Riesz transforms for Dunkl transform
Annales mathématiques Blaise Pascal, Volume 19 (2012) no. 1, pp. 247-262.

In this paper we obtain the L p -boundedness of Riesz transforms for the Dunkl transform for all 1<p<.

Dans cet article, nous étudions la bornitude des transformées de Riesz associées à la transformée de Dunkl sur les espaces L p , 1<p<.

DOI: 10.5802/ambp.312
Classification: 17B22,  32A55,  43A32,  42A45
Keywords: Dunkl transforms, Riesz Transforms, Singular integrals
Bechir Amri 1; Mohamed Sifi 2

1 Department of Mathematics University of Tunis Preparatory Institute of Engineer Studies of Tunis 1089 Montfleury, Tunis, Tunisia
2 Department of Mathematics University of Tunis El Manar Faculty of Sciences of Tunis 2092 Tunis El Manar, Tunis, Tunisia
@article{AMBP_2012__19_1_247_0,
     author = {Bechir Amri and Mohamed Sifi},
     title = {Riesz transforms for {Dunkl} transform},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {247--262},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {1},
     year = {2012},
     doi = {10.5802/ambp.312},
     mrnumber = {2978321},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.312/}
}
TY  - JOUR
AU  - Bechir Amri
AU  - Mohamed Sifi
TI  - Riesz transforms for Dunkl transform
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
DA  - 2012///
SP  - 247
EP  - 262
VL  - 19
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.312/
UR  - https://www.ams.org/mathscinet-getitem?mr=2978321
UR  - https://doi.org/10.5802/ambp.312
DO  - 10.5802/ambp.312
LA  - en
ID  - AMBP_2012__19_1_247_0
ER  - 
%0 Journal Article
%A Bechir Amri
%A Mohamed Sifi
%T Riesz transforms for Dunkl transform
%J Annales mathématiques Blaise Pascal
%D 2012
%P 247-262
%V 19
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.312
%R 10.5802/ambp.312
%G en
%F AMBP_2012__19_1_247_0
Bechir Amri; Mohamed Sifi. Riesz transforms for Dunkl transform. Annales mathématiques Blaise Pascal, Volume 19 (2012) no. 1, pp. 247-262. doi : 10.5802/ambp.312. https://ambp.centre-mersenne.org/articles/10.5802/ambp.312/

[1] B. Amri; A. Gasmi; M. Sifi Linear and bilinear multiplier operators for the Dunkl transform, Mediterranean Journal of Mathematics, Volume 7 (2010), pp. 503-521 | DOI | MR | Zbl

[2] F. Dai; H. Wang A transference theorem for the Dunkl transform and its applications, Journal of Functional Analysis, Volume 258 (2010), pp. 4052-4074 | DOI | MR | Zbl

[3] C. F. Dunkl Differential–Difference operators associated to reflection groups, Trans. Amer. Math., Volume 311 (1989), pp. 167-183 | DOI | MR | Zbl

[4] S. Hassani; S. Mustapha; M. Sifi Riesz potentials and fractional maximal function for the Dunkl transform, J. Lie Theory, Volume 19 (2009, no. 4), pp. 725-734 | MR | Zbl

[5] M.F.E. de Jeu The Dunkl transform, Invent. Math., Volume 113 (1993), pp. 147-162 | DOI | EuDML | MR | Zbl

[6] M. Rosler Dunkl operators: theory and applications, in Orthogonal polynomials and special functions (Leuven, 2002), N , Lect. Notes Math., Volume 1817 (2003), pp. 93-135 | MR | Zbl

[7] M. Rosler A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 2413-2438 | DOI | MR | Zbl

[8] E. M. Stein Harmonic Analysis: Reals-Variable Methods, Orthogonality and Oscillatory Integrals, PrincetonS, New Jersey, 1993 | MR | Zbl

[9] S. Thangavelu; Y. Xu Convolution operator and maximal function for Dunkl transform, J. Anal. Math., Volume 97 (2005), pp. 25-55 | DOI | MR | Zbl

[10] S. Thangavelu; Y. Xu Riesz transforms and Riesz potentials for the Dunkl transform, J. Comp. and Appl. Math., Volume 199 (2007), pp. 181-195 | DOI | MR

Cited by Sources: