Let be a rotation on the circle and let be a step function. We denote by the corresponding ergodic sums . For a class of irrational rotations (containing the class with bounded partial quotients) and under a Diophantine condition on the discontinuity points of , we show that is asymptotically Gaussian for in a set of density 1. The proof is based on decorrelation inequalities for the ergodic sums taken at times , where is the sequence of denominators of . Another important point is the control of the variance for belonging to a large set of integers. When is a quadratic irrational, the size of this set can be precisely estimated.
Mots clés : irrational rotations, central limit theorem
Jean-Pierre Conze 1 ; Stéphane Le Borgne 1
@article{AMBP_2022__29_1_51_0, author = {Jean-Pierre Conze and St\'ephane Le Borgne}, title = {On the {CLT} for rotations and {BV} functions}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {51--97}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {29}, number = {1}, year = {2022}, doi = {10.5802/ambp.407}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.407/} }
TY - JOUR AU - Jean-Pierre Conze AU - Stéphane Le Borgne TI - On the CLT for rotations and BV functions JO - Annales mathématiques Blaise Pascal PY - 2022 SP - 51 EP - 97 VL - 29 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.407/ DO - 10.5802/ambp.407 LA - en ID - AMBP_2022__29_1_51_0 ER -
%0 Journal Article %A Jean-Pierre Conze %A Stéphane Le Borgne %T On the CLT for rotations and BV functions %J Annales mathématiques Blaise Pascal %D 2022 %P 51-97 %V 29 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.407/ %R 10.5802/ambp.407 %G en %F AMBP_2022__29_1_51_0
Jean-Pierre Conze; Stéphane Le Borgne. On the CLT for rotations and BV functions. Annales mathématiques Blaise Pascal, Tome 29 (2022) no. 1, pp. 51-97. doi : 10.5802/ambp.407. https://ambp.centre-mersenne.org/articles/10.5802/ambp.407/
[1] Randomness of the square root of 2 and the giant leap I, Period. Math. Hung., Volume 60 (2010) no. 2, pp. 137-242 | DOI | MR | Zbl
[2] Probabilistic Diophantine approximation, Randomness in lattice point counting, Springer Monographs in Mathematics, Springer, 2014
[3] A temporal central limit theorem for real-valued cocycles over rotations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 54 (2018) no. 4, pp. 2304-2334 | MR | Zbl
[4] On the central limit theorem for dynamical systems, Trans. Am. Math. Soc., Volume 302 (1987) no. 2, pp. 715-726 | DOI | MR | Zbl
[5] Recurrence, ergodicity and invariant measures for cocycles over a rotation, Ergodic theory (Contemporary Mathematics), Volume 485, American Mathematical Society, 2009, pp. 45-70 | DOI | MR | Zbl
[6] On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces, Ergodic Theory Dyn. Syst., Volume 32 (2012) no. 2, pp. 491-515 | DOI | MR | Zbl
[7] Diffusive behaviour of ergodic sums over rotations, Stoch. Dyn., Volume 19 (2019) no. 2, 1950016, 26 pages | Zbl
[8] On the CLT for rotations and BV functions, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 2, pp. 212-215 | DOI | MR | Zbl
[9] On the central limit theorem for aperiodic dynamical systems and applications, Teor. Jmovirn. Mat. Stat., Volume 57 (1997), pp. 140-159 | Zbl
[10] Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., Volume 166 (2017) no. 3-4, pp. 680-713 | DOI | MR | Zbl
[11] Stochastic Processes, John Wiley & Sons, 1953
[12] An introduction to probability theory and its application, John Wiley & Sons, 1966
[13] Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escalier (2006) (https://arxiv.org/abs/math/0605250)
[14] Some problems of diophantine approximation: a series of cosecants, Bull. Calcutta Math. Soc., Volume 20 (1930), pp. 251-266 | Zbl
[15] Subdiffusive behavior generated by irrational rotations, Ergodic Theory Dyn. Syst., Volume 29 (2009), pp. 1217-1233 | DOI | MR | Zbl
[16] Continued Fractions, P. Noordhoff, 1963
[17] Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, Universitext, Springer, 1998
[18] On central limit theorems, modulus of continuity and Diophantine type for irrational rotations, J. Anal. Math., Volume 61 (1993), pp. 47-59 | DOI | MR | Zbl
[19] Introduction to Diophantine Approximations, Addison-Wesley Publishing Group, 1966 | Numdam
[20] Chernoff-type bound for finite Markov chains, Ann. Appl. Probab., Volume 8 (1998) no. 3, pp. 849-867 | MR | Zbl
[21] Sums of continuous and differentiable functions in dynamical systems, Isr. J. Math., Volume 98 (1997), pp. 29-60 | DOI | MR | Zbl
[22] Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Semin. Univ. Hamb., Volume 1 (1922), pp. 77-99 | DOI | MR | Zbl
[23] Limit laws for ergodic processes, Stoch. Dyn., Volume 12 (2012) no. 1, 1150012, 9 pages | MR | Zbl
Cité par Sources :