On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension , il existe une constante telle que, pour tout ouvert proprement convexe , pour tout point , tout groupe discret engendré par un nombre fini d’automorphismes de qui déplacent le point de moins de est virtuellement nilpotent.
We prove a Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometries. More precisely, in every dimension there exists a constant such that, for any properly convex open set and any point , any discrete group generated by a finite number of automorphisms of , which displace at a distance less than , is virtually nilpotent.
Mot clés : Géométrie de Hilbert, lemme de Margulis, action géométriquement finie
Keywords: Hilbert’s geometry, lemma of Margulis, action geometrically finite
Mickaël Crampon 1 ; Ludovic Marquis 2
@article{AMBP_2013__20_2_363_0, author = {Micka\"el Crampon and Ludovic Marquis}, title = {Un lemme de {Kazhdan-Margulis-Zassenhaus} pour les g\'eom\'etries de {Hilbert}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {363--376}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {20}, number = {2}, year = {2013}, doi = {10.5802/ambp.330}, mrnumber = {3138033}, zbl = {1282.22007}, language = {fr}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.330/} }
TY - JOUR AU - Mickaël Crampon AU - Ludovic Marquis TI - Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert JO - Annales mathématiques Blaise Pascal PY - 2013 SP - 363 EP - 376 VL - 20 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.330/ DO - 10.5802/ambp.330 LA - fr ID - AMBP_2013__20_2_363_0 ER -
%0 Journal Article %A Mickaël Crampon %A Ludovic Marquis %T Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert %J Annales mathématiques Blaise Pascal %D 2013 %P 363-376 %V 20 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.330/ %R 10.5802/ambp.330 %G fr %F AMBP_2013__20_2_363_0
Mickaël Crampon; Ludovic Marquis. Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 2, pp. 363-376. doi : 10.5802/ambp.330. https://ambp.centre-mersenne.org/articles/10.5802/ambp.330/
[1] Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser Boston Inc., Boston, MA, 1985 | MR | Zbl
[2] Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000) no. 1, pp. 149-193 | DOI | MR | Zbl
[3] Convexes divisibles. II, Duke Math. J., Volume 120 (2003) no. 1, pp. 97-120 | DOI | MR | Zbl
[4] Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, pp. 339-374 | MR | Zbl
[5] Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 5, pp. 793-832 | Numdam | MR | Zbl
[6] Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math., Volume 164 (2006) no. 2, pp. 249-278 | DOI | MR | Zbl
[7] Convexes hyperboliques et quasiisométries, Geom. Dedicata, Volume 122 (2006), pp. 109-134 | DOI | MR | Zbl
[8] Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France, Volume 88 (1960), pp. 229-332 | Numdam | MR | Zbl
[9] Symmetric cones, the Hilbert and Thompson metrics, ArXiv e-prints (2012)
[10] The structure of approximate groups, ArXiv e-prints (2011) | MR
[11] The geometry of geodesics, Academic Press Inc., New York, N. Y., 1955 | MR | Zbl
[12] Convex decompositions of real projective surfaces. I. -annuli and convexity, J. Differential Geom., Volume 40 (1994) no. 1, pp. 165-208 http://projecteuclid.org/getRecord?id=euclid.jdg/1214455291 | MR | Zbl
[13] Convex decompositions of real projective surfaces. II. Admissible decompositions, J. Differential Geom., Volume 40 (1994) no. 2, pp. 239-283 http://projecteuclid.org/getRecord?id=euclid.jdg/1214455537 | MR | Zbl
[14] The Margulis lemma and the thick and thin decomposition for convex real projective surfaces, Adv. Math., Volume 122 (1996) no. 1, pp. 150-191 | DOI | MR | Zbl
[15] The deformation spaces of projective structures on 3-dimensional Coxeter orbifolds, Geom. Dedicata, Volume 119 (2006), pp. 69-90 | DOI | MR | Zbl
[16] The convex real projective manifolds and orbifolds with radial ends : the openness of deformations, ArXiv e-prints (2010)
[17] Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc., Volume 118 (1993) no. 2, pp. 657-661 | DOI | MR | Zbl
[18] The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. (N.S.), Volume 34 (1997) no. 2, pp. 161-171 | DOI | MR | Zbl
[19] Bas du spectre et delta-hyperbolicité en géométrie de Hilbert plane, Bull. Soc. Math. France, Volume 134 (2006) no. 3, pp. 357-381 | Numdam | MR | Zbl
[20] On Convex Projective Manifolds and Cusps, ArXiv e-prints (2011)
[21] Finitude géométrique en géométrie de Hilbert, ArXiv e-prints (2012)
[22] Convex real projective structures on compact surfaces, J. Differential Geom., Volume 31 (1990) no. 3, pp. 791-845 http://projecteuclid.org/getRecord?id=euclid.jdg/1214444635 | MR | Zbl
[23] Projective geometry on manifolds (2010) (Notes from a course given in 1988)
[24] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295 | MR
[25] On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 181, Cambridge Univ. Press, Cambridge, 1993, pp. 97-119 | DOI | MR | Zbl
[26] Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) (Progr. Math.), Volume 67, Birkhäuser Boston, Boston, MA, 1987, pp. 48-106 | MR | Zbl
[27] Quasi-homogeneous cones, Mat. Zametki, Volume 1 (1967), pp. 347-354 | MR | Zbl
[28] Convex projective structures on Gromov-Thurston manifolds, Geom. Topol., Volume 11 (2007), pp. 1777-1830 | DOI | MR | Zbl
[29] A proof of Selberg’s hypothesis, Mat. Sb. (N.S.), Volume 75 (117) (1968), pp. 163-168 | MR | Zbl
[30] Isometries of polyhedral Hilbert geometries, J. Topol. Anal., Volume 3 (2011) no. 2, pp. 213-241 | DOI | MR | Zbl
[31] Discrete groups of motions of manifolds of nonpositive curvature, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2 (1975), pp. 21-34 | MR | Zbl
[32] Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol., Volume 14 (2010) no. 4, pp. 2103-2149 | DOI | MR | Zbl
[33] Exemples de variétés projectives strictement convexes de volume fini en dimension quelconque, Enseign. Math. (2), Volume 58 (2012), pp. 3-47 | DOI | MR
[34] Finite volume convex projective surface. (Surface projective convexe de volume fini.), Ann. Inst. Fourier, Volume 62 (2012) no. 1, pp. 325-392 | DOI | Numdam | MR | Zbl
[35] Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed -dimensional space, Geometric aspects of functional analysis (1987–88) (Lecture Notes in Math.), Volume 1376, Springer, Berlin, 1989, pp. 64-104 | DOI | MR | Zbl
[36] Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972 (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68) | MR | Zbl
[37] Introduction aux géométries de Hilbert, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 23. Année 2004–2005 (Sémin. Théor. Spectr. Géom.), Volume 23, Univ. Grenoble I, Saint, 2005, pp. 145-168 | Numdam | MR | Zbl
[38] Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3), Volume 24 (1970), pp. 641-665 | Numdam | MR | Zbl
[39] Beweis eines Satzes über diskrete Gruppen., Abh. math. Sem. Hansische Univ., Volume 12 (1938), pp. 289-312 | DOI | Zbl
Cité par Sources :