In the cases and , we describe the seeds obtained by sequences of mutations from an initial seed. In the case, we deduce a linear representation of the group of mutations which contains as matrix entries all cluster variables obtained after an arbitrary sequence of mutations (this sequence is an element of the group). Nontransjective variables correspond to certain subgroups of finite index. A noncommutative rational series is constructed, which contains all this information.
Mots clés : Cluster algebras, mutations, seeds, quivers
Ibrahim Assem 1 ; Christophe Reutenauer 2
@article{AMBP_2012__19_1_29_0, author = {Ibrahim Assem and Christophe Reutenauer}, title = {Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$.}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {29--73}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {19}, number = {1}, year = {2012}, doi = {10.5802/ambp.304}, mrnumber = {2978313}, zbl = {1259.13013}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.304/} }
TY - JOUR AU - Ibrahim Assem AU - Christophe Reutenauer TI - Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$. JO - Annales mathématiques Blaise Pascal PY - 2012 SP - 29 EP - 73 VL - 19 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.304/ DO - 10.5802/ambp.304 LA - en ID - AMBP_2012__19_1_29_0 ER -
%0 Journal Article %A Ibrahim Assem %A Christophe Reutenauer %T Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$. %J Annales mathématiques Blaise Pascal %D 2012 %P 29-73 %V 19 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.304/ %R 10.5802/ambp.304 %G en %F AMBP_2012__19_1_29_0
Ibrahim Assem; Christophe Reutenauer. Mutating seeds: types $\mathbb{A}$ and $\widetilde{\mathbb{A}}$.. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 29-73. doi : 10.5802/ambp.304. https://ambp.centre-mersenne.org/articles/10.5802/ambp.304/
[1] Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, Cambridge, 1980 (Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka) | MR | Zbl
[2] Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc., Volume 40 (2008) no. 1, pp. 151-162 | DOI | MR
[3] Gentle algebras arising from surface triangulations, Algebra Number Theory, Volume 4 (2010) no. 2, pp. 201-229 | DOI | MR
[4] Friezes and a construction of the Euclidean cluster variables, J. Pure Appl. Algebra, Volume 215 (2011) no. 10, pp. 2322-2340 | DOI | MR
[5] Friezes, strings and cluster variables, Glasg. Math. J., Volume 54 (2012) no. 1, pp. 27-60 | DOI | MR
[6] Friezes, Adv. Math., Volume 225 (2010) no. 6, pp. 3134-3165 | DOI | MR
[7] Mutation classes of -quivers and derived equivalence classification of cluster tilted algebras of type (arXiv:0901.1515v5, to appear)
[8] Categorification of a frieze pattern determinant (arXiv:1008.5329v1)
[9] -tilings of the plane, Illinois J. Math., Volume 54 (2010) no. 1, pp. 263-300 http://projecteuclid.org/getRecord?id=euclid.ijm/1299679749 | MR
[10] Noncommutative rational series with applications, Encyclopedia of Mathematics and its Applications, 137, Cambridge University Press, Cambridge, 2011 | MR
[11] Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR
[12] Cluster mutation via quiver representations, Comment. Math. Helv., Volume 83 (2008) no. 1, pp. 143-177 | DOI | MR
[13] Derived equivalence classification for cluster-tilted algebras of type , J. Algebra, Volume 319 (2008) no. 7, pp. 2723-2738 | DOI | MR
[14] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 595-616 | DOI | MR
[15] From triangulated categories to cluster algebras, Invent. Math., Volume 172 (2008) no. 1, pp. 169-211 | DOI | MR
[16] Free rings and their relations, London Mathematical Society Monographs, 19, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1985 | MR | Zbl
[17] Triangulated polygons and frieze patterns, Math. Gaz., Volume 57 (1973) no. 400, pp. 87-94 | DOI | MR | Zbl
[18] Triangulated polygons and frieze patterns, Math. Gaz., Volume 57 (1973) no. 401, pp. 175-183 | DOI | MR | Zbl
[19] Frieze patterns, Acta Arith., Volume 18 (1971), pp. 297-310 | MR | Zbl
[20] Hopf algebras, Monographs and Textbooks in Pure and Applied Mathematics, 235, Marcel Dekker Inc., New York, 2001 (An introduction) | MR
[21] Cluster multiplication in regular components via generalized Chebyshev polynomials (Algebras and Representation Theory, in press)
[22] Generalized Chebyshev Polynomials and Positivity for Regular Cluster Characters (arXiv:0911.0714)
[23] Quantized Chebyshev polynomials and cluster characters with coefficients, J. Algebraic Combin., Volume 31 (2010) no. 4, pp. 501-532 | DOI | MR
[24] Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR
[25] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 497-529 (electronic) | DOI | MR
[26] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR
[27] Cluster mutation-periodic quivers and associated Laurent sequences (arXiv:0904.0200v3)
[28] Concrete mathematics, Addison-Wesley Publishing Company, Reading, MA, 1994 (A foundation for computer science) | MR | Zbl
[29] Construction of tilted algebras, Representations of algebras (Puebla, 1980) (Lecture Notes in Math.), Volume 903, Springer, Berlin, 1981, pp. 125-144 | MR | Zbl
[30] Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, 75, Springer-Verlag, New York, 1981 | MR | Zbl
[31] Cluster algebras, quiver representations and triangulated categories, Triangulated categories (London Math. Soc. Lecture Note Ser.), Volume 375, Cambridge Univ. Press, Cambridge, 2010, pp. 76-160 | MR
[32] Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl
[33] Linear representations of groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010 (Translated from the 1985 Russian original by A. Iacob, Reprint of the 1989 translation) | MR
[34] Non-commutative domains of integrity, J. Reine Angew. Math., Volume 167 (1932), pp. 129-141 | DOI | Zbl
Cité par Sources :