On p 2 -Ranks in the Class Field Tower Problem
Annales Mathématiques Blaise Pascal, Volume 21 (2014) no. 2, pp. 57-68.

Much recent progress in the 2-class field tower problem revolves around demonstrating infinite such towers for fields – in particular, quadratic fields – whose class groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type inequalities to analyse the source of the p 2 -rank of the class group as a quantity of relevance in the p-class field tower problem. We also make significant partial progress toward demonstrating that all real quadratic number fields whose class groups have a 2-rank of 5 must have an infinite 2-class field tower.

Les récents progrès sur le problème de la 2-tour de Hilbert des corps de nombres portent sur l’infinitude – en particulier pour les corps quadratiques – quand le groupe des classes a un grand 4-rang. Généralisant à tout nombre premier p, nous utilisons les inégalités de type Golod-Safarevic afin d’analyser la contribution du p 2 -rang du groupe des classes à l’étude de la p-tour de Hilbert. Nous apportons également des résultats partiels en direction de l’infinitude de le 2-tour de Hilbert des corps quadratiques réels lorsque que le 2-rang du groupe des classes vaut 5.

DOI: 10.5802/ambp.342
Classification: 11R29,  11R34,  11R37
Keywords: Hilbert class field towers
@article{AMBP_2014__21_2_57_0,
     author = {Christian Maire and Cam McLeman},
     title = {On $p^2${-Ranks} in the {Class} {Field} {Tower} {Problem}},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {57--68},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {21},
     number = {2},
     year = {2014},
     doi = {10.5802/ambp.342},
     mrnumber = {3322615},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.342/}
}
TY  - JOUR
TI  - On $p^2$-Ranks in the Class Field Tower Problem
JO  - Annales Mathématiques Blaise Pascal
PY  - 2014
DA  - 2014///
SP  - 57
EP  - 68
VL  - 21
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.342/
UR  - https://www.ams.org/mathscinet-getitem?mr=3322615
UR  - https://doi.org/10.5802/ambp.342
DO  - 10.5802/ambp.342
LA  - en
ID  - AMBP_2014__21_2_57_0
ER  - 
%0 Journal Article
%T On $p^2$-Ranks in the Class Field Tower Problem
%J Annales Mathématiques Blaise Pascal
%D 2014
%P 57-68
%V 21
%N 2
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.342
%R 10.5802/ambp.342
%G en
%F AMBP_2014__21_2_57_0
Christian Maire; Cam McLeman. On $p^2$-Ranks in the Class Field Tower Problem. Annales Mathématiques Blaise Pascal, Volume 21 (2014) no. 2, pp. 57-68. doi : 10.5802/ambp.342. https://ambp.centre-mersenne.org/articles/10.5802/ambp.342/

[1] Elliot Benjamin; Franz Lemmermeyer; C. Snyder Real quadratic fields with abelian 2-class field tower, J. Number Theory, Volume 73 (1998) no. 2, pp. 182-194 | Article | MR: 1658015 | Zbl: 0919.11073

[2] E. S. Golod; I. R. Šafarevič On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat., Volume 28 (1964), pp. 261-272 | MR: 161852 | Zbl: 0136.02602

[3] Christian Maire Un raffinement du théorème de Golod-Safarevic, Nagoya Math. J., Volume 150 (1998), pp. 1-11 http://projecteuclid.org/euclid.nmj/1118766698 | MR: 1633138 | Zbl: 0923.11158

[4] René Schoof Infinite class field towers of quadratic fields, J. Reine Angew. Math., Volume 372 (1986), pp. 209-220 | Article | MR: 863524 | Zbl: 0589.12011

[5] W. A. Stein Sage Mathematics Software (Version 5.11) (Y2013) (http://www.sagemath.org)

[6] B. B. Venkov; H. Koh The p-tower of class fields for an imaginary quadratic field, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 46 (1974), p. 5-13, 140 (Modules and representations) | MR: 382235 | Zbl: 0335.12022

Cited by Sources: