We generalize a Cheeger–Müller type theorem for flat, unitary bundles on infinite covering spaces over manifolds with boundary, proven by Burghelea, Friedlander and Kappeller. Employing recent anomaly results by Brüning, Ma and Zhang, we prove an analogous statement for a general flat bundle that is only required to have a unimodular restriction to the boundary.
@article{AMBP_2021__28_1_71_0, author = {Benjamin Wa{\ss}ermann}, title = {An $L^2${-Cheeger} {M\"uller} theorem on compact manifolds with boundary}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {71--116}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {28}, number = {1}, year = {2021}, doi = {10.5802/ambp.400}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.400/} }
TY - JOUR AU - Benjamin Waßermann TI - An $L^2$-Cheeger Müller theorem on compact manifolds with boundary JO - Annales mathématiques Blaise Pascal PY - 2021 SP - 71 EP - 116 VL - 28 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.400/ DO - 10.5802/ambp.400 LA - en ID - AMBP_2021__28_1_71_0 ER -
%0 Journal Article %A Benjamin Waßermann %T An $L^2$-Cheeger Müller theorem on compact manifolds with boundary %J Annales mathématiques Blaise Pascal %D 2021 %P 71-116 %V 28 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.400/ %R 10.5802/ambp.400 %G en %F AMBP_2021__28_1_71_0
Benjamin Waßermann. An $L^2$-Cheeger Müller theorem on compact manifolds with boundary. Annales mathématiques Blaise Pascal, Tome 28 (2021) no. 1, pp. 71-116. doi : 10.5802/ambp.400. https://ambp.centre-mersenne.org/articles/10.5802/ambp.400/
[1] On the growth of -invariants for sequences of lattices in Lie groups, Ann. Math., Volume 185 (2017) no. 3, pp. 711-790 | MR | Zbl
[2] Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsai, 1974) (Astérisque), Volume 32-33, Société Mathématique de France, 1976, pp. 43-72 | Numdam | Zbl
[3] Lectures on Morse homology, Kluwer Texts in the Mathematical Sciences, 29, Kluwer Academic Publishers, 2004, x+324 pages | DOI
[4] The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu, Volume 12 (2013) no. 2, pp. 391-447 | DOI | MR | Zbl
[5] Complex immersions and Arakelov geometry, The Grothendieck Festschrift (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 249-331 | MR | Zbl
[6] An extension of a theorem by Cheeger and Müller. With an appendix by Francois Laudenbach., Astérisque, 205, Société Mathématique de France, 1992, 235 pages | Numdam
[7] -torsion without the determinant class condition and extended cohomology, Commun. Contemp. Math., Volume 7 (2005) no. 4, pp. 421-462 | DOI | MR | Zbl
[8] An anomaly formula for Ray-Singer metrics on manifolds with boundary, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 7, pp. 603-608 | DOI | MR | Zbl
[9] On the gluing formula for the analytic torsion, Math. Z., Volume 273 (2013) no. 1-2, pp. 1085-1117 | DOI | MR | Zbl
[10] Torsions for manifolds with boundary and glueing formulas, Math. Nachr., Volume 208 (1999), pp. 31-91 | DOI | MR | Zbl
[11] Relative Torsion, Commun. Contemp. Math., Volume 3 (2001) no. 1, pp. 15-85 | DOI | MR | Zbl
[12] Analytic and Reidemeister torsion for representations in finite type Hilbert modules, Geom. Funct. Anal., Volume 6 (1996) no. 5, pp. 751-859 | DOI | MR | Zbl
[13] -torsion invariants, J. Funct. Anal., Volume 110 (1992) no. 2, pp. 377-409 | DOI | MR | Zbl
[14] Topological invariance of the Whitehead torsion, Am. J. Math., Volume 96 (1974), pp. 488-497 | DOI | MR | Zbl
[15] Analytic torsion and the heat equation, Ann. Math., Volume 109 (1979) no. 2, pp. 259-322 | DOI | MR | Zbl
[16] de Rham–Hodge theory for -cohomology of infinite coverings, Topology, Volume 16 (1977) no. 2, pp. 157-165 | DOI | MR | Zbl
[17] Von Neumann spectra near zero, Geom. Funct. Anal., Volume 1 (1991) no. 4, pp. 375-404 | DOI | MR | Zbl
[18] Analytic surgery and analytic torsion, Commun. Anal. Geom., Volume 6 (1998) no. 2, pp. 255-289 | DOI | MR | Zbl
[19] Analytic and topological torsion for manifolds with boundary and symmetry, J. Differ. Geom., Volume 37 (1993) no. 2, pp. 263-322 | MR | Zbl
[20] -invariants: Theory and applications to geometry and -theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 44, Springer, 2002, xvi+595 pages
[21] -torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 518-567 | DOI | MR | Zbl
[22] An anomaly formula for -analytic torsions on manifolds with boundary, Analysis, geometry and topology of elliptic operators, World Scientific, 2006, pp. 235-262 | Zbl
[23] -analytic torsion, J. Funct. Anal., Volume 107 (1992) no. 2, pp. 369-386 | DOI | Zbl
[24] Whitehead torsion, Bull. Am. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl
[25] Analytic torsion and -torsion of Riemannian manifolds, Adv. Math., Volume 28 (1978) no. 3, pp. 233-305 | DOI | MR | Zbl
[26] Analytic torsion and -torsion for unimodular representations, J. Am. Math. Soc., Volume 6 (1993) no. 3, pp. 721-753 | MR | Zbl
[27] The analytic torsion and its asymptotic behaviour for sequences of hyperbolic manifolds of finite volume, J. Funct. Anal., Volume 267 (2014) no. 8, pp. 2731-2786 | DOI | MR | Zbl
[28] Analytic torsion and Reidemeister torsion of hyperbolic manifolds with cusps (2019) (https://arxiv.org/abs/1903.06199)
[29] On moduli spaces and CW Structures Arising from Morse Theory On Hilbert Manifolds, J. Topol. Anal., Volume 2 (2010) no. 4, pp. 469-526 | MR | Zbl
[30] -torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210 | MR | Zbl
[31] Analysis and Geometry of Boundary Manifolds of Bounded Geometry (1998) (https://arxiv.org/abs/math/9810107)
[32] De Rham Theorem for extended -cohomology, Voronezh winter mathematical schools. Dedicated to Selim Krein (Translations), Volume 2, American Mathematical Society, 1998, pp. 217-231 | MR | Zbl
[33] Analytic torsion of boundary value problems, Dokl. Akad. Nauk SSSR, Volume 300 (1987) no. 6, pp. 1293-1298 | Zbl
[34] The -Cheeger–Müller Theorem for Representations of Hyperbolic Lattices, Ph. D. Thesis, Karlsruhe Institute for Technology (2020)
[35] An extended Cheeger–Müller theorem for covering spaces, Topology, Volume 44 (2005) no. 6, pp. 1093-1131 | DOI | Zbl
Cité par Sources :