In this paper we introduce an equivariant extension of the Chern-Simons form, associated to a path of connections on a bundle over a manifold , to the free loop space , and show it determines an equivalence relation on the set of connections on a bundle. We use this to define a ring, loop differential K-theory of , in much the same way that differential K-theory can be defined using the Chern-Simons form [14]. We show loop differential K-theory yields a refinement of differential K-theory, and in particular incorporates holonomy information into its classes. Additionally, loop differential K-theory is shown to be strictly coarser than the Grothendieck group of bundles with connection up to gauge equivalence. Finally, we calculate loop differential K-theory of the circle.
Mots clés : Differential $K$-Theory, Bismut-Chern-Simons forms, Loop spaces
Thomas Tradler 1 ; Scott O. Wilson 2 ; Mahmoud Zeinalian 3
@article{AMBP_2015__22_1_121_0, author = {Thomas Tradler and Scott O. Wilson and Mahmoud Zeinalian}, title = {Loop differential {K-theory}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {121--163}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {22}, number = {1}, year = {2015}, doi = {10.5802/ambp.348}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.348/} }
TY - JOUR AU - Thomas Tradler AU - Scott O. Wilson AU - Mahmoud Zeinalian TI - Loop differential K-theory JO - Annales mathématiques Blaise Pascal PY - 2015 SP - 121 EP - 163 VL - 22 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.348/ DO - 10.5802/ambp.348 LA - en ID - AMBP_2015__22_1_121_0 ER -
%0 Journal Article %A Thomas Tradler %A Scott O. Wilson %A Mahmoud Zeinalian %T Loop differential K-theory %J Annales mathématiques Blaise Pascal %D 2015 %P 121-163 %V 22 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.348/ %R 10.5802/ambp.348 %G en %F AMBP_2015__22_1_121_0
Thomas Tradler; Scott O. Wilson; Mahmoud Zeinalian. Loop differential K-theory. Annales mathématiques Blaise Pascal, Tome 22 (2015) no. 1, pp. 121-163. doi : 10.5802/ambp.348. https://ambp.centre-mersenne.org/articles/10.5802/ambp.348/
[1] Index theorem and equivariant cohomology on the loop space, Comm. Math. Phys., Volume 98 (1985) no. 2, pp. 213-237 http://projecteuclid.org/euclid.cmp/1103942357 | DOI | MR | Zbl
[2] Differential cohomology theories as sheaves of spectra (http://arxiv.org/abs/1311.3188)
[3] Smooth -theory, Astérisque (2009) no. 328, p. 45-135 (2010) | MR | Zbl
[4] Uniqueness of smooth extensions of generalized cohomology theories, J. Topol., Volume 3 (2010) no. 1, pp. 110-156 | DOI | MR | Zbl
[5] Characteristic forms and geometric invariants, Ann. of Math. (2), Volume 99 (1974), pp. 48-69 | DOI | MR | Zbl
[6] On Ramond-Ramond fields and -theory, J. High Energy Phys. (2000) no. 5, pp. Paper 44, 14 | DOI | MR | Zbl
[7] The uncertainty of fluxes, Comm. Math. Phys., Volume 271 (2007) no. 1, pp. 247-274 | DOI | MR | Zbl
[8] Differential forms on loop spaces and the cyclic bar complex, Topology, Volume 30 (1991) no. 3, pp. 339-371 | DOI | MR | Zbl
[9] The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), Volume 7 (1982) no. 1, pp. 65-222 | DOI | MR | Zbl
[10] Supersymmetric QFT, Super Loop Spaces and Bismut-Chern Character, University of California, Berkeley (2005) (Ph. D. Thesis) | MR
[11] Quadratic functions in geometry, topology, and M-theory, J. Differential Geom., Volume 70 (2005) no. 3, pp. 329-452 http://projecteuclid.org/euclid.jdg/1143642908 | MR | Zbl
[12] The fixed point theorem in equivariant cohomology, Trans. Amer. Math. Soc., Volume 322 (1990) no. 1, pp. 35-49 | DOI | MR | Zbl
[13] index theory, Comm. Anal. Geom., Volume 2 (1994) no. 2, pp. 279-311 | MR | Zbl
[14] Structured vector bundles define differential -theory, Quanta of maths (Clay Math. Proc.), Volume 11, Amer. Math. Soc., Providence, RI, 2010, pp. 579-599 | MR | Zbl
[15] Supersymmetric field theories and generalized cohomology, Mathematical foundations of quantum field theory and perturbative string theory (Proc. Sympos. Pure Math.), Volume 83, Amer. Math. Soc., Providence, RI, 2011, pp. 279-340 | DOI | MR | Zbl
[16] Equivariant holonomy for bundles and abelian gerbes, Comm. Math. Phys., Volume 315 (2012) no. 1, pp. 39-108 | DOI | MR | Zbl
[17] A Chern character in cyclic homology, Trans. Amer. Math. Soc., Volume 331 (1992) no. 1, pp. 157-163 | DOI | MR | Zbl
Cité par Sources :