We investigate some geometric properties of the Calogero–Moser spaces associated with a dihedral group. As a consequence, we check in this particular case some conjectures made by the author and Raphaël Rouquier about general Calogero–Moser spaces.
@article{AMBP_2018__25_2_265_0, author = {C\'edric Bonnaf\'e}, title = {On the {Calogero{\textendash}Moser} space associated with dihedral groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {265--298}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {25}, number = {2}, year = {2018}, doi = {10.5802/ambp.377}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.377/} }
TY - JOUR AU - Cédric Bonnafé TI - On the Calogero–Moser space associated with dihedral groups JO - Annales mathématiques Blaise Pascal PY - 2018 SP - 265 EP - 298 VL - 25 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.377/ DO - 10.5802/ambp.377 LA - en ID - AMBP_2018__25_2_265_0 ER -
%0 Journal Article %A Cédric Bonnafé %T On the Calogero–Moser space associated with dihedral groups %J Annales mathématiques Blaise Pascal %D 2018 %P 265-298 %V 25 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.377/ %R 10.5802/ambp.377 %G en %F AMBP_2018__25_2_265_0
Cédric Bonnafé. On the Calogero–Moser space associated with dihedral groups. Annales mathématiques Blaise Pascal, Volume 25 (2018) no. 2, pp. 265-298. doi : 10.5802/ambp.377. https://ambp.centre-mersenne.org/articles/10.5802/ambp.377/
[1] Le groupe des traces de Poisson de certaines algèbres d’invariants, Commun. Algebra, Volume 37 (2009) no. 1, pp. 368-388 | DOI | MR
[2] Generalized Calogero-Moser spaces and rational Cherednik algebras, University of Edinburgh (UK) (2010) (Ph. D. Thesis)
[3] Cuspidal representations of rational Cherednik algebras at , Math. Z., Volume 269 (2011) no. 3-4, pp. 609-627 | DOI | MR
[4] Cuspidal Calogero-Moser and Lusztig families for Coxeter groups, J. Algebra, Volume 462 (2016), pp. 197-252 | DOI | MR
[5] Cherednik algebras and differential operators on quasi-invariants, Duke Math. J., Volume 118 (2003) no. 2, pp. 279-337 | DOI | MR
[6] Cherednik algebras and Calogero-Moser cells (2017) (https://arxiv.org/abs/1708.09764)
[7] Calogero-Moser families and cellular characters: computational aspects (in preparation)
[8] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[9] Représentations de dimension finie de l’algèbre de Cherednik rationnelle, Bull. Soc. Math. Fr., Volume 131 (2003) no. 4, pp. 465-482 | MR
[10] Permutation groups, Graduate Texts in Mathematics, 163, Springer, 1996, xii+346 pages | DOI | MR
[11] Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR
[12] GAP – Groups, Algorithms, and Programming, Version 4.9.1 (2018) (https://www.gap-system.org)
[13] Baby Verma modules for rational Cherednik algebras, Bull. Lond. Math. Soc., Volume 35 (2003) no. 3, pp. 321-336 | DOI | MR
[14] Calogero-Moser space, restricted rational Cherednik algebras and two-sided cells, Math. Res. Lett., Volume 16 (2009) no. 2, pp. 255-262 | DOI | MR
[15] Hecke algebras with unequal parameters, CRM Monograph Series, 18, American Mathematical Society, 2003, vi+136 pages | MR | Zbl
[16] Champ: a Cherednik algebra Magma package, LMS J. Comput. Math., Volume 18 (2015) no. 1, pp. 266-307 | DOI | MR | Zbl
Cited by Sources: