𝑆 has cardinality 𝑛. The neutral element of𝑊 is denoted
𝑒. As is well-known,𝑊 can be realized as a finite reflection group.

Let 𝑇 = {𝑤𝑠𝑤−1 | 𝑠 ∈ 𝑆, 𝑤 ∈ 𝑊} be the set of reflections of𝑊 . For 𝑡 ∈ 𝑇 , 𝑤 ∈ 𝑊 , let

𝑡𝑤 := 𝑤−1𝑡𝑤 ∈ 𝑇.

Note that 𝑡𝑤1𝑤2 = (𝑡𝑤1 )𝑤2 . We also fix a standard Coxeter element 𝑐 in 𝑊 , which by
definition is the product of all simple reflections in some arbitrary order. We can index
𝑆 = {𝑠1, . . . , 𝑠𝑛} so that 𝑐 = 𝑠1 . . . 𝑠𝑛. There are various objects defined below that depend
on𝑊 and 𝑐. In general, we omit the dependence in 𝑐.

Via the standard geometric representation, we see𝑊 as a subgroup of the orthogonal
group 𝑂 (R𝑛). For 𝑡 ∈ 𝑇 , we denote 𝜌(𝑡) ∈ R𝑛 the associated positive root (for a fixed
choice of a generic positive half-space Π ⊂ R𝑛).

Each parabolic subgroup 𝑃 ⊂ 𝑊 is seen as a reflection group in a linear subspace
𝑉 ⊂ R𝑛, where 𝑉 = Fix(𝑃)⊥ and Fix(𝑃) = {𝑣 ∈ R𝑛 | ∀ 𝑤 ∈ 𝑃, 𝑤(𝑣) = 𝑣}. The
half-space Π ∩𝑉 endows 𝑃 with a natural choice of a set of positive roots, hence of a set
of simple generators.

Lemma 2.1. Let 𝑃 ⊂ 𝑊 be a rank 2 parabolic subgroup. Its reflections can be indexed
by 𝑃 ∩ 𝑇 = {𝑢1, . . . , 𝑢𝑚} in such a way that:

• 𝑢𝑖+1𝑢𝑖 = 𝑢𝑖𝑢𝑖−1 for 1 ≤ 𝑖 ≤ 𝑚 (with 𝑢0 = 𝑢𝑚, i.e., indices are taken modulo 𝑚),

• the simple reflections of 𝑃 are 𝑢1 and 𝑢𝑚.

We omit the proof. This lemma is particularly useful to deal with reflection orderings,
see [23]. Note that reversing the order of the indexing of 𝑃 ∩𝑇 also gives a valid indexing,
and there are only two of them.

2.1. Noncrossing partitions

Armstrong’s work [2] is a standard reference about this subject. For 𝑤 ∈ 𝑊 , the absolute
length or reflection length of 𝑤 is:

ℓ𝑇 (𝑤) := min
{
𝑘 ≥ 0

�� ∃ 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇, 𝑡1 . . . 𝑡𝑘 = 𝑤
}
.

Since 𝑇 generates𝑊 , ℓ𝑇 takes finite values. A factorization 𝑤 = 𝑡1 . . . 𝑡𝑘 of 𝑤 ∈ 𝑊 as a
product of reflections is called reduced or minimal if 𝑘 = ℓ𝑇 (𝑤).
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Lemma 2.2 (Carter [16]). Suppose that we have a reduced factorization 𝑤 = 𝑡1 . . . 𝑡𝑘
where ℓ𝑇 (𝑤) = 𝑘 , 𝑡𝑖 ∈ 𝑇 . Then 𝜌(𝑡1), . . . , 𝜌(𝑡𝑘) are linearly independent.

The absolute order ≤𝑇 on𝑊 is defined by 𝑤 ≤𝑇 𝑧 if ℓ𝑇 (𝑤) + ℓ𝑇 (𝑤−1𝑧) = ℓ𝑇 (𝑧). The
order ℓ𝑇 can also be characterized by the subword property: 𝑤 ≤𝑇 𝑧 if and only if some
reduced factorization of 𝑤 can be extracted as a subword of a reduced factorization of 𝑧
as a product of reflections. See [2, Section 2.5].

Definition 2.3. We define the poset 𝑁𝐶 (𝑊) = 𝑁𝐶 (𝑊, 𝑐) as the interval [𝑒, 𝑐] with
respect to the partial order ≤𝑇 . This is a ranked poset with rank function ℓ𝑇 . We denote
𝑁𝐶 𝑗 (𝑊) ⊂ 𝑁𝐶 (𝑊) the subset of elements of rank 𝑗 .

Note that ℓ𝑇 and ≤𝑇 are invariant under conjugation. Because all Coxeter elements are
conjugate, the isomorphism type of 𝑁𝐶 (𝑊) does not depend on 𝑐.

An important property is the following:

Proposition 2.4 ([14]). The poset 𝑁𝐶 (𝑊) is a lattice.

Another point about noncrossing partitions is that they can be seen as parabolic Coxeter
elements.

Definition 2.5. For 𝑤 ∈ 𝑊 , let Γ(𝑤) denote the smallest parabolic subgroup of 𝑊
containing 𝑤.

It can be seen that the rank of Γ(𝑤) is ℓ𝑇 (𝑤). Recall that each parabolic subgroup is
endowed with a natural set of simple generators, see paragraph preceding Lemma 2.1.
We also introduce the notation T(𝑤) = Γ(𝑤) ∩ 𝑇 = {𝑡 ∈ 𝑇 | 𝑡 ≤𝑇 𝑤}. Then Γ(𝑤) is a
reflection group with reflection set T(𝑤).

Proposition 2.6. If 𝑐 is a standard Coxeter element, each 𝑤 ∈ 𝑁𝐶 (𝑊) is also a standard
Coxeter element of Γ(𝑤).

For a proof, see [11, Proposition 3.1] and references therein. In the crystallographic
case, this can be obtained by representation theory, see [29].

2.2. The dual braid monoid

Bessis [7] defined the dual braid monoid D(𝑊) associated to (𝑊, 𝑆) and a Coxeter
element 𝑐. In fact, it is natural to define this in the context of the dual Coxeter system
(𝑊,𝑇), which means that we take all reflections as generators, rather than just simple
reflections. It is related with the braid group B(𝑊), by seeing D(𝑊) as the submonoid
B(𝑊) of positive elements (products of generators, and no inverse of them). Note that
there is also a topological definition of this monoid given in [9, Section 8].
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Let T be a set in bĳection with 𝑇 , with the convention that for 𝑡 ∈ 𝑇 , t is the
corresponding element in T. Moreover, if 𝑡, 𝑢 ∈ 𝑇 , the element in T corresponding to
𝑡𝑢 = 𝑢𝑡𝑢 ∈ 𝑇 is denoted tu.

Definition 2.7. The dual braid monoid D(𝑊) is defined by the presentation:

D(𝑊) = ⟨ T | tu = utu if 𝑡𝑢 ≤𝑇 𝑐 ⟩
As relations are homogeneous of degree 2, D(𝑊) has a natural grading, and we denote
|m| the length of m as a product of generators.

Because Coxeter elements are all conjugate, the isomorphism type of D(𝑊) as a
homogeneous monoid does not depend on 𝑐.

There is another presentation of D(𝑊), using a bigger set of generators. Just as T is
related to 𝑇 , let us introduce a set NC(𝑊) in bĳection with 𝑁𝐶 (𝑊) so that if 𝑤 ∈ 𝑁𝐶 (𝑊),
the corresponding element in NC(𝑊) is denoted w.

Lemma 2.8 (Bessis [7, Proposition 1.6.1]). Two minimal factorizations of 𝑤 = 𝑢1 . . . 𝑢𝑘 =

𝑣1 . . . 𝑣𝑘 of 𝑤 ∈ 𝑁𝐶𝑘 (𝑊) can be connected by a finite sequence of Hurwitz moves, which
consists in replacing a factor 𝑡1𝑡2 with 𝑡𝑡12 𝑡1 or 𝑡2𝑡𝑡21 (𝑡1, 𝑡2 ∈ 𝑇).

Proposition 2.9. A presentation of D(𝑊) is given by taking NC(𝑊) as a set of generators,
with relations v1 . . . v 𝑗 = w1 . . .w𝑘 if:

• 𝑣1 . . . 𝑣 𝑗 = 𝑤1 . . . 𝑤𝑘 ,

• this element 𝑣1 . . . 𝑣 𝑗 is in 𝑁𝐶 (𝑊),

• ℓ𝑇 (𝑣1 . . . 𝑣 𝑗 ) =
∑ 𝑗

𝑖=1 ℓ𝑇 (𝑣𝑖) =
∑𝑘

𝑖=1 ℓ𝑇 (𝑤𝑖)

Proof. By considering the case 𝑗 = 𝑘 = 2 and 𝑣1, 𝑣2, 𝑤1, 𝑤2 ∈ 𝑇 , we see that the
generators and relations from Definition 2.7 are included in those above. It remains to see
that we can add the new generators and relations without changing the structure.

For 𝑤 ∈ 𝑁𝐶 𝑗 (𝑊), define w = t1 . . . t 𝑗 where 𝑡1 . . . 𝑡 𝑗 is a reduced factorization of 𝑤.
By Lemma 2.8, w does not depend on the chosen reduced factorization. We can add the
new generator w together with the relation w = t1 . . . t 𝑗 without changing the structure.

Now let 𝑣1, . . . , 𝑣 𝑗 , 𝑤1, . . . , 𝑤𝑘 as above. By considering a minimal factorization of
each of these elements and again using Lemma 2.8, we obtain the relation v1 . . . v 𝑗 =

w1 . . .w𝑘 as a consequence of the previously known relations. □

The elements of NC(𝑊) are called simple braids. From the presentation of D(𝑊),
we see that there is a well-defined monoid map D(𝑊) → 𝑊 defined by w ↦→ 𝑤 for
w ∈ NC(𝑊). (This map thus extends the natural bĳection NC(𝑊) → 𝑁𝐶 (𝑊).)
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Example 2.10. We will use the example of𝑊 = 𝔖𝑛 with the long cycle 𝑐 = (1, 2, . . . , 𝑛)
as standard Coxeter element. In this case, 𝑁𝐶 (𝑊) is naturally identified as the set of
noncrossing partitions of ⟦1, 𝑛⟧ ordered by refinement [10]. Recall that a set partition
is noncrossing if no two blocks are crossing, where 𝐵1 ≠ 𝐵2 are crossing if there exist
𝑖 < 𝑗 < 𝑘 < 𝑙 such that 𝑖, 𝑘 ∈ 𝐵1 and 𝑗 , 𝑙 ∈ 𝐵2.

The dual braid monoid D(𝔖𝑛) is the Birman-Ko-Lee monoid [12], originally defined
to answer the word and conjugacy problems in the Artin braid group. Its generators are
t𝑖, 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, in bĳection with the tranpositions (𝑖, 𝑗) in 𝑆𝑛. It is then defined by
the congruences:{

t𝑖, 𝑗 t𝑘,𝑙 = t𝑘,𝑙t𝑖, 𝑗 for 𝑖 < 𝑗 < 𝑘 < 𝑙 or 𝑖 < 𝑘 < 𝑙 < 𝑗 ;
t𝑖, 𝑗 t 𝑗 ,𝑘 = t 𝑗 ,𝑘t𝑖,𝑘 = t𝑖,𝑘t𝑖, 𝑗 for any 𝑖 < 𝑗 < 𝑘.

2.3. Garside monoids and Cartier–Foata theory

We refer to [21] for Garside theory.

Definition 2.11. Let 𝑀 be a monoid, and denote 𝑥 ≺ℓ 𝑦 (resp., 𝑥 ≺𝑟 𝑦) if 𝑥 a left (resp.,
right) divisor of 𝑦. We say that 𝑀 is a Garside monoid if:

• 𝑀 is atomic (i.e., each 𝑥 ∈ 𝑀 has a finite number of left divisors and right
divisors),

• 𝑀 is cancellative (i.e., for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 we have 𝑥𝑦 = 𝑥𝑧 implies 𝑦 = 𝑧, and
𝑥𝑧 = 𝑦𝑧 implies 𝑥 = 𝑦),

• (𝑀, ≺ℓ) and (𝑀, ≺𝑟 ) are lattices,

• there exists 𝛿 ∈ 𝑀 (called a Garside element) such that {𝑥 ∈ 𝑀 : 𝑥 ≺ℓ 𝛿} =

{𝑥 ∈ 𝑀 : 𝑥 ≺𝑟 𝛿}, moreover this set is finite and generates 𝑀 .

Proposition 2.12 (Bessis [7, Theorem 2.3.2]). D(𝑊) is a Garside monoid, with c =

s1 . . . s𝑛 (the maximal simple braid associated to the Coxeter element 𝑐 = 𝑠1 . . . 𝑠𝑛) as a
Garside element.

There is a poset isomorphism between NC(𝑊) (endowed with left or right divisibility)
and 𝑁𝐶 (𝑊), thus the property of 𝑁𝐶 (𝑊) being a lattice mentioned above is crucially
related with the Garside structure of D(𝑊).

Let 𝜇(m) := 𝜇(1,m) be the Möbius function of D(𝑊) as a poset under left divisibility,
between the identity 1 and any element m ∈ D(𝑊). The work of Cartier–Foata [17]
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naturally applies to Garside monoids, and gives us the following identity:∑︁
m∈D(𝑊 )

𝑞 |m | =

( ∑︁
m∈D(𝑊 )

𝜇(m)𝑞 |m |

)−1

. (2.1)

Work of Albenque and the second author [1, Theorem 2] gives an explicit expression
for the Möbius values 𝜇(m) – valid for a class of monoids extending Garside monoids –,
from which it follows that 𝜇(m) = 0 unless m divides c.

Using the isomorphism between 𝑁𝐶 (𝑊) and NC(𝑊), we can rewrite (2.1) as:∑︁
𝑚∈D(𝑊 )

𝑞 |𝑚 | =

( ∑︁
𝑤∈𝑁𝐶 (𝑊 )

𝜇(𝑤)𝑞ℓ𝑇 (𝑤)

)−1

, (2.2)

where 𝜇 is here the Möbius function of 𝑁𝐶 (𝑊). In the case of Example 2.10 for
𝑛 = 4, a computation of the Möbius function gives the length generating function
(1 − 6𝑞 + 10𝑞2 − 5𝑞3)−1 for the monoid D(𝔖4).

For example, the right-hand side of (2.2) is the inverse of the left-hand side of (1.1).

3. Quadratic algebras and Koszul duality

Let 𝑘 be any commutative field (it plays no role in what follows). Recall that for any
graded 𝑘-algebra 𝐴 =

⊕∞
𝑖=0 𝐴𝑛 with finite-dimensional homogeneous components, its

Hilbert series Hilb(𝐴, 𝑞) is the formal power series defined by

Hilb(𝐴, 𝑞) =
∞∑︁
𝑖=0

(dim 𝐴𝑖)𝑞𝑖 .

We briefly recall the notion of Koszul algebra. For more details, we refer to the
surveys [26, 33] or the book [44] and references therein.

A graded algebra 𝑄 is quadratic if it has a presentation 𝑄 = T (𝑉)/⟨𝑅⟩, where 𝑉
is finite dimensional vector space over 𝑘 , T (𝑉) =

⊕
𝑖≥0𝑉

⊗𝑖 is its tensor algebra, and
𝑅 ⊂ 𝑉 ⊗ 𝑉 is a 𝑘-subspace generating the ideal of relations ⟨𝑅⟩. Note that 𝑉 can be
identified with 𝑄1, the degree 1 homogeneous component of 𝑄.

Any quadratic algebra 𝑄 possesses a quadratic dual 𝑄!, which is another quadratic
𝑘-algebra defined as follows. Write 𝑄 = T (𝑉)/⟨𝑅⟩ as above. Then, by definition
𝑄! := T (𝑉∗)/⟨𝑅⊥⟩ where 𝑅⊥ ⊂ (𝑉 ⊗𝑉)∗ = 𝑉∗ ⊗𝑉∗ is the space of linear forms on𝑉 ⊗𝑉
which vanish on 𝑅. Note that 𝑉∗ can be identified with 𝑄!

1, the degree 1 homogeneous
component of 𝑄!.

We refer to [15, 44] for the notion of graded free resolution of a graded module. Such
resolutions always exist, and there is a minimal one which is unique up to isomorphism.
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Koszul algebras can be characterized by a property of the minimal graded free resolution
of 𝑘 . Note that 𝑘 is naturally a 𝑄-module, via the augmentation map 𝜖 : 𝑄 → 𝑘 defined
by projection on the degree 0 component𝑄0 = 𝑘 . A graded free resolution for this module
has the form

. . .
𝜕3−→ 𝑄𝑐3

𝜕2−→ 𝑄𝑐2
𝜕1−→ 𝑄𝑐1

𝜕0−→ 𝑄
𝜖−→ 𝑘 −→ 0. (3.1)

Minimality is characterized by the property 𝜕𝑖 (𝑄𝑐𝑖+1 ) ⊂ 𝑄+ · 𝑄𝑐𝑖 , i.e., the map 𝜕𝑖 has no
component of homogeneous degree 0.

Definition 3.1. The algebra 𝑄 is Koszul if each map 𝜕𝑖 in (3.1) is homogeneous of
degree 1.

Here, we use the natural grading of each free 𝑄-module coming from the grading of
𝑄. So, 𝜕𝑖 being homogeneous of degree 1 means that the matrix of 𝜕𝑖 (with respect to
canonical bases of the free modules) has coefficients in 𝑄1.

Koszul algebras have a number of other characterizations, see [26, 33, 44]. It is also
known that 𝑄 is Koszul if and only if 𝑄! is. When this is the case, the Hilbert series of 𝑄!

can be obtained either from the minimal resolution of 𝑘 by free 𝑄-modules, or from the
Hilbert series of 𝑄:

Proposition 3.2. Let 𝑄 be a quadratic algebra and 𝑄! be its quadratic dual. Suppose
that 𝑄 is a Koszul algebras, and the minimal resolution of 𝑘 by free 𝑄-modules is as
in (3.1). Then, the Hilbert series of 𝑄! is given by:

Hilb(𝑄!, 𝑞) = 1 +
∑︁
𝑖≥1

𝑐𝑖𝑞
𝑖 . (3.2)

Moreover, we have the relation:

Hilb(𝑄!, 𝑞) = Hilb(𝑄,−𝑞)−1. (3.3)

There is a more precise way to relate the minimal graded free resolution of 𝑘 with 𝑄!.
This will be explained in Section 5.

Recall that A(𝑊) was defined as the monoid algebra of 𝑘 [D(𝑊)]. Therefore, following
Definition 2.7, one has the quadratic presentation A(𝑊) = T (𝑘T)/⟨𝑅⟩ where

𝑅 := Span𝑘

{
t ⊗ u − u ⊗ tu} ⊂ 𝑘T ⊗ 𝑘T. (3.4)

The Hilbert series of A(𝑊) is thus the length generating series of D(𝑊), i.e., the
left-hand side of (2.2). We get:

Hilb(A(𝑊), 𝑞) =
( ∑︁
𝑤∈𝑁𝐶 (𝑊 )

𝜇(𝑤)𝑞ℓ𝑇 (𝑤)

)−1

. (3.5)

Definition 3.3. We define P(𝑊) as the quadratic dual of A(𝑊); that is, P(𝑊) := A(𝑊)!.
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4. Koszulity of the dual braid monoid algebra

In this section, we prove that A(𝑊) is a Koszul algebra by building the minimal free
resolution of the ground field 𝑘 . This was previously done in type 𝐴 and 𝐵 in [1], using
an ad hoc resolution which was built as a subcomplex of a bigger non-minimal resolution.
Here, we construct directly a minimal resolution for any𝑊 and standard Coxeter element
𝑐, based on the positive cluster complex attached to this data. As explained in the
introduction, the idea is to build this resolution as a direct sum of exact complexes. The
latter are defined via the simplicial complex Δ+ (𝑊) (and some subcomplexes).

A somewhat similar construction has been given by Kobayashi [31] in the case of the
trace monoid (or right-angled Artin group) associated to a graph 𝐺: the minimal free
resolution of this monoid is built using some subcomplexes of the clique complex of 𝐺.

Our construction relies on the simplicial complexΔ+ (𝑊), the positive part of the cluster
complex, and the related notion of 𝑐-compatible reflection ordering. Their definitions and
properties are given in Appendix A. We thus fix such a 𝑐-compatible reflection ordering
≺. We write {𝑡1 ≻ · · · ≻ 𝑡𝑘} to express that {𝑡1, . . . , 𝑡𝑘} is indexed so that 𝑡1 ≻ · · · ≻ 𝑡𝑘 .
Though Definition A.1 shows that reflection orderings are not strictly necessary, it will be
convenient to have a canonical order on the vertices on Δ+ (𝑊):

• when defining the reduced homology of the complex, each face 𝑓 ∈ Δ+ (𝑊) gets
a canonical order, and geometrically this defines an orientation of the associated
simplex,

• when we have an algebra having 𝑇 as a generating set, the total order can be used
to obtain some bases as in the Poincaré–Birkhoff–Witt theorem, see [35].

Convention. We consider that𝑊 and 𝑐 are fixed. We write A,P, 𝑁𝐶 𝑗 , . . . instead of
A(𝑊),P(𝑊), 𝑁𝐶 𝑗 (𝑊), . . . to simplify the notation.

4.1. Construction of the minimal resolution

We use standard notions related with simplicial homology, see [27, 32].

Definition 4.1. For any set 𝑋 , let 𝑘𝑋 denote the 𝑘-vector space freely spanned by 𝑋 . Let
𝑤 ∈ 𝑁𝐶 𝑗 with 1 ≤ 𝑗 ≤ 𝑛. The augmented simplicial chain complex of Δ+ (𝑤) is

0 −→ 𝑘
Δ+

𝑗−1 (𝑤) 𝛽 𝑗−1−→ . . .
𝛽1−→ 𝑘Δ

+
0 (𝑤) 𝛽0−→ 𝑘Δ

+
−1 (𝑤) −→ 0 (4.1)
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where the boundary maps 𝛽𝑖 are defined on the basis as follows: if 𝑓 = {𝑡0 ≻ · · · ≻ 𝑡𝑖} ∈
Δ+
𝑖
(𝑤), we have:

𝛽𝑖 ( 𝑓 ) :=
𝑖∑︁

ℓ=0
(−1)ℓ · ( 𝑓 \{𝑡ℓ }) ∈ 𝑘Δ

+
𝑖−1 (𝑤) .

Proposition 4.2. For any 𝑤 ∈ 𝑁𝐶 𝑗 with 1 ≤ 𝑗 ≤ 𝑛, the complex in (4.1) is exact.

Proof. From Proposition A.6, it follows that the reduced simplicial homology (with
coefficients in 𝑘) of Δ+ (𝑤) is zero-dimensional in every degrees. This means that the
augmented simplicial chain complex is exact. □

Definition 4.3. For 0 ≤ 𝑗 ≤ 𝑛 − 1, the A-module maps

𝜕 𝑗 : A ⊗ 𝑘Δ
+
𝑗 −→ A ⊗ 𝑘Δ

+
𝑗−1

are defined by, if b ∈ D and 𝑓 = {𝑡0 ≻ · · · ≻ 𝑡 𝑗 } ∈ Δ+
𝑗
:

𝜕 𝑗 (b ⊗ 𝑓 ) :=
𝑗∑︁

𝑖=0
(−1)𝑖 · (b · tt𝑖−1 ,...,t0

𝑖
) ⊗ ( 𝑓 \{𝑡𝑖}) (4.2)

where (recalling that tu ∈ T corresponds to 𝑢𝑡𝑢 ∈ 𝑇) the element tt𝑖−1 ,...,t0
𝑖

∈ T corresponds
to 𝑡0 . . . 𝑡𝑖−1𝑡𝑖𝑡𝑖−1 . . . 𝑡0 ∈ 𝑇 .

It is clear from the definition that 𝜕 𝑗 is left A-linear, for the natural structure of left
A-module on tensor products A ⊗ 𝑘𝑋.

AsΔ+
−1 = {∅}, we can identifyA⊗𝑘Δ+

−1 withA⊗𝑘 = A and consider the augmentation
𝜖 as a map A ⊗ 𝑘Δ+

−1 → 𝑘 .

Theorem 4.4. The diagram

0 −→ A ⊗ 𝑘Δ+
𝑛−1

𝜕𝑛−1−→ . . .
𝜕0−→ A ⊗ 𝑘Δ+

−1
𝜖−→ 𝑘 −→ 0 (4.3)

is the minimal free resolution of 𝑘 by A-modules.

The rest of this section is devoted to the proof of Theorem 4.4. Before embarking on it,
let us note that the maps 𝜕𝑖 are homogeneous of degree 1 by their definition (4.2), and
thus (4.3) is a linear resolution. It follows then

Corollary 4.5 (Theorem 1.1). A and its quadratic dual P are Koszul algebras.

Definition 4.6. For b ∈ D and −1 ≤ 𝑖 ≤ 𝑛 − 1, we define:

Θ𝑖 (b) := Span𝑘

{
a ⊗ 𝑓 ∈ A ⊗ 𝑘Δ+

𝑖

�� a · nc( 𝑓 ) = b
}
. (4.4)
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Proposition 4.7. For any b ∈ D and 0 ≤ 𝑗 ≤ 𝑛 − 1, we have:

𝜕 𝑗 (Θ 𝑗 (b)) ⊂ Θ 𝑗−1 (b). (4.5)

Moreover, let 𝑤 ∈ 𝑁𝐶 such that w ∈ NC is the greatest common right divisor of b and c
in D. If b ≠ 1, then 𝑤 ≠ 1 and the complex

0 −→ Θ𝑛−1 (b)
𝜕𝑛−1−→ . . .

𝜕0−→ Θ−1 (b) −→ 0 (4.6)

is (𝑘-linearly) isomorphic to the augmented simplicial chain complex of Δ+ (𝑤) in (4.1).
In particular this complex is exact.

Proof. Let a ⊗ 𝑓 ∈ Θ 𝑗 (b). We denote 𝑓 = {𝑡0 ≻ · · · ≻ 𝑡 𝑗 } ∈ Δ+
𝑗
. We need to check that

each term in the right hand side of (4.2) is in Θ 𝑗−1 (b). Note that

nc( 𝑓 \{𝑡𝑖}) = 𝑡0 . . . 𝑡𝑖−1𝑡𝑖+1 . . . 𝑡 𝑗 ,

so
(𝑡0 . . . 𝑡𝑖−1𝑡𝑖𝑡𝑖−1 . . . 𝑡0) · nc( 𝑓 \{𝑡𝑖}) = 𝑡0 . . . 𝑡 𝑗 = nc( 𝑓 ).

Moreover, this is a reduced factorization since ℓ𝑇 (𝑛𝑐( 𝑓 \{𝑡𝑖})) = 𝑗 − 1 = ℓ𝑇 (𝑛𝑐( 𝑓 )) − 1.
We thus have the following relation in D:

tt𝑖−1 ,...,t0
𝑖

· nc( 𝑓 \{𝑡𝑖}) = nc( 𝑓 ).

So,
a · tt𝑖−1 ,...,t0

𝑖
· nc( 𝑓 \{𝑡𝑖}) = a · nc( 𝑓 ) = b,

the last equality coming from a ⊗ 𝑓 ∈ Θ 𝑗 (b). It follows that the right hand side of (4.2)
is in Θ 𝑗−1 (b).

To show the second part of the proposition, consider the 𝑘-linear projections 𝜋 𝑗 :
Θ 𝑗 (b) → 𝑘

Δ+
𝑗 , for −1 ≤ 𝑗 ≤ 𝑛 − 1, defined on the basis by:

𝜋 𝑗 (a ⊗ 𝑓 ) := 𝑓 .

Since a · nc( 𝑓 ) = b and D is a cancellable monoid, we can recover a from b and 𝑓 . So 𝜋 𝑗

is injective.
Let us show that its image is:

im(𝜋 𝑗 ) = Span𝑘

{
𝑓 ∈ Δ+

𝑗

�� nc( 𝑓 ) ≤𝑇 𝑤
}
= 𝑘

Δ+
𝑗
(𝑤) (4.7)

where 𝑤 is as in the proposition. From a · nc( 𝑓 ) = b if a ⊗ 𝑓 ∈ Θ 𝑗 (b), we get that nc( 𝑓 )
is a right divisor of b. It is also a right divisor of c by definition, and of w (which was
defined as the greatest right common divisor of b and c). This shows the left-to-right
inclusion in (4.7). Reciprocally, let 𝑓 ∈ Δ+

𝑗
be such that 𝑛𝑐( 𝑓 ) ≤𝑇 𝑤. So nc( 𝑓 ) is a right

divisor of w, and of b. Let a ∈ D be such that a · nc( 𝑓 ) = b. We thus have a ⊗ 𝑓 ∈ Θ 𝑗 (b)
and its image by 𝜋 𝑗 is 𝑓 .
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The next property is
𝛽 𝑗 ◦ 𝜋 𝑗 = 𝜋 𝑗−1 ◦ 𝜕 𝑗

for 0 ≤ 𝑗 ≤ 𝑛−1. This is straightforward by applying 𝜋 𝑗−1 on both sides of (4.2). It follows
that the map 𝜋 𝑗 realizes an isomorphism between the complexes in (4.1) and (4.6). □

Recall that we have an identification A ⊗ 𝑘Δ+
−1 ≃ A and that

A+ =
⊕
𝑖≥1

A𝑖 .

Note that we have im(𝜕0) ⊂ A+ ⊗ 𝑘Δ+
−1 .

Proposition 4.8. The diagram

0 −→ A ⊗ 𝑘Δ+
𝑛−1

𝜕𝑛−1−→ . . .
𝜕1−→ A ⊗ 𝑘Δ+

0
𝜕0−→ A+ ⊗ 𝑘Δ+

−1 −→ 0 (4.8)

is an exact complex of A-modules.

Proof. As the maps are clearly A-linear, it suffices to show that this is an exact complex
of 𝑘-vector spaces.

First, note that dimΘ𝑖 (1) = 0 if 𝑖 ≥ 0, and Θ−1 (1) is 1-dimensional, generated by
1 ⊗ ∅. Indeed, a · nc( 𝑓 ) = 1 implies a = 1 and nc( 𝑓 ) = 1.

It follows that: ⊕
b∈D\{1}

Θ𝑖 (b) =
{
A ⊗ 𝑘Δ+

𝑖 if 𝑖 ≥ 0,
A+ ⊗ 𝑘Δ+

−1 if 𝑖 = −1,

because the canonical bases of summands in the left-hand side form a partition of the
canonical basis of the right-hand side.

We can thus see the complex in (4.8) as the direct sum of the exact complexes in (4.6),
over b ∈ D such that b ≠ 1. The result follows. □

Proof of Theorem 4.4. As ker(𝜖) = A+ ≃ A+ ⊗ 𝑘Δ+
−1 , we deduce from Proposition 4.8

that the complex of A-modules in (4.3) is exact. We have thus built a free resolution
of 𝑘 . □

Remark 4.9. The resolution in Theorem 4.4 has finite length. In the context of Noetherian
algebras, this property is useful: a consequence is finiteness of the global dimension,
which permits to define the homological quadratic form. However, it is easily seen that
our algebra A is not Noetherian. We refer to [33] for more on this subject.

Corollary 4.10. P is a finite-dimensional algebra with Hilbert polynomial

Hilb(P, 𝑞) =
∑︁
𝑓 ∈Δ+

𝑞# 𝑓 .
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Proof. This is the link between the minimal free resolution and the dual algebra, see the
first equality in Proposition 3.2. □

This suggests that there exists a linear basis of P indexed byΔ+. An explicit construction
will be given in the next section.

It is interesting to note that we get a new proof of the combinatorial identity in (1.1).
Equation (3.5), and the previous corollary, give the respective Hilbert series of A and P.
So, the combinatorial identity follows from the second equality in Proposition 3.2.

4.2. Some Tor functor calculations

It is well-known that minimal free resolutions can be used to compute the Tor functor.
Explicitly, if 𝑀 is a right A-module, TorA

𝑖
(𝑀, 𝑘) is the 𝑖th homology group of the

complex
0 −→ 𝑀 ⊗ A ⊗ 𝑘Δ+

𝑛−1
𝜕𝑛−1−→ . . .

𝜕0−→ 𝑀 ⊗ A ⊗ 𝑘Δ+
−1 −→ 0, (4.9)

which is obtained from (4.3) by removing the last term and tensoring by 𝑀 .
As a simple example, if 𝑀 = 𝑘 then all maps are 0 and we have

TorA𝑖 (𝑘, 𝑘) = 𝑘Δ+
𝑖−1 .

This agrees with a general property of Koszul algebras, which says that in our case there
is an identification of 𝑘-vector spaces TorA

𝑖
(𝑘, 𝑘) ≃ P𝑖 .

In the next example, we consider the algebra of the braid group 𝑘 [B].

Proposition 4.11. We have:

TorA𝑖 (𝑘 [B], 𝑘) =
{

0 if 𝑖 > 0,
𝑘 if 𝑖 = 0.

Proof. In this case, we can do the same decomposition with spacesΘ(b). Since divisibility
is always possible in the group B, all the subcomplexes are isomorphic to the augmented
simplicial chain complex of Δ+. We omit details. □

Following [24, Proposition 4.4], the vanishing of these Tor for 𝑖 > 0 means that the
classifying space 𝐵D of the dual braid monoid is an Eilenberg–MacLane space of type
𝐾 (B, 1). To put that in perspective, let us mention the results of Dobrinskaya [22]. If
𝑊 is a Coxeter group (not necessarily of finite type), 𝑀 its braid monoid (as opposed
to the dual braid monoid, its generator are in bĳection with the simple reflections of
𝑊 rather than all reflections), then the 𝐾 (𝜋, 1) conjecture holds for 𝑊 if and only if
the classifying space 𝐵𝑀 is an Eilenberg–MacLane space. It could be interesting to
investigate if Dobrinskaya’s results can be adapted to the dual braid monoids, however
there is no general definition of these beyond finite type (and affine types, see [38, 43]).
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The next result is about the Milnor fiber associated to 𝑊 . There is a variety 𝑀 (𝑊)
associated to the hyperplane arrangement of𝑊 (see Section 7.3 for details). There is a
natural action of𝑊 , and the quotient 𝑀 (𝑊)/𝑊 is called the discriminant. It is the total
space of a fibration over the unit circle in C, and the fiber is called the Milnor fiber F𝑊 .

Proposition 4.12. The homology groups of the Milnor fiber F𝑊 are given by
TorA

𝑖
(𝑘 [𝑊], 𝑘) for 1 ≤ 𝑖 ≤ 𝑛, where the group algebra 𝑘 [𝑊] is given a right A-module

structure via the quotient map B → 𝑊 .

Proof. This is a reformulation of Zhang’s result in [50, Theorem 5.14], where he describes
an algebraic complex having the same homology as the Milnor fiber. □

5. Properties of the dual algebra

From the previous section, we know that P is a Koszul algebra with a nice Hilbert function.
Our goal is now to get further properties, and deepen the link between the algebra P and
the complex Δ+. It is straightforward to describe a presentation of P, but it is not always
sufficient to get properties of the algebra. Thus, we again use the minimal free resolution
of 𝑘 from the previous section.

As in the previous section, we drop the dependence on𝑊, 𝑐 in the objects defined. We
also fix a 𝑐-compatible reflection ordering ≺ on the set 𝑇 of reflections of𝑊 .

5.1. A presentation of the dual algebra

The algebra P has a generating set in bĳection with 𝑇 and T. To avoid confusion we
denote it T. Its elements corresponding to reflections 𝑡, 𝑢, etc., are denoted t, u, etc. By
the discussion in Section 3, T is the basis of A!

1 ≃ P1 dual to the basis T of A1.
Recall that, by definition of D, we have A = T (𝑘T)/⟨𝑅⟩ where 𝑅 ⊂ 𝑘T ⊗ 𝑘T is

generated by t ⊗ u − u ⊗ tu for 𝑡, 𝑢 ∈ 𝑇 such that 𝑡𝑢 ≤𝑇 𝑐.

Theorem 5.1. We have P = T (𝑘T)/⟨𝑅⊥⟩, where 𝑅⊥ ⊂ 𝑘T ⊗ 𝑘T is spanned by the
elements:

(1) t ⊗ t for 𝑡 ∈ 𝑇;

(2) t ⊗ u for 𝑡, 𝑢 ∈ 𝑇 such that 𝑡𝑢 ≰𝑇 𝑐;

(3) u1 ⊗ u𝑚 + u𝑚 ⊗ u𝑚−1 + · · · + u2 ⊗ u1 for each 𝑤 ∈ 𝑁𝐶2, where T(𝑤) = {𝑢1 ≺
· · · ≺ 𝑢𝑚}.
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Proof. For 𝑖 ∈ {1, 2, 3}, let 𝑅𝑖 ⊂ 𝑘T ⊗ 𝑘T be the subspace spanned by elements in (𝑖) as
in the theorem. Moreover, for 𝑤 ∈ 𝑁𝐶2, let 𝑅𝑤 ⊂ 𝑘T ⊗ 𝑘T be the subspace spanned by
elements t⊗u such that 𝑡𝑢 = 𝑤. Its linear dual can be seen as the subspace 𝑅∗

𝑤 ⊂ 𝑘T ⊗ 𝑘T

generated by elements t ⊗ u such that 𝑡𝑢 = 𝑤.
Clearly, 𝑘T ⊗ 𝑘T is the direct sum of 𝑅1, 𝑅2, and 𝑅𝑤 for 𝑤 ∈ 𝑁𝐶2.
By homogeneity of the relations defining D, we have 𝑅 =

⊕
𝑤∈𝑁𝐶2

(𝑅 ∩ 𝑅∗
𝑤). So, 𝑅⊥

is the direct sum of 𝑅1, 𝑅2, and (𝑅 ∩ 𝑅∗
𝑤)⊥ for 𝑤 ∈ 𝑁𝐶2 (where the orthogonal is taken

inside 𝑅𝑤).
It remains to identify these subspaces (𝑅 ∩ 𝑅∗

𝑤)⊥. Let 𝑢1, . . . , 𝑢𝑚 be as in the theorem.
It is easily seen that 𝑅∩𝑅∗

𝑤 is generated by the elements t𝑖 ⊗ t𝑖−1− t 𝑗 ⊗ t 𝑗−1 (taking indices
modulo𝑚), so that the orthogonal in 𝑅𝑤 is 1-dimensional generated by

∑𝑚
𝑖=1 t𝑖 ⊗t𝑖−1. □

Example 5.2. Take𝑊 = 𝔖𝑛 and 𝑐 = (1, 2, . . . , 𝑛) as in Example 2.10, where the relations
for the dual braid monoid D are given. The relations for the dual algebra are:

t
2
𝑖, 𝑗

for all 𝑖 < 𝑗 ;
t𝑖, 𝑗t𝑘,𝑙 if 𝑖 ≤ 𝑘 < 𝑗 ≤ 𝑙 or 𝑘 < 𝑖 ≤ 𝑙 < 𝑗 ;
t𝑖, 𝑗t𝑘,𝑙 + t𝑘,𝑙t𝑖, 𝑗 if 𝑖 < 𝑗 < 𝑘 < 𝑙 or 𝑖 < 𝑘 < 𝑙 < 𝑗 ;
t𝑖, 𝑗t 𝑗 ,𝑘 + t 𝑗 ,𝑘t𝑖,𝑘 + t𝑖,𝑘t𝑖, 𝑗 for 𝑖 < 𝑗 < 𝑘.

Remark 5.3. Each term t ⊗ u for t,u ∈ T appears exactly once in the relations given in
Theorem 5.1. It follows that 𝜏 :=

∑
t∈T t ∈ P1 satisfies 𝜏2 = 0. In this situation, the maps

P𝑖 → P𝑖+1 defined by left multiplication by 𝜏 form a complex of vector spaces.

5.2. Relating the minimal resolution to the dual algebra

It is well known to experts that the maps 𝜕𝑖 from Section 4 are related with the product of
P. For later use, we explain this point.

Let P∗ denote the linear dual of P. It is naturally a graded coalgebra, with the coproduct
𝛿 obtained by dualizing the product of P. In degree 1, we have P∗

1 = (𝑘T)∗ = 𝑘T. So it is
natural to denote generic elements of P∗ with x, y, etc.

This coalgebra P∗ can be used to define the Koszul complex of A. We denote

𝛿 (1, 𝑗−1) : P∗
𝑗 −→ P∗

1 ⊗ P∗
𝑗−1

the homogeneous part of 𝛿 of degree (1, 𝑗 − 1). Using Sweedler’s notation, we write
𝛿 (1, 𝑗−1) (x) =

∑
𝛿,1, 𝑗−1 x′ ⊗ x′′. We define A-module maps ð 𝑗 : A ⊗P∗

𝑗
→ A ⊗P∗

𝑗−1 by

ð 𝑗 (b ⊗ x) =
∑︁

𝛿,1, 𝑗−1
(bx′) ⊗ x′′. (5.1)
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From the general theory of Koszul algebras (see [26, Definition-Theorem 1, 𝑥𝑥𝑖] or [44,
Chapter 2]), the minimal free resolution of 𝑘 is:

0 −→ A ⊗ P∗
𝑛

ð𝑛−→ . . .
ð1−→ A ⊗ P∗

0
𝜖−→ 𝑘 −→ 0. (5.2)

By uniqueness of this resolution, the complexes in (4.3) and (5.2) are isomorphic. This
means there exist A-module isomorphisms

Ψ𝑖 : A ⊗ 𝑘Δ+
𝑖−1 −→ A ⊗ P∗

𝑖

such that:

• Ψ𝑖 is homogeneous of degree 0, for 0 ≤ 𝑖 ≤ 𝑛, i.e., Ψ𝑖 = 𝐼 ⊗ 𝜓𝑖 where
𝜓𝑖 : 𝑘Δ+

𝑖−1 → P∗
𝑖

is a 𝑘-linear isomorphism,

• ð𝑖 ◦ Ψ𝑖 = Ψ𝑖−1 ◦ 𝜕𝑖−1, for 1 ≤ 𝑖 ≤ 𝑛.

The homogeneity of Ψ𝑖 is natural when working in the category of graded modules,
see [15, Chapter 1.5] for instance. It is well-known that this kind of resolution can be built
inductively: knowing Ψ𝑖−1, there is a construction of Ψ𝑖 . Consequently, 𝜓1 can be chosen
to be the natural identification 𝑘𝑇 → 𝑘T, as can be checked by comparing ð1 and 𝜕0.

The following comes as no surprise:

Proposition 5.4. Define a linear isomorphism 𝑘Δ
+ → P∗ by 𝜓 :=

⊕𝑛

𝑖=0 𝜓𝑖 . Define
𝜂 := (𝜓 ⊗ 𝜓)−1 ◦ 𝛿 ◦ 𝜓. Then 𝜂 is a graded coproduct on 𝑘Δ+ such that:

• there is a coalgebra isomorphism 𝜓 : 𝑘Δ+ → P∗, having the canonical isomor-
phism 𝑘𝑇 → 𝑘T as homogeneous component of degree 1,

• Using Sweedler’s notation as in (5.1), we have:

𝜕𝑖 (b ⊗ 𝑓 ) =
∑︁

𝜂,1,𝑖−1
(bf′) ⊗ 𝑓 ′′. (5.3)

Proof. It is straightforward to check that 𝜂 is a graded coproduct on 𝑘Δ+ , and 𝜓 satisfies
the condition in the first point of the proposition.

Moreover, for b ⊗ 𝑓 ∈ A ⊗ 𝑘Δ+
𝑖−1 , we have:

𝜕𝑖−1 (b ⊗ 𝑓 ) = (Ψ−1
𝑖−1 ◦ ð𝑖 ◦ Ψ𝑖) (b ⊗ 𝑓 ) = (Ψ−1

𝑖−1 ◦ ð𝑖) (b ⊗ 𝜓𝑖 ( 𝑓 )).
Using (5.1) and 𝛿 ◦ 𝜓 = (𝜓 ⊗ 𝜓) ◦ 𝜂, this gives:

𝜕𝑖−1 (b ⊗ 𝑓 ) = Ψ−1
𝑖−1

( ∑︁
𝜂,1,𝑖−1

(
b𝜓1 ( 𝑓 ′)) ⊗ 𝜓𝑖−1 ( 𝑓 ′′)

)
.

From the assumption on 𝜓1, and Ψ𝑖−1 = 𝐼 ⊗ 𝜓𝑖−1, we get (5.3). □
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Remark 5.5. One may ask if there is an explicit coproduct 𝜂 satisfying (5.3). The formula
for 𝜕𝑖 suggests an unshuffling (the dual of a shuffle product), with a twist to take into
account the conjugation (i.e., that we have tt𝑖−1 ,...,t0

𝑖
rather than just t𝑖 . This will lead us to

the developments in Section 7.

5.3. A grading of the dual algebra

We show that P is a direct sum of subspaces indexed by noncrossing partitions, in such a
way that the product behaves well with respect to this decomposition.

Lemma 5.6. Let 𝛿 (1 𝑗 ) denote the homogeneous component of degree (1, . . . , 1) of the
𝑗-fold coproduct:

𝛿 (1 𝑗 ) : P∗
𝑗 −→ (P∗

1 )
⊗ 𝑗 .

Then the image of 𝛿 (1 𝑗 ) is spanned by elements of the form t1 ⊗ · · · ⊗ t 𝑗 where 𝑡1 . . . 𝑡 𝑗 is
a reduced factorization of some 𝑤 ∈ 𝑁𝐶 𝑗 .

Proof. Note that 𝜓⊗ 𝑗

1 is the natural identification between (𝑘𝑇 )⊗ 𝑗 → (𝑘T)⊗ 𝑗 . Using the
isomorphism 𝜓 as in Proposition 5.4, it suffices to prove the statement with 𝑘Δ+ and the
map 𝜂 (1 𝑗 ) defined in the same way as 𝛿 (1 𝑗 ) .

Let 𝑓 ∈ Δ+
𝑗−1. By an induction on 𝑗 , we show that 𝜂 (1 𝑗 ) ( 𝑓 ) only contains terms

𝑢0 ⊗ · · · ⊗ 𝑢 𝑗−1 such that 𝑢0 . . . 𝑢 𝑗−1 = nc( 𝑓 ). Assume 𝑗 ≥ 2, since 𝑗 = 1 is immediate.
By (5.3) and (4.2), if 𝑓 = {𝑡0 ≻ · · · ≻ 𝑡 𝑗−1} ∈ Δ+

𝑗−1, we have:

𝜂 (1, 𝑗−1) ( 𝑓 ) =
𝑗−1∑︁
𝑖=0

(−1)𝑖 · (𝑡𝑡𝑖−1 ,...,𝑡0
𝑖

) ⊗ ( 𝑓 \{𝑡𝑖}).

Then, by coassociativity we have:

𝜂 (1 𝑗 ) ( 𝑓 ) =
𝑗−1∑︁
𝑖=0

(−1)𝑖 · (𝑡𝑡𝑖−1 ,...,𝑡0
𝑖

) ⊗ 𝜂 (1 𝑗−1 ) ( 𝑓 \{𝑡𝑖}).

Using the induction hypothesis, this is a linear combination of (𝑡𝑡𝑖−1 ,...,𝑡0
𝑖

) ⊗𝑢0 ⊗ · · · ⊗𝑢 𝑗−2
where 𝑢0 . . . 𝑢 𝑗−2 = nc( 𝑓 \{𝑡𝑖}). We have seen previously that (𝑡𝑡𝑖−1 ,...,𝑡0

𝑖
) · nc( 𝑓 \{𝑡𝑖}) =

nc( 𝑓 ). The result follows. □

Proposition 5.7. Let 𝑗 ≥ 0 and 𝑡1, . . . , 𝑡 𝑗 ∈ 𝑇 . If 𝑡1 . . . 𝑡 𝑗 ∉ 𝑁𝐶 𝑗 , we have t1 . . . t 𝑗 = 0
in P.

Proof. Assume that 𝑡1 . . . 𝑡 𝑗 ∉ 𝑁𝐶 𝑗 . We want to show that t1 ⊗ · · · ⊗ t 𝑗 is in the
kernel of the 𝑗-fold product P⊗ 𝑗

1 → P 𝑗 . By duality, this condition is equivalent to
t1 ⊗ · · · ⊗ t 𝑗 ∈ im(𝛿 (1 𝑗 ) )⊥. By the previous lemma, im(𝛿 (1 𝑗 ) ) is linearly generated by
elements that are orthogonal to t1 ⊗ · · · ⊗ t 𝑗 . The result follows. □
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Remark 5.8. The results about P in the rest of this section will follow from the previous
result. One might ask if this proposition can be proved directly from the presentation
of the algebra in Theorem 5.1 and rewriting techniques. We managed to do this in the
simply-laced case. The general case is treated in Zhang’s thesis [50].

Definition 5.9. For 0 ≤ 𝑗 ≤ 𝑛 and 𝑤 ∈ 𝑁𝐶 𝑗 , we define:

P𝑤 := Span𝑘

{
t1 . . . t 𝑗

�� 𝑡1 . . . 𝑡 𝑗 = 𝑤}
⊂ P 𝑗 , (5.4)

𝐹𝑤 := Span𝑘

{
t1 ⊗ · · · ⊗ t 𝑗

�� 𝑡1 . . . 𝑡 𝑗 = 𝑤}
⊂ T (𝑘T). (5.5)

Remark 5.10. Keeping the notation above, note that the generators of 𝐹𝑤 contain no factor
t ⊗ t and no factor t ⊗ u where 𝑡𝑢 ≰𝑇 𝑐. So, as vector spaces, P𝑤 = 𝐹𝑤/(𝐹𝑤 ∩ ⟨𝑅3⟩)
where 𝑅3 is the span of Relations (3) in Theorem 5.1.

Proposition 5.11. We have:

P =
⊕
𝑤∈𝑁𝐶

P𝑤 . (5.6)

This decomposition is graded in the following sense: for 𝑤, 𝑤′ ∈ 𝑁𝐶 and (x,x′) ∈
P𝑤 × P𝑤′ , we have:

• xx
′ ∈ P𝑤𝑤′ if 𝑤𝑤′ ∈ 𝑁𝐶 and ℓ𝑇 (𝑤) + ℓ𝑇 (𝑤′) = ℓ𝑇 (𝑤𝑤′),

• xx
′ = 0 otherwise.

Proof. Let us define 𝐹 =
⊕

𝑤∈𝑁𝐶 𝐹𝑤 . It follows from Proposition 5.7 that P a quotient
of 𝐹 in a natural way. By the argument in Remark 5.10, we have P = 𝐹/(𝐹 ∩ ⟨𝑅3⟩). It
remains to show that 𝐹 ∩ ⟨𝑅3⟩ =

⊕
𝑤∈𝑁𝐶 (𝐹𝑤 ∩ ⟨𝑅3⟩). This easily follows from the fact

that for each relation t1 ⊗ t𝑚 + t𝑚 ⊗ t𝑚−1 + · · · + t2 ⊗ t1 ∈ 𝑅3 as in Theorem 5.1, we
have 𝑡1𝑡𝑚 = 𝑡𝑚𝑡𝑚−1 = · · · = 𝑡3𝑡2 = 𝑡2𝑡1.

The second part of the proposition follows from the definition of P𝑤 and Proposition 5.7.
□

5.4. A basis of the dual algebra

We now construct a 𝑘-linear basis of P, as announced after Corollary 4.10.
If 𝑓 = {𝑡1 ≻ · · · ≻ 𝑡 𝑗 } ∈ Δ+ is any face, we denote f := t1 . . . t 𝑗 ∈ P 𝑗 . Note that it is

quite useful to have fixed an ordering of the vertices of 𝑓 : since P is not commutative,
one needs to fix the order in which the reflections t𝑖 are multiplied to get a well-defined
element.
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Theorem 5.12. A basis of P𝑤 as a vector space is:{
f
�� 𝑓 ∈ Δ+, nc( 𝑓 ) = 𝑤

}
. (5.7)

In particular, a basis of P as a vector space is
{
f
�� 𝑓 ∈ Δ+}.

Proof. Let 0 ≤ 𝑗 ≤ 𝑛 and 𝑤 ∈ 𝑁𝐶 𝑗 , and consider a monomial t1 . . . t 𝑗 . Suppose that
there exists 1 ≤ 𝑖 < 𝑗 such that 𝑡𝑖 ≺ 𝑡𝑖+1. Let T(𝑡𝑖𝑡𝑖+1) = {𝑢1, . . . , 𝑢𝑚}, indexed so that
𝑢1 ≺ · · · ≺ 𝑢𝑚. We thus have the following relation in P:

u1u𝑚 + u𝑚u𝑚−1 + · · · + u3u2 + u2u1 = 0.

By the property of a reflection ordering, we have 𝑡𝑖 = 𝑢1 and 𝑡𝑖+1 = 𝑢𝑚, as 𝑢1𝑢𝑚 = 𝑡𝑖𝑡𝑖+1
is the unique increasing factorization of 𝑡𝑖𝑡𝑖+1. We use the above relation to replace
t𝑖t𝑖+1 = u1u𝑚 with −(u𝑚u𝑚−1 + · · · + u2u1) in t1 . . . t𝑘 . The resulting monomials are
all larger than t1 . . . t𝑘 for the lexicographic order on monomials induced by ≺.

It follows that any of the generating monomial of P𝑤 can eventually be rewritten as a
linear combination of decreasing monomials, i.e., elements of the set (5.7).

It also follows that {f : 𝑓 ∈ Δ+} spansP. By Corollary 4.10, we know that dimP = #Δ+,
so this is a 𝑘-linear basis. This permits us to conclude the proof. □

We will revisit this proof in the next section, and get an explicit expansion in
Theorem 6.5. Below, recall that 𝜇𝑁𝐶 is the Möbius function of 𝑁𝐶.

Corollary 5.13. The dimensions of the homogeneous components of P are given by:

dim(P𝑤) = (−1)ℓ𝑇 (𝑤)𝜇𝑁𝐶 (𝑤).

Proof. The number of 𝑓 ∈ Δ+ such that 𝑛𝑐( 𝑓 ) = 𝑤 is known to be the Möbius number
𝜇𝑁𝐶 (1, 𝑤). This follows from the case 𝑤 = 𝑐. See [19] for details. □

Remark 5.14. We have shown that each monomial in P(𝑊) can be rewritten as a
decreasing monomial, and these form a basis. This means that we have built a Poincaré–
Birkhoff–Witt basis (PBW basis) of P(𝑊). It is known that a quadratic algebra with a
such a basis is Koszul (see [35, Chapter 4]).

Therefore, we have an alternative path to prove koszulity of A(𝑊) and P(𝑊): if
we can get the vanishing property (Proposition 5.7) from the presentation of P(𝑊) in
Theorem 5.1, we obtain koszulity by means of the PBW basis. As mentioned in Remark 5.8,
such a proof of Proposition 5.7 is given by Zhang [50].

6. A geometric rule for the product in the dual algebra

Having just built a basis of P in Theorem 5.12, it is natural to ask about the structure
constants of P with respect to this basis: that is, what is the expansion of the product of
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basis elements in the basis ? The goal of this section is to give an elegant geometric rule
to answer this question, see Theorem 6.5 and Corollary 6.6. In particular, we will see that
the structure constants are in {−1, 0, 1}: that is, the desired expansion is multiplicity-free.

The result relies on a geometric realization of the cluster complex Δ, that we describe
now.

6.1. The cluster fan

Fomin and Zelevinsky [25] showed that the cluster complex naturally defines a complete
simplicial fan (see [51] for terminology about simplicial fans and cones). This result also
holds in the present situation (where𝑊 is possibly non crystallographic, and 𝑐 possibly
non bipartite), see [47].

Definition 6.1. If 𝑡1, . . . , 𝑡 𝑗 ∈ 𝑇 are such that 𝑡1 . . . 𝑡 𝑗 ∈ 𝑁𝐶 𝑗 , we denote:

𝛾(𝑡1, . . . , 𝑡 𝑗 ) := SpanR+ {𝜌(𝑡1), . . . , 𝜌(𝑡 𝑗 )}.

Moreover, if 𝑓 = {𝑡1 ≻ · · · ≻ 𝑡 𝑗 } ∈ Δ+, we denote 𝛾( 𝑓 ) := 𝛾(𝑡1, . . . , 𝑡 𝑗 ).

Note that with the above notation, 𝛾(𝑡1, . . . , 𝑡 𝑗 ) and 𝛾( 𝑓 ) are simplicial cones of
dimension 𝑗 , as the generating vectors are linearly independent by Lemma 2.2. Recall
that a fan is a set of cones which such that is stable under taking faces, and intersection.
The support of a cone is the union of all its cones.

Proposition 6.2 ([19, 25, 47]). The cones (𝛾( 𝑓 )) 𝑓 ∈Δ+ form a simplicial fan. Its support
is the cone generated by simple roots.

We refer to this fan as the positive cluster fan (relative to𝑊, 𝑐). This fan is clearly not
complete, since it is defined as a subfan of the one corresponding to the whole cluster
complex Δ. Rather than the total space, the union of 𝛾( 𝑓 ) for 𝑓 ∈ Δ+ is the positive span
of positive roots [19].

A similar result holds for each subcomplex Δ(𝑤) with 𝑤 ∈ 𝑁𝐶 defined in Appendix A.
It follows from the previous proposition applied to the subgroup Γ(𝑤), with 𝑤 as its
standard Coxeter element.

Proposition 6.3. For each 𝑤 ∈ 𝑁𝐶, the cones (𝛾( 𝑓 )) 𝑓 ∈Δ+ (𝑤) form a simplicial fan.

6.2. Product in P

Through this section, we fix a tuple of reflections (𝑡1, . . . , 𝑡 𝑗 ), and let 𝑤 = 𝑡1 . . . 𝑡 𝑗 . By
Proposition 5.7, we know the product t1 . . . t 𝑗 is zero if 𝑤 ∉ 𝑁𝐶 𝑗 . We can thus restrict to
the following case: 𝑤 ∈ 𝑁𝐶 𝑗 , and thus (𝑡1, . . . , 𝑡 𝑗 ) is a reduced expression for 𝑤.
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v1 v2 vm−1 vm

Figure 6.1. Positive cluster fan in rank 2.

Let
𝑀 (𝑡1, . . . , 𝑡 𝑗 ) := SpanR{𝜌(𝑡1), . . . , 𝜌(𝑡 𝑗 )}.

This is the moved space of 𝑤, see [2, Chapter 4]. This space is endowed with an orientation,
by declaring (𝜌(𝑡1), . . . , 𝜌(𝑡 𝑗 )) as a positive ordered basis. Moreover, 𝛾(𝑡1, . . . , 𝑡 𝑗 ) is
full-dimensional in 𝑀 (𝑡1, . . . , 𝑡 𝑗 ), by Lemma 2.2.

Definition 6.4 (The sign𝜔). If 𝑢1, . . . , 𝑢 𝑗 ∈ 𝑇 are such that 𝑢1 . . . 𝑢 𝑗 = 𝑤, we define a sign
𝜔(𝑢1, . . . , 𝑢 𝑗 ) ∈ {±1} by the condition that the value is 1 (resp.,−1) if (𝜌(𝑢1), . . . , 𝜌(𝑢 𝑗 ))
is a positive (resp., negative) basis of 𝑀 (𝑡1, . . . , 𝑡 𝑗 ). If 𝑓 = {𝑢1 ≻ · · · ≻ 𝑢 𝑗 } ∈ Δ+ and
nc( 𝑓 ) = 𝑤, we denote 𝜔( 𝑓 ) = 𝜔(𝑢1, . . . , 𝑢 𝑗 ).

Note that in the situation above, (𝜌(𝑢1), . . . , 𝜌(𝑢 𝑗 )) is a basis of 𝑀 (𝑤) by Lemma 2.2.
So 𝜔(𝑢1, . . . , 𝑢 𝑗 ) is well-defined.

Theorem 6.5. Let

𝑋 (𝑡1, . . . , 𝑡 𝑗 ) :=
{
𝑓 ∈ Δ+ �� nc( 𝑓 ) = 𝑤 and 𝛾( 𝑓 ) ⊂ 𝛾(𝑡1, . . . , 𝑡 𝑗 )

}
.

Then, the cones 𝛾( 𝑓 ) for 𝑓 ∈ 𝑋 (𝑡1, . . . , 𝑡 𝑗 ) are the maximal cones of a simplicial fan with
support 𝛾(𝑡1, . . . , 𝑡 𝑗 ), and there holds

t1 . . . t 𝑗 =
∑︁

𝑓 ∈𝑋 (𝑡1 ,...,𝑡 𝑗 )
𝜔( 𝑓 ) · f . (6.1)

We have the following immediate corollary, which describes the structure constants of
P with respect to the basis given in Theorem 5.12.

Corollary 6.6. Let 𝑓1 = {𝑡1 ≻ · · · ≻ 𝑡𝑖}, 𝑓2 = {𝑢1 ≻ · · · ≻ 𝑢 𝑗 } be two faces of Δ+. Then
f1f2 = 0 unless (𝑡1, 𝑡2, . . . , 𝑡𝑖 , 𝑢1, 𝑢2, . . . , 𝑢 𝑗 ) is a reduced sequence whose product is in
𝑁𝐶. In that case

f1f2 =
∑︁

𝑓 ∈𝑋 (𝑡1 ,...,𝑡𝑖 ,𝑢1 ,...,𝑢 𝑗 )
𝜔( 𝑓 ) · f .
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Example 6.7. Recall that the simple reflections 𝑠1, . . . , 𝑠𝑛 are indexed so that our Coxeter
element is 𝑐 = 𝑠1 . . . 𝑠𝑛. Then 𝛾(𝑠1, . . . , 𝑠𝑛) contains all positive roots, so it contains all
the cones 𝛾( 𝑓 ) where 𝑓 is a 𝑐-cluster. By the previous theorem, there holds in P:

s1 . . . s𝑛 =
∑︁

𝑓 ∈Δ+
𝑛−1

𝜔( 𝑓 ) · f .

Proof of Theorem 6.5. Let (𝑡1, . . . , 𝑡 𝑗 ) be as in the statement of the theorem. It is an
ordered face of Δ+ if and only if we have 𝑡1 ≻ · · · ≻ 𝑡 𝑗 . In this case the statement is clear.

We may now assume that there exists 𝑖 such that 𝑡𝑖 ≺ 𝑡𝑖+1. Then Γ(𝑡𝑖𝑡𝑖+1) is a rank
2 reflection subgroup of 𝑊 with Coxeter generators 𝑡𝑖 and 𝑡𝑖+1, faithfully acting in the
plane 𝑃 spanned by the roots 𝜌(𝑡𝑖) and 𝜌(𝑡𝑖+1). By Lemma 2.1, its reflection set is
𝑇 (𝑡𝑖𝑡𝑖+1) = {𝑣1 = 𝑡𝑖 , 𝑣2, . . . , 𝑣𝑚 = 𝑡𝑖+1}, where the corresponding roots 𝜌(𝑣𝑖) are linearly
ordered as in Figure 6.1 or its mirror image. It follows that:

• the cones 𝛾(𝑣𝑖 , 𝑣𝑖−1) for 1 < 𝑖 ≤ 𝑚 form a simplicial fan in dimension 2, with
support 𝛾(𝑣𝑚, 𝑣1), and

• the ordered bases (𝑣𝑖 , 𝑣𝑖−1) for 1 < 𝑖 ≤ 𝑚 and (𝑣𝑚, 𝑣1) have the same orientation.

We now lift this to dimension 𝑗 . From the relation

t𝑖t𝑖+1 = v1v𝑚 = −
𝑚−1∑︁
𝑖=1

v𝑖 ⊗ v𝑖−1 ∈ 𝑅3

we get:

t1 . . . t 𝑗 = −
𝑚−1∑︁
𝑖=1

t1 . . . t𝑖−1 (v𝑖 ⊗ v𝑖−1)t𝑖+2 . . . t 𝑗 . (6.2)

Now on the right hand side of (6.2), note that all monomials are strictly smaller in
lexicographic ordering than t1 . . . t 𝑗 , so we can assume the result holds for them by
induction. The partition of 𝑋 (𝑡1, . . . , 𝑡 𝑗 ) into cones is obtained by lifting the 2-dimensional
picture detailed above. The product formula then follows from the fact that each term
𝑓 ′ in the sum (6.2) has 𝜔( 𝑓 ′) = −𝜔( 𝑓 ) once again by the analysis of the 2-dimensional
case. □

7. The Nichols algebra

The goal of this section is to build on Remark 5.5. Going back to the more natural
framework of algebras, rather than coalgebras, this observation suggests the introduction
of the twisted shuffle product that we define below. It will lead to an alternative construction
of the algebra P, as a quotient of a Nichols algebra. This construction is an alternative
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way to get properties proved in Section 5 – though not the most natural way when starting
from the braid monoid. It will also connect our work with the Orlik–Solomon algebra.

This realization of the algebra P(𝑊) as a quotient of N(𝑊) was also obtained
independently in Zhang’s thesis [50], where he uses this algebra to compute the homology
of Milnor fibers. As explained in Remarks 5.8 and 5.14, his results can be used to get an
alternative path to koszulity of A and P.

7.1. Definitions

The unsigned shuffle product is common in algebraic combinatorics. The signed version
used here (the product� defined below) is natural in a geometric context (for example, it
defines the wedge product on antisymmetric multilinear maps, or differential forms).

Definition 7.1. The shuffle product � on T (𝑘𝑇 ) is defined recursively on the canonical
basis by

(𝑡1 ⊗ · · · ⊗ 𝑡𝑖) � (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 ) = 𝑡1 ⊗
(
(𝑡2 ⊗ · · · ⊗ 𝑡𝑖) � (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 )

)
+ (−1)𝑖𝑢1 ⊗

(
(𝑡1 ⊗ · · · ⊗ 𝑡𝑖) � (𝑢2 ⊗ · · · ⊗ 𝑢 𝑗 )

)
.

Similarly, its twisted analog �̃ is defined by:

(𝑡1 ⊗ · · · ⊗ 𝑡𝑖) �̃ (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 ) = 𝑡1 ⊗
(
(𝑡2 ⊗ · · · ⊗ 𝑡𝑖) �̃ (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 )

)
+ (−1)𝑖𝑢1 ⊗

(
(𝑡𝑢1

1 ⊗ · · · ⊗ 𝑡𝑢1
𝑖
) �̃ (𝑢2 ⊗ · · · ⊗ 𝑢 𝑗 )

)
.

These products have the same unit as the usual product of T (𝑘𝑇 ).

For example,

(𝑡1 ⊗ 𝑡2) �̃ (𝑢1 ⊗ 𝑢2) = 𝑡1 ⊗ 𝑡2 ⊗ 𝑢1 ⊗ 𝑢2 − 𝑡1 ⊗ 𝑢1 ⊗ 𝑡𝑢1
2 ⊗ 𝑢2

+ 𝑡1 ⊗ 𝑢1 ⊗ 𝑢2 ⊗ 𝑡𝑢1𝑢2
2 + 𝑢1 ⊗ 𝑡𝑢1

1 ⊗ 𝑡𝑢1
2 ⊗ 𝑢2

− 𝑢1 ⊗ 𝑡𝑢1
1 ⊗ 𝑢2 ⊗ 𝑡𝑢1𝑢2

2 + 𝑢1 ⊗ 𝑢2 ⊗ 𝑡𝑢1𝑢2
1 ⊗ 𝑡𝑢1𝑢2

2 .

Definition 7.2. We denote N ⊂ T (𝑘𝑇 ) the �̃-subalgebra generated by degree 1 elements
(i.e., reflections). We refer to N as the Nichols algebra.

In general, there is a Nichols algebra associated to each braided vector space (a general
reference on this subject is [48]). Nichols algebras are braided Hopf algebras in the sense
of [36], as the braiding intervenes in the compatibility relation between the product and
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the coproduct. Only the product is relevant here. The relevant braiding on 𝑘𝑇 is a linear
endomorphism 𝜍 of 𝑘𝑇 ⊗ 𝑘𝑇 defined by:

𝜍 (𝑡 ⊗ 𝑢) := −𝑢 ⊗ 𝑡𝑢.

It is straightforward to check that 𝜍 satisfies the Yang–Baxter equation, so that (𝑘𝑇 , 𝜍) is
a braided vector space. Some properties of N follow from [39], see below.

Combinatorially, it should be noted that 𝜍 is the signed version of the left Hurwitz
move, which consists in replacing a factor 𝑡𝑖 ⊗ 𝑡𝑖+1 with 𝑡𝑖+1 ⊗ 𝑡𝑡𝑖+1

𝑖
in a tensor 𝑡1 ⊗ · · · ⊗ 𝑡 𝑗 .

A key point of these moves is that the product map 𝑡1 ⊗ · · · ⊗ 𝑡 𝑗 ↦→ 𝑡1 . . . 𝑡 𝑗 is invariant.
Similarly, we get a decomposition of N that makes it a graded algebra, where the grading
takes values in𝑊 × N (with the obvious monoid structure).

Lemma 7.3. For (𝑤, 𝑗) ∈ 𝑊 × N, let

N(𝑤, 𝑗 ) := Span𝑘

{
𝑡1 �̃ · · · �̃ 𝑡 𝑗

�� 𝑡1, . . . , 𝑡 𝑗 ∈ 𝑇, 𝑡1 . . . 𝑡 𝑗 = 𝑤}
.

Then we have:
N =

⊕
(𝑤, 𝑗 ) ∈𝑊×N

N(𝑤, 𝑗 )

and
N(𝑤, 𝑗 ) �̃ N(𝑤′ , 𝑗′ ) ⊂ N(𝑤𝑤′ , 𝑗+ 𝑗′ ) .

Moreover, if dimN(𝑤, 𝑗 ) > 0, then ℓ𝑇 (𝑤) = 𝑗 − 2𝑖 for some 𝑖 ∈ N.

Proof. In Definition 7.1, it is easily seen that all terms in (𝑡1 ⊗ · · · ⊗ 𝑡𝑖) �̃ (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 )
are obtained from 𝑡1 ⊗ · · · ⊗ 𝑡𝑖 ⊗ 𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 by applying 𝜍 on some adjacent pairs. It
follows that all terms are in the same subspace N(𝑡1...𝑡𝑖𝑢1...𝑢 𝑗 ,𝑖+ 𝑗 ) . The existence of the
grading easily follows.

If dim(N(𝑤, 𝑗 ) ) > 0, from a nonzero element we get 𝑡1, . . . , 𝑡 𝑗 ∈ 𝑇 such that 𝑡1 . . . 𝑡 𝑗 =
𝑤. Therefore, ℓ𝑇 (𝑤) ≤ 𝑗 by definition of ℓ𝑇 . That they have the same parity follows from
the fact that each reflection has odd Coxeter length. □

Below, we can assume that the indices (𝑤, 𝑗) always satisfy the condition ensuring
that dim(N(𝑤, 𝑗 ) ) > 0, in particular ℓ𝑇 (𝑤) ≤ 𝑗 .

Let us mention some interesting properties ofN taken from Milinski and Schneider [39]
(these won’t be used in the rest of the section).

Proposition 7.4 ([39, Theorem 5.8]). For each 𝑤 ∈ 𝑊 , let N𝑤 =
⊕

𝑗∈NN𝑤, 𝑗 . The vector
spaces N𝑤 have all the same dimension.

This result implies that N is finite-dimensional if and only if N𝑒 is (where 𝑒 is the unit
of𝑊). Note that N𝑒 is a subalgebra of N . It would be very interesting to know if these
algebras are indeed finite-dimensional.
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Proposition 7.5 ([39, Corollary 5.9]). For each 𝑤 ∈ 𝑊 , let 𝑥𝑤 = 𝑠1 �̃ 𝑠2 �̃ . . . where
𝑠1𝑠2 . . . is a reduced expression for 𝑤 (as a product of elements in 𝑆). Then:

• 𝑥𝑤 does not depend on the chosen reduced expression, up to a sign;

• (𝑥𝑤)𝑤∈𝑊 is a linear basis of the subalgebra of N generated by 𝑆;

• we have 𝑥𝑤𝑥𝑤′ = ±𝑥𝑤𝑤′ if ℓ𝑆 (𝑤𝑤′) = ℓ𝑆 (𝑤) + ℓ𝑆 (𝑤′) (where ℓ𝑆 is Coxeter
length), and 0 otherwise.

Note that the subalgebera in the previous proposition somewhat resembles the Nilcoxeter
algebra of𝑊 .

7.2. The dual algebra as a quotient of the Nichols algebra

Our goal is to build the algebra P(𝑊, 𝑐) as a quotient of N . We develop this point of
view from scratch, i.e., independently from the results about P(𝑊, 𝑐) obtained above. We
thus obtain a definition and some properties of an algebra P′ (𝑊, 𝑐), and only at the end
of this section will be discussed the fact that it is isomorphic to P(𝑊, 𝑐).

Lemma 7.6. For each Coxeter element 𝑐, the subspace 𝐽𝑐 ⊂ N defined by

𝐽𝑐 :=
⊕

(𝑤, 𝑗 ) ∈𝑊×N, 𝑤∉𝑁𝐶 𝑗 (𝑊,𝑐)
N(𝑤, 𝑗 ) .

is an ideal. Moreover, it is generated by the degree 2 elements 𝑡 �̃ 𝑢 such that 𝑡, 𝑢 ∈ 𝑇
and 𝑡𝑢 ∉ 𝑁𝐶2 (𝑊, 𝑐).

Proof. As 𝐽𝑐 is the sum of a subset of the homogeneous components, being an ideal
amounts to a stability property of the bigrading.

Let (𝑤, 𝑗), (𝑤′, 𝑗 ′) ∈ 𝑊 ×N, such that ℓ𝑇 (𝑤) ≤ 𝑗 and ℓ𝑇 (𝑤′) ≤ 𝑗 ′. If 𝑤𝑤′ ∈ 𝑁𝐶 𝑗+ 𝑗′ ,
we have

𝑗 + 𝑗 ′ = ℓ𝑇 (𝑤𝑤′) ≤ ℓ𝑇 (𝑤) + ℓ𝑇 (𝑤′) ≤ 𝑗 + 𝑗 ′,
and it follows that ℓ𝑇 (𝑤) = 𝑗 and ℓ𝑇 (𝑤′) = 𝑗 ′. It also follows that 𝑤 and 𝑤′ are below
𝑤𝑤′ in the absolute order, so 𝑤 ∈ 𝑁𝐶 𝑗 and 𝑤′ ∈ 𝑁𝐶 𝑗′ . By contraposition, 𝑤 ∉ 𝑁𝐶 𝑗 or
𝑤′ ∉ 𝑁𝐶 𝑗′ implies 𝑤𝑤′ ∉ 𝑁𝐶 𝑗+ 𝑗′ . This property of the bigrading shows that 𝐽𝑐 is an
ideal.

The fact that 𝐽𝑐 is generated by its degree 2 elements follows from the contraposition
of the combinatorial property: if 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇 are pairwise distinct and such that
𝑡𝑖𝑡 𝑗 ∈ 𝑁𝐶2 (𝑊, 𝑐) for all 𝑖 < 𝑗 , then 𝑡1 . . . 𝑡𝑘 ∈ 𝑁𝐶𝑘 (𝑊, 𝑐) and this element is the meet
of 𝑡1, . . . , 𝑡𝑘 in 𝑁𝐶 (𝑊, 𝑐). Assume by induction that this holds for 𝑘 − 1 (the case 𝑘 = 2
is clear). We thus have 𝑡2 . . . 𝑡𝑘 ∈ 𝑁𝐶𝑘−1 (𝑊, 𝑐) by induction hypothesis. If 𝑖 ≥ 2, from
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𝑡1𝑡𝑖 ∈ 𝑁𝐶2 (𝑊, 𝑐) and 𝑡1 ≠ 𝑡𝑖 , we get 𝑡𝑖 ≤ 𝑡1𝑐. As 𝑡2 . . . 𝑡𝑘 is the meet of 𝑡2, . . . , 𝑡𝑘 in
𝑁𝐶 (𝑊, 𝑐), we also have 𝑡2 . . . 𝑡𝑘 ≤ 𝑡1𝑐. Eventually,

𝑡1 ∨ · · · ∨ 𝑡𝑘 = 𝑡1 ∨ (𝑡2 ∨ · · · ∨ 𝑡𝑘) = 𝑡1 ∨ (𝑡2 . . . 𝑡𝑘)
and this is easily seen to be 𝑡1 . . . 𝑡𝑘 . □

Definition 7.7. We define the algebra P′ (𝑊, 𝑐) as the quotient N/𝐽𝑐. We also define
P′
𝑤 (𝑊, 𝑐) ⊂ P′ (𝑊, 𝑐) for 𝑤 ∈ 𝑁𝐶 (𝑊, 𝑐) as the quotient of N𝑤,ℓ𝑇 (𝑤) by its intersection

with 𝐽𝑐 (as a vector space).

It was mentioned above that 𝐽𝑐 is an homogeneous ideal of N . It follows that the
quotient inherits from the grading N , and we immediately get:

P′ (𝑊, 𝑐) =
⊕

𝑤∈𝑁𝐶 (𝑊,𝑐)
P′
𝑤 (𝑊, 𝑐)

Moreover this is a grading in the sense of Proposition 5.11.
Note that in the previous definition, 𝑐 is not assumed to be a standard Coxeter

element, it can be any Coxeter element. By considering a map 𝛾𝑤 : 𝑇 → 𝑇 defined by
𝛾𝑤 (𝑥) = 𝑤𝑥𝑤−1 (and its extension to 𝑘𝑇 ), we easily see that (𝛾𝑤⊗𝛾𝑤)◦𝜍 = 𝜍◦(𝛾𝑤⊗𝛾𝑤),
and consequently 𝛾𝑤 ◦�̃ = �̃◦ (𝛾𝑤⊗𝛾𝑤), so that 𝛾𝑤 can be extended to an automorphism
of N that sends 𝐽𝑐 to 𝐽𝛾𝑤 (𝑐) . Therefore, we can assume that 𝑐 is a standard Coxeter
element, without loss of generality. Accordingly, we can use the 𝑐-compatible reflection
ordering on 𝑇 , as in the definition of Δ+ (𝑊, 𝑐).

Lemma 7.8. If 𝑓 = {𝑡1 ≻ · · · ≻ 𝑡 𝑗 } ∈ Δ+
𝑗−1, we denote 𝑓⊗ := 𝑡1 ⊗ · · · ⊗ 𝑡 𝑗 and

𝑓�̃ = 𝑡1 �̃ · · · �̃ 𝑡 𝑗 . Then 𝑓�̃− 𝑓⊗ is a linear combination of tensors 𝑓 ′⊗ where 𝑓 ′ ∈ Δ+
𝑗−1

is strictly smaller than 𝑓 in the lexicographic order.

Proof. Write 𝑓�̃ = 𝑡1 �̃ (𝑡2 �̃ · · · �̃ 𝑡 𝑗 ). Using the definition of �̃, we easily see by
induction on 𝑗 that the tensors appearing in 𝑓�̃ − 𝑓⊗ have the form (𝑡1 ⊗ 𝑡2 ⊗ · · · ⊗ 𝑡𝑖) ⊗ 𝑡ℓ
with 0 ≤ 𝑖 < 𝑛 − 1 and 𝑖 + 1 < ℓ. Since 𝑡𝑖+1 ≻ 𝑡ℓ , these are lexicographically smaller than
𝑓⊗ . □

For 𝑓 ∈ Δ+, let 𝑓 ∗⊗ ∈ N∗ denote the map defined as taking the coefficient of 𝑓⊗ (in the
expansion with respect to the canonical basis of T (𝑘𝑇 )). This map vanishes on 𝐽𝑐, so it
is also well-defined on the quotient P′. We keep the same notation for this quotient map.

Lemma 7.9. We have:

• the elements ( 𝑓�̃) 𝑓 ∈Δ+ are linearly independent in P′ (𝑊, 𝑐),
• the elements ( 𝑓 ∗⊗) 𝑓 ∈Δ+ are linearly independent in P′ (𝑊, 𝑐)∗.

In particular, dimP′ (𝑊, 𝑐) ≥ #(Δ+ (𝑊, 𝑐)).
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Proof. It follows from the previous lemma that the matrix with entries 𝑓 ∗⊗ ( 𝑓 ′�̃) for
𝑓 , 𝑓 ′ ∈ Δ+ (𝑊, 𝑐) is unitriangular, hence invertible. □

Proposition 7.10. The family ( 𝑓�̃) 𝑓 ∈Δ+ (𝑊,𝑐) is a 𝑘-linear basis of P′ (𝑊, 𝑐). In particular,
dimP′ (𝑊, 𝑐) = #Δ+ (𝑊, 𝑐).

Proof. Using the homogeneous decomposition, it suffices to show that the elements
𝑓 ∈ Δ+ (𝑊, 𝑐) with nc( 𝑓 ) = 𝑤 form a basis of P′

𝑤 (𝑊, 𝑐). By the previous lemma, it
suffices to show that these elements are a generating family.

Let us first show that Relations (3) in Theorem 5.1 also hold in P′ (𝑊, 𝑐). If 𝑢1, . . . , 𝑢𝑚
are defined as in Lemma 2.1, we have 𝑢𝑖 �̃ 𝑢𝑖−1 = 𝑢𝑖 ⊗ 𝑢𝑖−1 − 𝑢𝑖−1 ⊗ 𝑢𝑖−2 (taking
indices modulo 𝑚), it follows:

∑𝑚
𝑖=1 𝑢𝑖 �̃ 𝑢𝑖−1 = 0. Now, we can use the argument in

Proposition 5.12: these relations permit to rewrite each monomial as a combination of
decreasing monomials. □

Remark 7.11. It would be very interesting to find a presentation of N , or at least to know
if it is quadratic. If it is the case, P′ (𝑊, 𝑐) is also a quadratic algebra (as we have shown
that 𝐽𝑐 is a quadratic ideal). As such, the basis ( 𝑓�̃) 𝑓 ∈Δ+ (𝑊,𝑐) guarantees that P′ (𝑊, 𝑐) is
a Koszul algebra, as it is a Poincaré–Birkhoff–Witt basis (see [45, Section 5]). We would
also get the presentation P′ (𝑊, 𝑐) as in Theorem 5.1.

Theorem 7.12. There is a well-defined isomorphism Ψ from P(𝑊, 𝑐) to P′ (𝑊, 𝑐) such
that for all 𝑡1, . . . , 𝑡 𝑗 ∈ 𝑇 , we have:

Ψ(t1 . . . t 𝑗 ) = 𝑡1 �̃ · · · �̃ 𝑡 𝑗 . (7.1)

Proof. The generating sets 𝑇 of P′ (𝑊, 𝑐) and T of P are in bĳection. We have already
seen in the proof of Proposition 7.10 that Relations (3) in Theorem 5.1 hold in P′ (𝑊, 𝑐).
Relations (1) and 2 hold as well, since:

• if 𝑡 ∈ 𝑇 , 𝑡 �̃ 𝑡 = 𝑡 ⊗ 𝑡 − 𝑡 ⊗ 𝑡 = 0;

• if 𝑡, 𝑢 ∈ 𝑇 are such that 𝑡𝑢 ≰𝑇 𝑐, we have 𝑡 �̃ 𝑢 ∈ N(𝑡𝑢,2) ⊂ 𝐽𝑐 so 𝑡 �̃ 𝑢 = 0 in
N/𝐽𝑐.

It follows that the map Ψ is well-defined and surjective. By the previous lemma, the two
algebras have the same dimension, and consequently the map is an isomorphism. □

Note that the previous proof uses the fact that dimP(𝑊, 𝑐) = #Δ+ (𝑊, 𝑐), so it relies
on the results from Section 4 via the vanishing property (Proposition 5.7).
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7.3. A parallel with the Orlik–Solomon algebra

Some properties of P obtained in Section 5 point to some similarities with the algebra
OS = OS(𝑊) from [41], as noted by Zhang [50]. Let us recall its definition.

For each 𝑡 ∈ 𝑇 , let 𝐻𝑡 := ker(𝑡 − 𝐼) ⊂ R𝑛, and

𝑀 (𝑊) := C𝑛\
( ⋃
𝑡∈𝑇

𝐻𝑡 ⊗ C
)
.

This 𝑀 (𝑊) is a classifying space for the pure braid group B(𝑊)/𝑊 , by a result of Deligne
conjectured by Brieskorn (for example, see [9] and references therein).

For each 𝑡 ∈ 𝑇 , let 𝛼𝑡 ∈ (C𝑛)∗ such that ker(𝛼𝑡 ) = 𝐻𝑡 ⊗ C, and 𝜔𝑡 =
d𝛼𝑡

2𝑖 𝜋𝛼𝑡
. The

algebra OS(𝑊) can be defined over Z as the ring of differential forms generated by the
1-forms (𝜔𝑡 )𝑡∈𝑇 , together with the constant 0-form 1 as a unit. It is isomorphic to the
cohomology ring 𝐻∗ (𝑀 (𝑊),Z) via the map sending a closed differential form to its de
Rham cohomology class. This algebra can also be seen as the cohomology ring of the
pure braid group, since 𝑀 (𝑊) is a classifying space.

Definition 7.13. Let

𝐿 (𝑊) :=

{⋂
𝑡∈𝑇 ′

𝐻𝑡

����� 𝑇 ′ ⊂ 𝑇
}
.

Endowed with reverse inclusion, it is a geometric lattice called the intersection lattice
of𝑊 .

For 𝑥 ∈ 𝐿, let OS𝑥 be the subspace of OS linearly generated by 𝜔𝑡1 ∧ · · · ∧ 𝜔𝑡𝑖

where 𝑡1, . . . , 𝑡𝑖 ∈ 𝑇 are such that 𝐻𝑡1 ∩ · · · ∩ 𝐻𝑡𝑖 = 𝑥. Then OS =
⊕

𝑥∈𝐿 OS𝑥 , and this
decomposition is compatible with the product in the sense that OS𝑥 ∧ OS𝑥′ ⊂ OS𝑥∩𝑥′ .
Moreover, dim(OS𝑥) = 𝜇𝐿 (𝑥) (𝜇𝐿 is the Möbius function of 𝐿 (𝑊)). We refer to [41,
Section 2] for all these properties. The decomposition of P in Proposition 5.11, together
with Corollary 5.13, thus present a striking similarity with the results about OS just
mentioned: we just replace the intersection lattice 𝐿 (𝑊) and its Möbius function with the
noncrossing partition lattice 𝑁𝐶 (𝑊) and its Möbius function.

Our goal here is to show that OS is also a quotient of N , just like P. We use a definition
of OS in terms of shuffles taken from [41, Section 3]. In particular, this algebra will be
defined over 𝑘 to be consistent with other algebras considered in this work. Recall that
we have

∧(𝑘𝑇 ) ⊂ T (𝑘𝑇 ), by seeing the exterior algebra as the space of antisymmetric
tensors. Moreover, the wedge product on the exterior algebra identifies with�. Define a
map 𝜆 : T (𝑘𝑇 ) → T (𝑘𝐿\{0}) by:

𝜆(𝑡1 ⊗ · · · ⊗ 𝑡 𝑗 ) =
{
𝐻𝑡1 ⊗

(
𝐻𝑡1 ∩ 𝐻𝑡2

)
⊗ · · · ⊗

(⋂ 𝑗

𝑖=1 𝐻𝑡𝑖

)
if

⋂ 𝑗

𝑖=1 𝐻𝑡𝑖 ≠ {0},
0 otherwise.
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Following [41], OS can be defined as the quotient
∧(𝑘𝑇 )/𝐼 where 𝐼 is the ideal

𝐼 :=
∧

(𝑘𝑇 ) ∩ 𝜆−1 (0).

Alternatively, OS is identified with 𝜆(∧(𝑘𝑇 )), with a product defined by 𝜆(𝑢) · 𝜆(𝑣) =
𝜆(𝑢�𝑣). The fact that this is well-defined relies on the identity 𝜆(𝑢�𝑣) = 𝜆(𝜆(𝑢)�𝜆(𝑣)),
see [41] for details. To avoid confusion, we keep the notation 𝜔𝑡 for the generators of OS,
and the product is denoted ∧ as for differential forms.

Theorem 7.14. There is a well-defined surjective map N → OS defined by 𝑡 ↦→ 𝜔𝑡 . In
particular, OS is a quotient of N .

Lemma 7.15. For 𝑢, 𝑣 ∈ T (𝑘𝑇 ), we have 𝜆(𝑢� 𝑣) = 𝜆(𝑢 �̃ 𝑣).

Proof. For 𝑡, 𝑢 ∈ 𝑇 , it is easily checked that {𝜌(𝑡), 𝜌(𝑢)} generates the same linear
subspace as {𝜌(𝑡), 𝜌(𝑡𝑢𝑡)}. By taking the orthogonal subspaces, we have 𝐻𝑡 ∩ 𝐻𝑢 =

𝐻𝑡 ∩ 𝐻𝑡𝑢𝑡 . It follows 𝜆(𝑡 � 𝑢) = 𝜆(𝑡 �̃ 𝑢), and more generally we can ignore the
conjugations when computing 𝜆((𝑡1 ⊗ · · · ⊗ 𝑡𝑖) �̃ (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 )). We thus have

𝜆((𝑡1 ⊗ · · · ⊗ 𝑡𝑖) �̃ (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 )) = 𝜆((𝑡1 ⊗ · · · ⊗ 𝑡𝑖) � (𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 )),

and the result follows. □

Proof of Theorem 7.14. The construction ofOS described above shows that it is generated
by the elements 𝜆(𝑡1 � · · ·� 𝑡𝑖) for 𝑡1, . . . , 𝑡𝑖 ∈ 𝑇 , with the product of 𝜆(𝑡1 � · · ·� 𝑡𝑖)
and 𝜆(𝑢1 � · · ·� 𝑢 𝑗 ) given by 𝜆(𝑡1 � · · ·� 𝑡𝑖 � 𝑢1 � · · ·� 𝑢 𝑗 ). The previous lemma
says that� can be replaced with �̃ everywhere, and the result follows. □

Remark 7.16. It would be very interesting to find an explicit description of the kernel
of the map N → OS, for example by giving an explicit set of generators. Clearly, this
kernel contains the tensors 𝑡1 �̃ · · · �̃ 𝑡𝑘 where {𝑡1, . . . , 𝑡𝑘} is a dependent set (i.e.,
dim(𝐻𝑡1 ∩ · · · ∩ 𝐻𝑡𝑘 ) > 𝑛 − 𝑘).

8. Cyclic action on the algebras and homology of the noncrossing partition
lattice

Let 𝑍 ⊂ 𝑊 be the cyclic group generated by 𝑐, and let 𝑅 denote its character ring (i.e., the
ring of functions 𝑍 → C). The group 𝑍 acts on 𝑇 via 𝑐 · 𝑡 = 𝑐𝑡𝑐−1, and also on T and T
via the natural identification 𝑇 ≃ T ≃ T. The group 𝑍 acts by orthogonal transformations
on the defining ideal 𝑅 ⊂ 𝑘T ⊗ 𝑘T of A(𝑊) (this is straightforward from the fact that
conjugation by 𝑐 is an automorphism of 𝑁𝐶 (𝑊)). It follows that this action also preserves
the orthogonal 𝑅⊥ ⊂ 𝑘T ⊗ 𝑘T. Thus 𝑍 naturally acts on the algebras A(𝑊) and P(𝑊).
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The goal of this section is to give formulas for the characters of 𝑍 acting on A(𝑊)
and P(𝑊). Moreover we prove that the top degree component of P(𝑊) is isomorphic to
the homology of 𝑁𝐶 (𝑊) as a 𝑘 [𝑍]-module. This gives an alternative proof of a result of
Zhang [50].

We denote ⟨𝑐𝑖⟩ ⊂ 𝑍 the subgroup generated by 𝑐𝑖 . When 𝑍 acts on some object 𝑋 (a
set or a vector space), we denote 𝑋 ⟨𝑐𝑖 ⟩ the subobject of fixed points and ch𝑍 (𝑋) ∈ 𝑅 the
associated character. The evaluation of the character ch𝑍 (𝑋) at 𝑐𝑖 ∈ 𝑍 is the trace of 𝑐𝑖
acting on 𝑋 , denoted tr(𝑐𝑖 , 𝑋).

8.1. Refinement of the relation between Hilbert series

The Hilbert series of a graded algebra can be naturally refined to take into account the
action of 𝑍 . Explicitly, we define:

Hilb𝑍 (A(𝑊), 𝑞) =
∑︁
𝑛≥0

ch𝑍 (A𝑛 (𝑊))𝑞𝑛,

and similarly for P(𝑊).

Proposition 8.1. We have the following identity in 𝑅[[𝑞]]:

Hilb𝑍 (A(𝑊), 𝑞) · Hilb𝑍 (P(𝑊),−𝑞) = 1

where 1 is the trivial character of 𝑍 .

Proof. Using the graduation, the exact complex in (5.2) can be split as a direct sum of
exact complexes. Explicitly, the complex

0 −→ A0 (𝑊) ⊗ P∗
𝑛 (𝑊) ð𝑛−→ . . .

ð1−→ A𝑛 (𝑊) ⊗ P∗
0 (𝑊) −→ 0

(where the general term is A𝑖 (𝑊) ⊗ P∗
𝑗
(𝑊) with 𝑖 + 𝑗 = 𝑛) is exact for 𝑛 > 0. Moreover

it is clear that the maps ð𝑖 commute with the action of 𝑍 . By the Hopf trace formula [49],
the alternating sum of the dimensions of the summands in this complex is 0 in 𝑅. This
precisely says that the coefficient of 𝑞𝑛 in Hilb𝑍 (A(𝑊), 𝑞) · Hilb𝑍 (P(𝑊),−𝑞) is 0. As
ch𝑍 (A0 (𝑊)) = ch𝑍 (P0 (𝑊)) = 1, this completes the proof. □

Note that the 𝑞-coefficientwise evaluation of the series Hilb𝑍 (A(𝑊), 𝑞) ∈ 𝑅[[𝑞]] at
𝑐𝑖 ∈ 𝑍 is: ∑︁

𝑘≥0
tr(𝑐𝑖 ,A𝑘 (𝑊))𝑞𝑘 .
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8.2. Cyclic action on our algebras

The action of 𝑍 permutes the elements in D(𝑊). We first characterize the fixed points
of ⟨𝑐𝑖⟩.

Proposition 8.2. The fixed-point set D(𝑊) ⟨𝑐𝑖 ⟩ is a Garside monoid having c as Garside
element, and its underlying lattice is NC(𝑊) ⟨𝑐𝑖 ⟩ ≃ 𝑁𝐶 (𝑊) ⟨𝑐𝑖 ⟩ .

Proof. An element of 𝑍 acts by automorphism on D(𝑊), moreover this action preserves
the Garside element c. It is a straightforward consequence of the axioms of Garside
monoids in Definition 2.11 that the fixed-point set of such an automorphism is a Garside
submonoid with the same Garside element. □

We can thus use the same argument as in the case of D(𝑊) and get the following:

Corollary 8.3. The growth function of D(𝑊) ⟨𝑐𝑖 ⟩ is:∑︁
b∈D⟨𝑐𝑖 ⟩

𝑞 |b | =

( ∑︁
𝑤∈𝑁𝐶 (𝑊 ) ⟨𝑐𝑖 ⟩

𝜇(𝑤)𝑞ℓ𝑇 (𝑤)

)−1

.

where 𝜇 is the Möbius function of 𝑁𝐶 (𝑊) ⟨𝑐𝑖 ⟩ and |b| is the length in D(𝑊).

Note that in the previous statement, |b| is the length of b as an element of D(𝑊) (which
is in general an integer multiple of its length as an element of the submonoid D(𝑊) ⟨𝑐𝑖 ⟩).

Remark 8.4. There are quite a few results about the action of 𝑍 on 𝑁𝐶 (𝑊) in the literature.
For example, see [2, Section 5.4.2]. However, to our knowledge there is no explicit
description of the subposets 𝑁𝐶 (𝑊) ⟨𝑐𝑖 ⟩ . It turns out that there is always an isomorphism
𝑁𝐶 (𝑊) ⟨𝑐𝑖 ⟩ ≃ 𝑁𝐶 (𝑊 ′) for a smaller reflection group 𝑊 ′, though we don’t have any
conceptual explanation.

Corollary 8.5 ([50, Theorem 4.60]). We have:
𝑛∑︁

𝑘=0
tr(𝑐𝑖 ,P𝑘 (𝑊))𝑞𝑘 =

∑︁
𝑤∈𝑁𝐶 (𝑊 ) ⟨𝑐𝑖 ⟩

𝜇(𝑤) (−𝑞)ℓ𝑇 (𝑤) (8.1)

where 𝜇 is the Möbius function of 𝑁𝐶 (𝑊) ⟨𝑐𝑖 ⟩ .

Proof. As the action of 𝑍 permutes the elements of D(𝑊), the character of the action is
obtained by counting fixed points. More precisely, the growth function in the previous
corollary is the coefficientwise evaluation at 𝑐𝑖 of Hilb𝑍 (A(𝑊), 𝑞). The result thus
follows from the previous corollary and the relation between Hilb𝑍 (A(𝑊), 𝑞) and
Hilb𝑍 (P(𝑊), 𝑞). □
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8.3. Homology of the noncrossing partition lattice

The top-degree coefficients in Equation (8.1) can be interpreted via a combinatorial
version of the Lefschetz–Hopf theorem, due to Baclawki and Björner [6]. Their theorem
says that the Möbius number of 𝑁𝐶 (𝑊) ⟨𝑐𝑖 ⟩ is the Lefschetz number of 𝑐𝑖 acting on
the order complex of 𝑁𝐶 (𝑊). In terms of characters, this means that the top-degree
component P𝑛 (𝑊) is 𝑍-equivariantly equal to the alternating sum of the homology
groups of 𝑁𝐶 (𝑊) (an equivariant Euler characteristic). In this section, we give an explicit
isomorphism.

Let us begin with a few preliminaries related with the shuffle product. Note that the
shuffle product �̃ has a natural extension to T (𝑘𝑊 ) using the same formula as in (7.1).

Definition 8.6. We define a map ∇ : T (𝑘𝑊 ) → T (𝑘𝑊 ) by:

∇(𝑡1 ⊗ · · · ⊗ 𝑡𝑘) =
𝑘−1∑︁
𝑖=1

(−1)𝑖𝑡1 ⊗ · · · ⊗ 𝑡𝑖−1 ⊗ (𝑡𝑖𝑡𝑖+1) ⊗ 𝑡𝑖+2 ⊗ · · · ⊗ 𝑡𝑘 .

Note that this is 0 if 𝑘 = 1. The 𝑖th term in this sum will be called the 𝑖th contraction of
𝑡𝑖 ⊗ 𝑡𝑖+1.

Lemma 8.7. For 𝑥, 𝑥′ ∈ T (𝑘𝑇 ) such that 𝑥 is homogeneous, we have:

∇(𝑥 �̃ 𝑥′) = ∇(𝑥) �̃ 𝑥′ + (−1)deg(𝑥 )𝑥 �̃ ∇(𝑥′).

In particular, ∇ vanishes on N(𝑊).

Proof. Assume 𝑥 = 𝑡1 ⊗ · · · ⊗ 𝑡𝑖 and 𝑥′ = 𝑢1 ⊗ · · · ⊗ 𝑢 𝑗 . We expand ∇(𝑥 �̃ 𝑥′) using the
definition of the two operators. Each term thus corresponds to the choice a shuffle and the
choice of a contraction in this shuffle.

Consider a shuffle containing a factor 𝑡𝑢1...𝑢ℓ−1
𝑘

⊗ 𝑢ℓ , and the other shuffle with the
factor 𝑡𝑢1...𝑢ℓ−1

𝑘
⊗ 𝑢ℓ replaced with 𝑢ℓ ⊗ 𝑡𝑢1...𝑢ℓ

𝑘
(which has therefore opposite sign). We

easily see that the two contractions of these pairs give the same term with opposite signs.
Now consider the contractions only involving 𝑡𝑘 ⊗ 𝑡𝑘+1, 1 ≤ 𝑘 ≤ 𝑖 − 1. After checking

the signs, it is straightforward to obtain ∇(𝑥) �̃ 𝑥′. Similarly, the remaining terms give
(−1)deg(𝑥 )𝑥 �̃ ∇(𝑥′). □

Remark 8.8. It is straightforward to prove ∇2 = 0. This means that (T (𝑘𝑊 ), �̃,∇) is a
dg-algebra. However, this is not particularly relevant here.

Definition 8.9. We define a map 𝛥 : T (𝑘𝑊 ) → T (𝑘𝑊 ) by:

𝛥(𝑤1 ⊗ · · · ⊗ 𝑤𝑘) =
𝑘∑︁
𝑖=1

(−1)𝑖𝑤1 ⊗ · · · ⊗ 𝑤𝑖−1 ⊗ 𝑤𝑖+1 ⊗ · · · ⊗ 𝑤𝑘 .
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The 𝑖th term will be called the 𝑖th deletion. Eventually, we define 𝜉 : T (𝑘𝑊 ) → T (𝑘𝑊 ) by:

𝜉 (𝑤1 ⊗ · · · ⊗ 𝑤𝑘) = 𝑤1 ⊗ (𝑤1𝑤2) ⊗ · · · ⊗ (𝑤1𝑤2 . . . 𝑤𝑘−1).

Following the convention in Section 7, we denote T𝑤,𝑘 (𝑘𝑊 ) the subspace of T (𝑘𝑊 )
generated by tensors 𝑤1 ⊗ · · · ⊗ 𝑤𝑘 such that 𝑤 = 𝑤1 . . . 𝑤𝑘 . Note that 𝜉 restricted to
T𝑤,𝑘 (𝑘𝑊 ) is an isomorphism on its image, and its inverse is given by:

𝜉−1 (𝑤1 ⊗ · · · ⊗ 𝑤𝑘−1) = 𝑤1 ⊗ (𝑤−1
1 𝑤2) ⊗ · · · ⊗ (𝑤−1

𝑘−1𝑤).

Note also that 𝜉 commutes with the action of 𝑍 .

Lemma 8.10. We have 𝜉 ◦ ∇ = 𝛥 ◦ 𝜉 on T (𝑘𝑊 ). In particular, 𝛥 vanishes on 𝜉 (N (𝑊)).

Proof. The first statement is straightforward and details are omitted. The second statement
follows because ∇ vanishes on N(𝑊), by Lemma 8.7. □

We give a brief definition of homology of posets, and refer to [49] for details.

Definition 8.11. For −1 ≤ 𝑚 ≤ 𝑛 − 2, let C𝑚 denote the vector space freely generated by
strict chains 𝑤0 < · · · < 𝑤𝑚 in 𝑁𝐶 (𝑊) − {𝑒, 𝑐} (i.e., 𝑁𝐶 (𝑊) with its top and bottom
elements removed). Let 𝛥𝑚 : C𝑚 → C𝑚−1 be the operator defined by

𝛥𝑚 (𝑤0 < · · · < 𝑤𝑚) =
𝑚∑︁
𝑖=0

(−1)𝑖 (𝑤0 < · · · < 𝑤𝑖−1 < 𝑤𝑖+1 < · · · < 𝑤𝑚).

It is straightforward to check that 𝛥𝑚 ◦ 𝛥𝑚+1 = 0. The 𝑚th reduced homology group
𝐻𝑚 (𝑁𝐶 (𝑊)) of 𝑁𝐶 (𝑊) is defined as ker(𝛥𝑚)/im(𝛥𝑚+1).

Note that 𝛥𝑚 is essentially the restriction of 𝛥, upon identifying the chain 𝑤0 < · · · <
𝑤𝑚 with the tensor 𝑤0 ⊗ · · · ⊗ 𝑤𝑚.

As the action of 𝑍 on 𝑁𝐶 (𝑊) preserves the order relation, C𝑚 is a 𝑘 [𝑍]-module. The
map 𝛥𝑚 clearly commutes with the action of 𝑍 , so that 𝐻𝑚 (𝑁𝐶 (𝑊)) also inherits a
structure of 𝑘 [𝑍]-module.

As 𝑁𝐶 (𝑊) is a Cohen–Macaulay poset (see [49]), it has a unique nonzero reduced
homology group in top degree, namely the space:

𝐻𝑛−2 (𝑁𝐶 (𝑊)) = ker(𝛥𝑛−2) ⊂ C𝑛−2.

By Philip Hall’s theorem (see [49]), dim𝐻𝑛−2 (𝑁𝐶 (𝑊)) is the Möbius invariant of
𝑁𝐶 (𝑊), therefore it is equal to dimP𝑛 (𝑊).

To define explicitly the 𝑘 [𝑍]-isomorphism between 𝐻𝑛−2 (𝑁𝐶 (𝑊)) and P𝑛 (𝑊), we
use again the Nichols algebra and identify P𝑛 (𝑊) to N𝑐,𝑛 (𝑊) as 𝑘 [𝑍]-modules.
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Theorem 8.12 (Zhang). The map 𝜉 : N𝑐,𝑛 (𝑊) → 𝐻𝑛−2 (𝑁𝐶 (𝑊)) defined by

𝑡1 ⊗ · · · ⊗ 𝑡𝑛 ↦−→ (𝑡1, 𝑡1𝑡2, . . . , 𝑡1 . . . 𝑡𝑛−1)

is an isomorphism of 𝑍-module.

(Note that the formula defines a map on T𝑐,𝑛 (𝑊), the map on N𝑐,𝑛 (𝑊) is obtained by
restriction.)

Proof. We have noted above that the restriction of 𝜉 to an homogeneous component is
injective, and that 𝜉 commutes with the action of 𝑍 . As both spaces have the same dimension
(the Möbius invariant of 𝑁𝐶 (𝑊)), it suffices to show that 𝜉 (N𝑐,𝑛 (𝑊)) ⊂ 𝐻𝑛−2 (𝑁𝐶 (𝑊)).
The inclusion 𝜉 (N𝑐,𝑛 (𝑊)) ⊂ C𝑛−2 is clear. From Lemma 8.10, we see that 𝛥𝑛−2 vanishes
on 𝜉 (N𝑐,𝑛 (𝑊)). So we have indeed 𝜉 (N𝑐,𝑛 (𝑊)) ⊂ 𝐻𝑛−2 (𝑁𝐶 (𝑊)). □

9. Perspectives

In this final section, we discuss possible extensions of the present work to other kinds of
braid groups.

9.1. Finite well-generated complex reflection groups

Bessis defined in [9] the dual braid monoid associated to such a group. This is again a
quadratic monoid defined using the noncrossing partition lattice. We conjecture that its
monoid algebra is a Koszul algebra. Although there is no analog of the cluster complex in
this setting, we can define a similar-looking simplicial complex: its facets are given by
the decreasing factorizations of a Coxeter element, using the total orders introduced by
Mühle [40] (these total orders were introduced in order to prove the shellability of the
noncrossing partition lattice using the adequate analog of Definition A.8). We conjecture
that the complex obtained in this way is shellable and can be used as in Section 4 to show
that the dual braid monoid algebra is again a Koszul algebra.

9.2. Free groups

Despite the fact that free groups have an elementary structure, interesting questions appear
when we consider them as Artin groups and study them from this perspective. In this vein,
Bessis [8] gave both a topological and an algebraic definition of the associated dual braid
monoids. There is again a related noncrossing lattice, defined in terms of loops with no
self-intersection. Note that here the monoid is not locally finite (it has infinite cardinality
in each degree). Despite this technical problem, it could be interesting to investigate the
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existence of a simplicial complex that plays the role of the cluster complex, and leads to a
minimal resolution as in Section 4.

9.3. Affine Weyl groups

The next step might be to consider the Artin group associated to affine Weyl groups.
Recent progress about these is done in [38, 43], and Garside theory is an important
tool. The 𝐾 (𝜋, 1) problem is solved [43], and the dual presentation is known (see [38,
Theorem C] and [43, Theorem 8.16]). This means we can consider the dual braid monoid
as a submonoid of the braid group, and its defining relations are again quadratic. On the
other side, the clusters in affine type can be related with noncrossing partitions using
representation of quivers by work of Ingalls and Thomas [29]. Following the lines of the
finite type case, it might be possible to use clusters to show koszulity of the affine type
dual braid monoid algebra.

Acknowledgements

The authors wish to thank the Erwin Schrödinger Institute for its 2017 program “Algorith-
mic and Enumerative Combinatorics” where this collaboration started, and Jang Soo Kim
for early discussions. We thank Vic Reiner for his suggestions about the Orlik–Solomon
algebras and for drawing our attention to Yang Zhang’s thesis [50].

Appendix A. The cluster complex.

As explained in the introduction, the cluster complex was introduced by Fomin and
Zelevinsky [25], via a compatibility relation on the set of almost positive roots (faces
are the sets of pairwise compatible elements). A reformulation was given by Brady and
Watt [14], using reflection orderings. It should be noted that their construction also extends
the definition to non-crystallographic finite Coxeter groups (those have thus an associated
cluster complex, despite the fact that there is no corresponding cluster algebra). A further
extension was done by Reading [46]: while the complex in [14, 25] was realized using the
bipartite Coxeter element, he showed that we can start with any standard Coxeter element
instead. Thus, there is a complex Δ(𝑊, 𝑐) defined for𝑊 and any standard Coxeter element
𝑐. It will be simply denoted Δ. It can again be reformulated using reflection orderings,
this essentially follows from [11, 18].

The goal of this appendix is to give definitions that are self-contained and suited for
our purpose. Everything follows from the results in bibliography, but we sketch some
proofs for convenience.
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We only need to consider a subcomplex Δ+ ⊂ Δ, the positive part of Δ. Therefore, it
will be convenient to use reflections as vertices, rather than positive roots.

Definition A.1. A tuple of 𝑛 reflections 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 is called a positive 𝑐-cluster if:

• 𝑐 = 𝑡1 . . . 𝑡𝑛,

• and for any 𝑖 ≠ 𝑗 , we have ⟨𝜌(𝑡𝑖) |𝜌(𝑡 𝑗 )⟩ ≥ 0.

(Recall that 𝜌(𝑡) is the positive root associated to 𝑡.) Then, Δ+ is the simplicial complex
having positive 𝑐-clusters as its facets. We denote by Δ+

𝑖
the set of 𝑖-dimensional faces in

this complex (where dimension is cardinality minus 1). By convention, Δ+
−1 = {∅}.

This definition essentially comes from [14] in the case of the bipartite Coxeter element,
and from [11] for the case of other standard Coxeter elements. It is equivalent to the
definition from [46].

Remark A.2. The combinatorial structure of Δ+ depends on the chosen standard Coxeter
element. Two examples of non-isomorphic complexes Δ+ in type 𝐴3 will be given in
Appendix B. On the other side, Reading [46] has shown that this does not happen for the
complex Δ (that we did not define here): all choices of a standard Coxeter element give
the same simplicial complex up to isomorphism.

It is apparent from the previous proposition that the cluster complex is related with
noncrossing partitions: each face {𝑡1, . . . 𝑡𝑘}, as a subset of a facet, can be realized as a
subword of a minimal reflection factorization of 𝑐. The following definition is thus valid:

Definition A.3. Each face 𝑓 = {𝑡1, . . . , 𝑡𝑘} ∈ Δ+ can be indexed so that 𝑡1 . . . 𝑡𝑘 ∈ 𝑁𝐶𝑘 ,
and this (well-defined) element is denoted nc( 𝑓 ) := 𝑡1 . . . 𝑡𝑘 . Following the usual
convention, we denote nc( 𝑓 ) ∈ D the corresponding simple braid.

An important property is the following:

Proposition A.4. The topological realization of Δ+ is an 𝑛 − 1-dimensional ball.

Proof. In the bipartite case, this is an immediate consequence of the geometric realization
of Δ via the cluster fan. Indeed, it follows that Δ has the topological type of a 𝑛 − 1-
dimensional sphere. The subcomplex Δ+ is obtained by removing the unique facet
containing no positive roots. Topologically, it is thus a ball of the same dimension.

The case of non bipartite Coxeter elements follows, as the combinatorial type of Δ does
not depend on the chosen Coxeter element. Alternatively, we can use the non-bipartite
cluster fan built in [47], and the same argument as in the bipartite case. □
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We also need a similar result about some subcomplexes Δ+ (𝑤). In the bipartite case,
they were introduced in [14].

Definition A.5. For each 𝑤 ∈ 𝑁𝐶 with 𝑤 ≠ 1, let Δ+ (𝑤) denote the full subcomplex of
Δ+ with vertex set {𝑡 ∈ 𝑇 : 𝑡 ≤𝑇 𝑤}.

Proposition A.6. If 1 ≤ 𝑗 ≤ 𝑛 and 𝑤 ∈ 𝑁𝐶 𝑗 , the topological realization of Δ+ (𝑤) is a
𝑗 − 1-dimensional ball. In particular, it is contractible.

Proof. By Proposition 2.6,𝑤 is a standard Coxeter element of the parabolic subgroup Γ(𝑤).
Therefore, there is a complex Δ+ associated to (Γ(𝑤), 𝑤). It can be naturally identified
with the complex Δ+ (𝑤) defined above. The result thus follows from Proposition A.4.
(For more details, see also [11, Section 8.2], and references therein). □

Note that the previous property cannot be extended to 𝑤 = 1, i.e., 𝑗 = 0. Indeed, that
would give the empty simplicial complex, which is not contractible.

To finish this appendix, we explain how the facets of Δ+ can be characterized via
decreasing factorizations of 𝑐 as a product of 𝑛 reflections, for some total order ≺
associated to the Coxeter element 𝑐. We refer to [14] in the case of a bipartite Coxeter
element, and [18] for other standard Coxeter elements.

Definition A.7 (Dyer [23]). A total order ≺ on 𝑇 is called a reflection ordering if the
following holds: for any rank 2 parabolic subgroup 𝑃 ⊂ 𝑊 with 𝑃 ∩ 𝑇 = {𝑢1, . . . , 𝑢𝑚}
indexed as in Lemma 2.1, we have either

𝑢1 ≺ 𝑢2 ≺ · · · ≺ 𝑢𝑚 or 𝑢𝑚 ≺ 𝑢𝑚−1 ≺ · · · ≺ 𝑢1.

We have seen that there are two valid indexing of each set 𝑃 ∩ 𝑇 , which are reverse of
each other. Note that the above definition does not depend on which indexing is used.

The next definition was introduced in the context of combinatorial topology, to prove
the shellability of 𝑁𝐶.

Definition A.8 (Athanasiadis, Brady and Watt [5]). A reflection ordering ≺ on 𝑇 is
compatible with a standard Coxeter element 𝑐 if the following holds: for each 𝑤 ∈ 𝑁𝐶2,
with T(𝑤) = {𝑢1, . . . , 𝑢𝑚} indexed so that 𝑢1 ≺ · · · ≺ 𝑢𝑚, we have 𝑤 = 𝑢𝑖𝑢𝑖−1 for
1 ≤ 𝑖 ≤ 𝑚 (where 𝑢0 = 𝑢𝑚).

To explain this definition, a few remarks are necessary. Let 𝑤 and {𝑢1, . . . , 𝑢𝑚} and
T(𝑤) = {𝑢1, . . . , 𝑢𝑚} as in Lemma 2.1. By Proposition 2.6, we have either 𝑤 = 𝑢1𝑢𝑚 or
𝑤 = 𝑢𝑚𝑢1. It follows that: either 𝑤 = 𝑢𝑖𝑢𝑖−1 for 1 ≤ 𝑖 ≤ 𝑚, or 𝑤 = 𝑢𝑖−1𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑚.
Note that the two situations are mutually exclusive if 𝑚 ≥ 3, but both hold if 𝑚 = 2. The
compatibility of the reflection ordering ≺ with 𝑐 means that we are always in the first
situation (𝑤 = 𝑢𝑖𝑢𝑖−1) if 𝑚 ≥ 3 and 𝑢1, . . . , 𝑢𝑚 are indexed in increasing order.

180



Dual braid monoid algebras

Some properties of the 𝑐-compatible reflection ordering ≺ can also be reformulated as
follows:

Lemma A.9. Let 𝑤 ∈ 𝑁𝐶2. Then:

• a ≺-decreasing factorization 𝑤 = 𝑣1𝑣2 where 𝑣1, 𝑣2 ∈ 𝑇 is such that
⟨𝜌(𝑣1) | 𝜌(𝑣2)⟩ ≥ 0.

• 𝑤 has a unique ≺-increasing factorization 𝑤 = 𝑣1𝑣2 where 𝑣1, 𝑣2 ∈ 𝑇 , and it is
such that ⟨𝜌(𝑣1) | 𝜌(𝑣2)⟩ ≤ 0.

By reinterpreting the definition of Δ+ in terms of the reflection ordering, the following
is natural:

Lemma A.10. Assume that ≺ is a reflection ordering compatible with 𝑐. Let 𝑓 =

{𝑡1, . . . , 𝑡𝑛} ⊂ 𝑇 , indexed so that 𝑡1 ≻ · · · ≻ 𝑡𝑛. Then 𝑓 is a positive 𝑐-cluster if and only
if 𝑐 = 𝑡1 . . . 𝑡𝑛.

Proof. Assume 𝑐 = 𝑡1 . . . 𝑡𝑛 and 𝑡1 ≻ · · · ≻ 𝑡𝑛. For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we have 𝑡𝑖𝑡 𝑗 ∈ 𝑁𝐶2 by
the subword property. By the first point of Lemma A.9, ⟨𝜌(𝑡𝑖) | 𝜌(𝑡 𝑗 )⟩ ≥ 0. It follows that
{𝑡1, . . . , 𝑡𝑛} is a 𝑐-cluster.

Reciprocally, assume 𝑓 = {𝑡1, . . . , 𝑡𝑛} is a 𝑐-cluster, indexed so that 𝑐 = 𝑡1 . . . 𝑡𝑛.
Suppose that there is an index 1 ≤ 𝑖 < 𝑛 such that 𝑡𝑖 ≺ 𝑡𝑖+1. We get ⟨𝜌(𝑡𝑖) | 𝜌(𝑡 𝑗 )⟩ ≤ 0
from the second point of the Lemma A.9. We also have ⟨𝜌(𝑡𝑖) | 𝜌(𝑡𝑖+1)⟩ ≥ 0 by definition
of Δ+, so ⟨𝜌(𝑡𝑖) | 𝜌(𝑡𝑖+1)⟩ = 0. This means 𝑡𝑖𝑡𝑖+1 = 𝑡𝑖+1𝑡𝑖 . If we replace 𝑡𝑖𝑡𝑖+1 with 𝑡𝑖+1𝑡𝑖 in
𝑐 = 𝑡1 . . . 𝑡𝑛, we get a factorization with is lexicographically bigger. It means that after
a certain number of such commutations, we arrive at a decreasing factorization. This
permits to conclude the proof. □

Now, it remains only to explain why 𝑐-compatible reflection orderings exist, for any
standard Coxeter element 𝑐. A well-known construction gives an answer in the bipartite
case (see [5] for details). The general answer is given below (see Equation (A.1)), it
follows from results in [18] where the complexes Δ and Δ+ are shown to be subword
complexes.

Consider the 𝑆-word obtained by 𝑘 repetitions of 𝑠1 . . . 𝑠𝑛. When 𝑘 is large enough, it
contains subwords that are reduced word for the longest element 𝑤◦. The lexicographically
minimal such subword is called the 𝑐-sorting word. It is thus a reduced word 𝑤◦ =

𝑠𝑖1 𝑠𝑖2 . . . 𝑠𝑖𝑛ℎ/2 . By results of Dyer [23], there is a bĳection between reduced words for
𝑤◦ and reflection orderings, and in the present case it gives the reflection ordering ≺
such that:

𝑠𝑖1 ≺ 𝑠𝑖1 𝑠𝑖2 𝑠𝑖1 ≺ 𝑠𝑖1 𝑠𝑖2 𝑠𝑖3 𝑠𝑖2 𝑠𝑖1 ≺ . . . . (A.1)
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In particular, any reflection appear exactly once in the list above. To see that ≺ is 𝑐-
compatible, it remains only to reconcile our definition of Δ+ in Definition A.1 with the
definition from [18] in terms of subword complex and the 𝑐-sorting word.

Appendix B. Examples

Example B.1. Consider the case 𝑊 = 𝔖𝑛 and 𝑐 = (1, . . . , 𝑛) as in Example 2.10. A
𝑐-compatible reflection ordering on 𝑇 = {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} is given by the
lexicographic order:

(𝑖, 𝑗) ≺ (𝑘, 𝑙) ⇐⇒ 𝑖 < 𝑘 or (𝑖 = 𝑘 and 𝑗 < 𝑙).
In the case 𝑛 = 4, the 5 𝑐-clusters are represented in Figure B.1. Such a 𝑐-cluster
{𝑡1 ≻ 𝑡2 ≻ 𝑡3} is represented as follows: if 𝑡𝑖 = ( 𝑗 , 𝑘), we draw an arrow from 𝑗 to 𝑘 with
label 𝑖. Note that the face-counting polynomial from (1.1) is given by 1 + 6𝑞 + 10𝑞2 + 5𝑞3.
In general (other values of 𝑛), a 𝑐-cluster will be a noncrossing alternating tree, that is
a tree with noncrossing edges such that at each vertex 𝑖, neighbours are all < 𝑖 or all
> 𝑖. Faces of Δ+ are naturally identified with a natural notion of noncrossing alternating
forests (which also naturally occurred in [1]).
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2

1
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1 1 1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 (1, 4)
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(1, 2) (3, 4)

(2, 3)

(2, 4)

Figure B.1. Positive clusters for𝑊 = 𝔖4 and 𝑐 = (1, 2, 3, 4).

Example B.2. In the case of𝔖4 (type 𝐴3) with the bipartite Coxeter element 𝑐 = (1, 3, 4, 2),
the 5 𝑐-clusters are in Figure B.2. We use the 𝑐-compatible reflection ordering: (2, 3) ≺
(1, 3) ≺ (2, 4) ≺ (1, 4) ≺ (3, 4) ≺ (1, 2). Note that the two complexes in Figures B.1
and B.2 are not isomorphic.

Example B.3. In type 𝐵3, two representations of Δ+ for two different Coxeter elements
are given in Figures B.3 and B.4. In the first case, a 𝑐-compatible order is ((1, 2)) ≺
((1, 3)) ≺ [1] ≺ ((2, 3)) ≺ ((1,−2)) ≺ [2] ≺ ((1,−3)) ≺ ((2,−3)) ≺ [3]. In the
second case, a 𝑐-compatible order is ((1, 2)) ≺ [3] ≺ ((1,−3)) ≺ ((2,−3)) ≺ [1] ≺
((1,−2)) ≺ ((1, 3)) ≺ [2] ≺ ((2, 3)).
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Figure B.2. Positive clusters for𝑊 = 𝔖4 and 𝑐 = (1, 3, 4, 2).

Figure B.3. Positive clusters for𝑊 of type 𝐵3 and 𝑐 = 𝑠1𝑠2𝑠3 = [[1, 2, 3]].

Figure B.4. Positive clusters for𝑊 of type 𝐵3 and 𝑐 = 𝑠1𝑠3𝑠2 = [[1, 2,−3]].
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Figure B.5. Positive clusters for𝑊 = 𝔖5 and 𝑐 = (1, 2, 3, 4, 5).
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Figure B.6. Positive clusters for𝑊 = 𝔖5 and 𝑐 = (1, 3, 5, 4, 2).
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