The set of values of the -Reidemeister torsion of a 3-manifold can be both finite and infinite. We prove that is a finite set if is the splice of two certain knots in the 3-sphere. The proof is based on an observation on the character varieties and -polynomials of knots.
@article{AMBP_2020__27_1_19_0, author = {Teruaki Kitano and Yuta Nozaki}, title = {Finiteness of the image of the {Reidemeister} torsion of a splice}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {19--36}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {27}, number = {1}, year = {2020}, doi = {10.5802/ambp.389}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.389/} }
TY - JOUR AU - Teruaki Kitano AU - Yuta Nozaki TI - Finiteness of the image of the Reidemeister torsion of a splice JO - Annales mathématiques Blaise Pascal PY - 2020 SP - 19 EP - 36 VL - 27 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.389/ DO - 10.5802/ambp.389 LA - en ID - AMBP_2020__27_1_19_0 ER -
%0 Journal Article %A Teruaki Kitano %A Yuta Nozaki %T Finiteness of the image of the Reidemeister torsion of a splice %J Annales mathématiques Blaise Pascal %D 2020 %P 19-36 %V 27 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.389/ %R 10.5802/ambp.389 %G en %F AMBP_2020__27_1_19_0
Teruaki Kitano; Yuta Nozaki. Finiteness of the image of the Reidemeister torsion of a splice. Annales mathématiques Blaise Pascal, Volume 27 (2020) no. 1, pp. 19-36. doi : 10.5802/ambp.389. https://ambp.centre-mersenne.org/articles/10.5802/ambp.389/
[1] A sheaf-theoretic model for Floer homology (to appear in J. Eur. Math. Soc.)
[2] Splicing and the Casson invariant, Proc. Am. Math. Soc., Volume 136 (2008) no. 7, pp. 2615-2623 | DOI | MR
[3] Plane curves associated to character varieties of -manifolds, Invent. Math., Volume 118 (1994) no. 1, pp. 47-84 | DOI | MR | Zbl
[4] Remarks on the -polynomial of a knot, J. Knot Theory Ramifications, Volume 5 (1996) no. 5, pp. 609-628 | DOI | MR
[5] An intersection theory count of the -representations of the fundamental group of a -manifold, Topology, Volume 40 (2001) no. 4, pp. 773-787 | DOI | MR
[6] Erratum to: “An intersection theory count of the -representations of the fundamental group of a 3-manifold” [Topology 40(4):773–787, 2001], Topology, Volume 42 (2003) no. 4, 929 pages | DOI | MR
[7] Convex polytopes, Pure and Applied Mathematics, 16, Interscience Publishers, 1967, xiv+456 pages (With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard.) | MR
[8] Incompressible surfaces in -bridge knot complements, Invent. Math., Volume 79 (1985) no. 2, pp. 225-246 | DOI | MR
[9] -representation spaces of knot groups, RIMS Kokyuroku, Volume 1991 (2016), pp. 1-26
[10] A geometric form of Casson’s invariant and its connection to Reidemeister torsion (unpublished lecture notes)
[11] Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) (Progress in Mathematics), Volume 67, Birkhäuser, 1987, pp. 48-106 | DOI | MR
[12] Reidemeister torsion of Seifert fibered spaces for -representations, Tokyo J. Math., Volume 17 (1994) no. 1, pp. 59-75 | DOI | MR
[13] Reidemeister torsion of the figure-eight knot exterior for -representations, Osaka J. Math., Volume 31 (1994) no. 3, pp. 523-532 | MR
[14] Two complexes which are homeomorphic but combinatorially distinct, Ann. Math., Volume 74 (1961), pp. 575-590 | DOI | MR
[15] A duality theorem for Reidemeister torsion, Ann. Math., Volume 76 (1962), pp. 137-147 | DOI | MR
[16] Twisted Alexander polynomials of twist knots for nonabelian representations, Bull. Sci. Math., Volume 132 (2008) no. 5, pp. 439-453 | DOI | MR
[17] Haken manifolds and representations of their fundamental groups in , Topology Appl., Volume 29 (1988) no. 3, pp. 207-212 | DOI | MR
[18] Non-standard components of the character variety for a family of Montesinos knots, Proc. Lond. Math. Soc., Volume 107 (2013) no. 3, pp. 655-679 | DOI | MR
[19] Nonabelian representations of -bridge knot groups, Q. J. Math., Oxf. II. Ser., Volume 35 (1984) no. 138, pp. 191-208 | DOI | MR
[20] Integer homology 3-spheres admit irreducible representations in , Duke Math. J., Volume 167 (2018) no. 9, pp. 1643-1712 | DOI | MR
Cited by Sources: