[-rangs et -tours de Hilbert]
Les récents progrès sur le problème de la 2-tour de Hilbert des corps de nombres portent sur l’infinitude – en particulier pour les corps quadratiques – quand le groupe des classes a un grand 4-rang. Généralisant à tout nombre premier , nous utilisons les inégalités de type Golod-Safarevic afin d’analyser la contribution du -rang du groupe des classes à l’étude de la -tour de Hilbert. Nous apportons également des résultats partiels en direction de l’infinitude de le -tour de Hilbert des corps quadratiques réels lorsque que le -rang du groupe des classes vaut .
Much recent progress in the 2-class field tower problem revolves around demonstrating infinite such towers for fields – in particular, quadratic fields – whose class groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type inequalities to analyse the source of the -rank of the class group as a quantity of relevance in the -class field tower problem. We also make significant partial progress toward demonstrating that all real quadratic number fields whose class groups have a 2-rank of 5 must have an infinite 2-class field tower.
Keywords: Hilbert class field towers
Mot clés : Tours de Hilbert des corps de nombres
Christian Maire 1 ; Cam McLeman 2
@article{AMBP_2014__21_2_57_0, author = {Christian Maire and Cam McLeman}, title = {On $p^2${-Ranks} in the {Class} {Field} {Tower} {Problem}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {57--68}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.342}, mrnumber = {3322615}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.342/} }
TY - JOUR AU - Christian Maire AU - Cam McLeman TI - On $p^2$-Ranks in the Class Field Tower Problem JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 57 EP - 68 VL - 21 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.342/ DO - 10.5802/ambp.342 LA - en ID - AMBP_2014__21_2_57_0 ER -
%0 Journal Article %A Christian Maire %A Cam McLeman %T On $p^2$-Ranks in the Class Field Tower Problem %J Annales mathématiques Blaise Pascal %D 2014 %P 57-68 %V 21 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.342/ %R 10.5802/ambp.342 %G en %F AMBP_2014__21_2_57_0
Christian Maire; Cam McLeman. On $p^2$-Ranks in the Class Field Tower Problem. Annales mathématiques Blaise Pascal, Tome 21 (2014) no. 2, pp. 57-68. doi : 10.5802/ambp.342. https://ambp.centre-mersenne.org/articles/10.5802/ambp.342/
[1] Real quadratic fields with abelian -class field tower, J. Number Theory, Volume 73 (1998) no. 2, pp. 182-194 | DOI | MR | Zbl
[2] On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat., Volume 28 (1964), pp. 261-272 | MR | Zbl
[3] Un raffinement du théorème de Golod-Safarevic, Nagoya Math. J., Volume 150 (1998), pp. 1-11 http://projecteuclid.org/euclid.nmj/1118766698 | MR | Zbl
[4] Infinite class field towers of quadratic fields, J. Reine Angew. Math., Volume 372 (1986), pp. 209-220 | DOI | MR | Zbl
[5] Sage Mathematics Software (Version 5.11) (Y2013) (http://www.sagemath.org)
[6] The -tower of class fields for an imaginary quadratic field, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 46 (1974), p. 5-13, 140 (Modules and representations) | MR | Zbl
Cité par Sources :