The new properties of the theta functions
Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 2, pp. 391-398.

It is shown, that the function

H ( x ) = k = - e - k 2 x
satisfies the relation
H ( x ) = n = 0 ( 2 π ) 2 n ( 2 n ) ! H ( n ) ( x ) .

DOI : 10.5802/ambp.332

Stefan Czekalski 1

1 Ul. Marszalkowska 1 m 80 00-624 Warszawa Poland
@article{AMBP_2013__20_2_391_0,
     author = {Stefan Czekalski},
     title = {The new properties of the theta functions},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {391--398},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {20},
     number = {2},
     year = {2013},
     doi = {10.5802/ambp.332},
     mrnumber = {3138035},
     zbl = {1282.33030},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.332/}
}
TY  - JOUR
AU  - Stefan Czekalski
TI  - The new properties of the theta functions
JO  - Annales mathématiques Blaise Pascal
PY  - 2013
SP  - 391
EP  - 398
VL  - 20
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.332/
DO  - 10.5802/ambp.332
LA  - en
ID  - AMBP_2013__20_2_391_0
ER  - 
%0 Journal Article
%A Stefan Czekalski
%T The new properties of the theta functions
%J Annales mathématiques Blaise Pascal
%D 2013
%P 391-398
%V 20
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.332/
%R 10.5802/ambp.332
%G en
%F AMBP_2013__20_2_391_0
Stefan Czekalski. The new properties of the theta functions. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 2, pp. 391-398. doi : 10.5802/ambp.332. https://ambp.centre-mersenne.org/articles/10.5802/ambp.332/

[1] R. Bellman A Brief Introduction to Theta Functions, Hall, Rinehart and Winston, New York, 1961 | MR | Zbl

[2] A. Krazer Lehrbuch der Theta - Funktionen, Chelsea, New York, 1971 | Zbl

Cité par Sources :