We investigate some geometric properties of the Calogero–Moser spaces associated with a dihedral group. As a consequence, we check in this particular case some conjectures made by the author and Raphaël Rouquier about general Calogero–Moser spaces.
@article{AMBP_2018__25_2_265_0, author = {C\'edric Bonnaf\'e}, title = {On the {Calogero{\textendash}Moser} space associated with dihedral groups}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {265--298}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {25}, number = {2}, year = {2018}, doi = {10.5802/ambp.377}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.377/} }
TY - JOUR TI - On the Calogero–Moser space associated with dihedral groups JO - Annales Mathématiques Blaise Pascal PY - 2018 DA - 2018/// SP - 265 EP - 298 VL - 25 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.377/ UR - https://doi.org/10.5802/ambp.377 DO - 10.5802/ambp.377 LA - en ID - AMBP_2018__25_2_265_0 ER -
%0 Journal Article %T On the Calogero–Moser space associated with dihedral groups %J Annales Mathématiques Blaise Pascal %D 2018 %P 265-298 %V 25 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://doi.org/10.5802/ambp.377 %R 10.5802/ambp.377 %G en %F AMBP_2018__25_2_265_0
Cédric Bonnafé. On the Calogero–Moser space associated with dihedral groups. Annales Mathématiques Blaise Pascal, Volume 25 (2018) no. 2, pp. 265-298. doi : 10.5802/ambp.377. https://ambp.centre-mersenne.org/articles/10.5802/ambp.377/
[1] Le groupe des traces de Poisson de certaines algèbres d’invariants, Commun. Algebra, Volume 37 (2009) no. 1, pp. 368-388 | Article | MR: 2482828
[2] Generalized Calogero-Moser spaces and rational Cherednik algebras (2010) (Ph. D. Thesis)
[3] Cuspidal representations of rational Cherednik algebras at , Math. Z., Volume 269 (2011) no. 3-4, pp. 609-627 | Article | MR: 2860254
[4] Cuspidal Calogero-Moser and Lusztig families for Coxeter groups, J. Algebra, Volume 462 (2016), pp. 197-252 | Article | MR: 3519506
[5] Cherednik algebras and differential operators on quasi-invariants, Duke Math. J., Volume 118 (2003) no. 2, pp. 279-337 | Article | MR: 1980996
[6] Cherednik algebras and Calogero-Moser cells (2017) (https://arxiv.org/abs/1708.09764)
[7] Calogero-Moser families and cellular characters: computational aspects (in preparation)
[8] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | Article | MR: 1484478 | Zbl: 0898.68039
[9] Représentations de dimension finie de l’algèbre de Cherednik rationnelle, Bull. Soc. Math. Fr., Volume 131 (2003) no. 4, pp. 465-482 | MR: 2044491
[10] Permutation groups, Graduate Texts in Mathematics, Volume 163, Springer, 1996, xii+346 pages | Article | MR: 1409812
[11] Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | Article | MR: 1881922
[12] GAP – Groups, Algorithms, and Programming, Version 4.9.1 (2018) (https://www.gap-system.org)
[13] Baby Verma modules for rational Cherednik algebras, Bull. Lond. Math. Soc., Volume 35 (2003) no. 3, pp. 321-336 | Article | MR: 1960942
[14] Calogero-Moser space, restricted rational Cherednik algebras and two-sided cells, Math. Res. Lett., Volume 16 (2009) no. 2, pp. 255-262 | Article | MR: 2496742
[15] Hecke algebras with unequal parameters, CRM Monograph Series, Volume 18, American Mathematical Society, 2003, vi+136 pages | MR: 1974442 | Zbl: 1051.20003
[16] Champ: a Cherednik algebra Magma package, LMS J. Comput. Math., Volume 18 (2015) no. 1, pp. 266-307 | Article | MR: 3361642 | Zbl: 1319.16036
Cited by Sources: