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Mutating seeds: types A and Ã.

Ibrahim Assem
Christophe Reutenauer

Abstract

In the cases A and Ã, we describe the seeds obtained by sequences of mutations
from an initial seed. In the Ã case, we deduce a linear representation of the group
of mutations which contains as matrix entries all cluster variables obtained after
an arbitrary sequence of mutations (this sequence is an element of the group).
Nontransjective variables correspond to certain subgroups of finite index. A non-
commutative rational series is constructed, which contains all this information.

1. Introduction

Our basic motivation in this paper arises from the theory of cluster alge-
bras of Fomin and Zelevinsky [25]. We begin by recalling some definitions
and results. Let Q0 be a quiver with set of vertices {1, . . . , n} , and a vari-
able xi associated to each vertex i. This data is called the initial seed,
denoted by S0. We consider the pairs S = (Q, {y1, . . . , yn}) where Q is
a quiver with set of vertices {1, . . . , n} and y1, . . . , yn generate the field
Q (x1, . . . , xn) (in particular, they are algebraically independent over Q,
since the transcendance degree of Q (x1, . . . , xn) is n). A seed is such a
pair which is obtained from the initial seed by a sequence of operations
called mutations. If S = (Q, {y1, . . . , yn}) is a seed, then yi is called the
i-th cluster variable of S, or the cluster variable at the vertex i and is
denoted by yi (S).

The mutation at the vertex i on a seed has the following property: it
replaces the quiver Q by another quiver, with the same set of vertices, and
with a new cluster variable y′i at vertex i instead of yi, the other variables
being unchanged. Mutation at vertex i is involutive, which means that if
one performs it twice, then one recovers the original seed. Denote by µi

the mutation at vertex i.

Keywords: Cluster algebras, mutations, seeds, quivers.
Math. classification: 13F60, 16G20, 16G99.
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Our first objective in this paper is to describe precisely the seeds in
euclidean type Ã. Note that the quivers of mutation type Ã are known,
see [7] (for instance, Figure 2 in that article) or [3]. What we add to these
descriptions is the explicit computation of the cluster variable associated
to each vertex in one of these mutated quivers. We do this, on one hand,
by embedding the cyclic part of the quiver into an SL2−tiling of the plane,
which contains all transjective cluster variables (that is, those which cor-
respond to indecomposable transjective objects of the associated cluster
category, see [11]); and, on the other hand, by describing the remaining
parts of the quiver in terms of continuant trees, which are tree-like quiv-
ers whose vertices are indexed by signed continuant polynomials, the latter
give directly the nontransjective cluster variables. The signed continuant
polynomials are a variant of the ordinary continuant polynomials, which
go back to Euler (see [34] p. 133, [16] p. 116, [28] p. 302, [10] p. 186).
They have been considered implicitly by Coxeter [19] Eq. (7.5), in [9], and
explicitly by Grégoire Dupont in [21], where he uses them to study the
nontransjective cluster variables (see also [23, 22]).

Returning to the cyclic part of a mutated quiver of type Ã, the main
tool allowing to compute the transjective cluster variables is the notion of
SL2-tiling (see [6]), which is related to that of friezes. Friezes were intro-
duced by Coxeter in [16] for type A and behave like mutations on sinks and
sources of the given quiver, hence their use in computing the corresponding
cluster variables. Friezes gave rise to SL2-tilings, which yield the transjec-
tive variables in euclidean type (see [6]), and were further generalized to
SLk-tilings in [9]. Friezes were also used in [4] to find an algorithm for
computing the nontransjective cluster variables in terms of the transjec-
tive ones, and in [5], to give an explicit expression for the cluster variables
associated to the string modules over a cluster-tilted algebra (or, more
generally, over a 2-Calabi-Yau tilted algebra), see also [21, 8, 27].

Our second objective is to explore the connection between mutated
seeds of type Ã and representative functions. Recall that a representative
function f on a group G is a function from G into some field K which
is the composition of a linear representation G → Kn×n followed by a
linear form on Kn×n. Equivalently, the set of translates f.g, g ∈ G (with
the natural right action of G : (f.g) (g1) = f (gg1) for any g, g1 in G),
spans a finite dimensional subspace of the vector space of functions on G.
See [30] I.1, [1, 20]. As an example, take the additive group G = Z. A
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representative function on this group is a sequence indexed by Z which
satisfies a linear recursion which works in both directions (for instance,
the Fibonacci sequence extended to negative integers).

The interest of representative functions is illustrated for example by:
the theorem of Peter-Weyl, which asserts that the representative func-
tions on a compact group are dense in the space of continuous functions
on this group (see [33], where representative functions are called matrix
elements); their role in the theory of affine algebraic groups, see [1, 20];
the theorem of Kleene-Schützenberger which asserts that the representa-
tive functions on a free monoid coincide with noncommutative rational
series, see [10]. Moreover, representative functions on an algebra (a gen-
eralization of those on groups) are the elements of the dual coalgebra of
this algebra, or Sweedler dual, see [32, 1, 20].

Since we need a slightly more general notion of representative function
(with values in a ring instead of a field), we have developed their theory
in Section 3 below.

In the present paper, we consider the group M generated by the set
{µ1, . . . , µn} subject to the relation that the generators are involutive. We
call this group the group of mutations. It acts naturally on seeds. If m is
an element of M, and S a seed, we denote by Sm the seed obtained by
applying the sequence of mutations determined by m to the seed S.

Suppose that the initial quiver Q is of type Ãn−1 with an acyclic ori-
entation (note that Ãn−1 has n vertices). Fix i. We shall show that the
function fromM into Q (x1, . . . , xn) (actually its subring of Laurent poly-
nomials) which associates to m the i−th cluster variable of Sm

0 is a repre-
sentative function of the mutation group. Moreover, we show that if y is
a fixed nontransjective cluster variable, then the set of m ∈ M such that
y1 (Sm

0 ) = y is a finite union of cosets of a normal subgroup of finite index
of the mutation group.

As a byproduct of the concept of continuant trees, which are shown to
correspond to triangulations of a regular polygon, we obtain a description
of the mutated seeds in type A. This may be of some interest, since it
presents some novelty and is completely elementary. The mutation formula
turns out to be a consequence of a formula on continuant polynomials.
Recall that the quivers of mutation type A (that is mutation equivalent
to an orientation of the Dynkin diagram of type A) are known, see [13].
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The authors thank the referee for his careful reading and for his very
useful comments and suggestions.

2. Preliminaries

2.1. Signed continuant polynomials

The ordinary continuant polynomials are defined, for any elements a1, . . . , an

of a ring R by the recursion

pn(a1, . . . , an) = pn−1(a1, . . . , an−1)an + pn−2(a1, . . . , an−2),

with initial conditions p−1 := 0 and p0 := 1. The terminology comes from
their link with continued fractions as shows the following identity, valid if
R is commutative and if the inversions are defined in R:

p(a1, . . . , an)
p(a2, . . . , an) = a1 + 1

a2 + 1
. . . + 1

an

. (2.1)

The signed continuant polynomials are a variant of the continuant poly-
nomials. They are defined as follows. Let a1, . . . , an be as above. Define
for n ≥ 1,

qn(a1, . . . , an) = qn−1(a1, . . . , an−1)an − qn−2(a1, . . . , an−2), (2.2)

setting q−1 := 0 and q0 := 1. We omit indices when possible, writing
simply q(x1, . . . , xn) for qn(x1, . . . , xn). Let us now consider the particular
SL2 matrices

Q(a) :=
(

0 −1
1 a

)
.

One has the following result, see [9] 8.1.

Lemma 2.1.

Q(a1)Q(a2) · · ·Q(an) =
(
−q(a2, . . . , an−1), −q(a2, . . . , an)
q(a1, . . . , an−1), q(a1, . . . , an)

)
. (2.3)

It follows from this matrix equation that one has also

q(a1, . . . , an) = a1q(a2, . . . , an)− q(a3, . . . , an). (2.4)
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The q’s satisfy the following identity (a consequence of [19] Eq.(7.4)),
which is a variant of Eq.(2.1) and which holds under the same assumptions:

q(a1, . . . , an)
q(a2, . . . , an) = a1 −

1

a2 −
1

. . . − 1
an

.

Indeed, this holds for n = 1. Assume that it holds for n. Then the contin-
ued fraction for n+ 1 is equal by induction to

a1 −
1

q(a2,...,an+1)
q(a3,...,an+1)

= a1 −
q(a3, . . . , an+1)
q(a2, . . . , an+1)

= a1q(a2, . . . , an+1)− q(a3, . . . , an+1)
q(a2, . . . , an+1) .

Thus the statement follows from Eq.(2.4).
It will be useful to adopt the following notation, which avoids the use

of indices: let w be a finite sequence (a word on R) of elements of the
ring R. For example, w = a1 · · · an (not the product in the ring); then we
write q(w) for q(a1, . . . , an). If u, v are two such sequences, we denote by
uv their concatenation. Then we have the following result, valid when R
is commutative, which is assumed from now on.

Lemma 2.2. Let u, v, w be words on R and a, b be in R. Then
q(uav)q(vbw) = q(u)q(w) + q(uavbw)q(v).

In the case of ordinary continuant polynomials, there is an analogue of
this identity, due to Euler and given in [28] Eq.(6.134) p.303.

Proof. We prove first this equation when w = 1 (empty word), that is
q(uav)q(vb) = q(u) + q(uavb)q(v). We adopt the notation Q(u) for the
matrix product corresponding to u. Then we have by Eq.(2.3):

Q(uavb) =
(
∗ ∗

q(uav) q(uavb)

)
, Q(vb) =

(
∗ ∗
q(v) q(vb)

)
, Q(ua) =

(
∗ ∗

q(u) ∗

)
.

Thus

Q(ua) = Q(uavb)Q(vb)−1 =
(
∗ ∗

q(uav) q(uavb)

)(
q(vb) ∗
−q(v) ∗

)
.

Thus q(u) = q(uav)q(vb) − q(uavb)q(v) which proves the lemma when
w = 1.
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Suppose now that w is of length 1, that is w = c, c ∈ R. Then the
left-hand side of the equation in the lemma is by Eq.(2.2) equal to

q(uav)q(vbc) = q(uav)((q(vb)c− q(v)) = q(uav)q(vb)c− q(uav)q(v).

By the w = 1 case and by Eq.(2.2), this is equal to

q(u)c+ q(uavb)q(v)c− q(uav)q(v) = q(u)c+ (q(uavb)c− q(uav))q(v)

= q(u)c+ q(uavbc)q(v),
which proves the w = c case.

Otherwise, we may write w = w′cd for c, d in R. Then by Eq.(2.2)

q(uav)q(vbw) = q(uav)q(vbw′cd) = q(uav)(q(vbw′c)d− q(vbw′))

= q(uav)q(vbw′c)d− q(uav)q(vbw′)
By induction (cases w = w′ and w = w′c), this is equal to

q(u)q(w′c)d+ q(uavbw′c)q(v)d− q(u)q(w′)− q(uavbw′)q(v)

= q(u)(q(w′c)d− q(w′)) + (q(uavbw′c)d− q(uavbw′))q(v)

= q(u)q(w′cd) + q(uavbw′cd)q(v) = q(u)q(w) + q(uavbw)q(v).
Note that commutativity is used in the second and third case. �

Lemma 2.3. Suppose that

Q(a1)Q(a2) · · ·Q(an+3) = −1.

Then for any i with 1 ≤ i ≤ n+ 3, we have

q(a1, . . . , ai−1) = q(ai+1, . . . , an+2).

Proof. By hypothesis, we have

(Q(a1) · · ·Q(ai−1))−1 = −Q(ai) · · ·Q(an+3).

Using Eq. (2.3) and the fact that the matrices have determinant 1, we
obtain (

q(a1, . . . , ai−1) ∗
∗ ∗

)
= −

(
−q(ai+1, . . . , an+2) ∗

∗ ∗

)
.

�
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2.2. Continuant trees

We call pre-continuant tree a planar quiver T which is constructed from a
planar binary, not necessarily complete, tree τ as follows:

• An edge between a node and its left child is oriented towards this
node;

• an edge between a node and its right child is oriented towards this
child;

• If a node has two children, then an arrow from the right child
towards its left child is created.

See Figure 2.1 for an example, disregarding the labels. These quivers are
already known: they are described in [13] and [3] (Th.2.7). Their tree-like
shape comes from the classification of the tilted algebras of the linearly
oriented quivers of type An, see [29]. The additional arrows from right to
left children arise because of [2, 12].

Note that since the original tree τ is planar, we may use for T the
terminology of planar binary trees: subtree at a vertex (which is a pre-
continuant tree), left and right child, parent. . . .

Now we call continuant tree a pre-continuant tree T together with a
labelling of its vertices by words on R, as follows:

• the length of the label of a vertex is the number of vertices of the
subtree having this vertex as root;

• if a vertex is a left (resp. right) child, then its label is a prefix
(resp. suffix) of its parent;

• finally, to each vertex labelled u is associated the signed continuant
polynomial q(u).

See Figure 2.1 for an example. Note that a continuant tree is completely
determined by the underlying pre-continuant tree together with the label
w (of length the number of vertices) of the root. For later use, we call the
continuant tree a w-continuant tree, or an (a1, . . . , an)-continuant tree, if
w = a1 . . . an.
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abcdefg

ab

a

defg

de

e

g

Figure 2.1. A continuant tree

2.3. Mutation of a continuant tree outside the root
Recall the definition of the mutation of a quiver. We remind the reader
that to each vertex k of this quiver is associated an element yk ∈ R, called
variable at k. We assume that the quiver has no cyclic path of length 1
or 2. The mutation at a vertex k is performed as follows (we follow the
definition of [31] 3.2.):

• For each pair of arrows i→ k → j, add an arrow i→ j.

• Reverse all arrows incident with k.

• Remove pairs of opposite arrows, until no such pair exists.

Now, the variables of the new quiver are the same at each vertex, except
at vertex k where the new variable y′k (the mutated variable) must satisfy
the exchange relation

yky
′
k =

∏
i→k

yi +
∏
k→j

yj ,

where the products are taken over all arrows ending or starting at k,
respectively. Note that uniqueness of y′k is ensured if R has no zero divisors,
an hypothesis which will be made in the sequel.

Assume now that T is a continuant tree. The variables at the vertices
of T are the corresponding continuant polynomials, that is, if k is a vertex
with associated word u, then the variable at k is q(u).
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uavbw

uav

u v

w

uavbw

u vbw

v w

Figure 2.2. mutation of a continuant tree at a vertex
different from the root

Lemma 2.4. Mutation of a continuant tree at a vertex k which is not the
root gives another continuant tree.
Proof. The lemma is illustrated in Figure 2.2, where only the vertices
involved in the mutation are represented. The vertex k is the one with
uav on the left and the one with vbw on the right. By inspection and by
definition of mutation, it is seen that the quiver on the right is mutated
from the quiver at vertex k. The mutation formula for the labels is a
consequence of Lemma 2.2, which ensures the existence of the mutated
variable. Note the limiting cases where some vertices among u, v, w are
missing; in other words, the corresponding word is empty: they are still
covered by this proof since the continuant polynomial q(x) equals 1 if x is
the empty word. Moreover, the mutation from right to left in Figure 2.2
follows from the fact that mutation is an involution. �

2.4. SL2-tilings of the plane
Following [6], we call SL2-tiling of the plane a mapping t : Z2 7→ K, for
some field K, such that, for any x, y in Z,∣∣∣∣ t(x, y) t(x+ 1, y)

t(x, y + 1) t(x+ 1, y + 1)

∣∣∣∣ = 1.

Here we represent the discrete plane Z2 with coordinates as illustrated
in Figure 2.4, so that the y-axis points downwards, and the x-axis points
to the right. Note that the x-coordinates therefore represent the column
indices, and the y-coordinates represent the row indices.
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y

x

?

-

Figure 2.3. Coordinate convention

An example is given below, with K = Q.

1 1 1 1
1 1 2 3 4
1 2 5 8 11
1 3 8 13 18

... ... 1 1 4 11 18 25 ...
1 2 9 25 41 57
1 3 14 39 64 89

1 1 1 1 1 1 4 19 53 87 121
1 1 1 1 2 3 4 5 6 25 119 332 545 758
1 2 3 4 9 14 19 24 29 121 576 1607 2368 3669 ...

... ... ...

Here is another example, with K the field of fractions over Q in the vari-
ables a, b, c, d, e, f, . . ..

· · ·
d+b+bce

cd
1+ce

d e f

· · · b c d 1+df
e · · ·

a 1+ac
b

b+d+acd
bc

bce+b+bdf+dac+d2acf+d+d2f
bcde

· · ·

In these two examples, the dots indicate that the tiling may be extended
to the whole plane; in the first case, by positive integers (as follows from
[6] Theorem 3) and in the second case, by Laurent polynomials with nu-
merators having coefficients in N (as follows from [6] Theorem 4).
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2.5. Tameness

Note that an SL2-tiling of the plane, viewed as an infinite matrix, has
necessarily rank at least 2. Following [9], we say that the tiling is tame if
its rank is 2.

Given three successive columns C0, C1, C2 of a tame SL2-tiling t, there
is a unique coefficient α such that

C0 + C2 = αC1. (2.5)

This is proved as follows: consider two consecutive rows, with elements
a, b, c in the first row and in columns C0, C1, C2 respectively, and ele-
ments d, e, f in the second row; now let x, y, z be elements of these 3
columns, respectively, located on some arbitrary row; then the 3 by 3 ma-

trix

 x y z
a b c
d e f

 is a submatrix of the tiling; hence its determinant is

0, so that, by expanding the determinant with respect to the first row,
and noting that the 2 by 2 adjacent minors are equal to 1, we obtain that

Eq.(2.5) holds, with α = det
(
a c
d f

)
.

We call α the linearization coefficient of column C1. Similarly for rows.
The following result extends Eq.(2.5) (the n = 1 case).

Lemma 2.5. Let t be a tame SL2-tiling of the plane and C0, . . . , Cn+1
successive columns of t, with linearization coefficients α0, . . . , αn+1. Then
for any i in {1, . . . , n}

q(αi+1, . . . , αn)C0 + q(α1, . . . , αi−1)Cn+1 = q(α1, . . . , αn)Ci.

Proof. We use the identity

Cj = −q(α2, . . . , αj−1)C0 + q(α1, . . . , αj−1)C1, (2.6)

which is proved as follows. First, we have by definition of the lineariza-
tion coefficients, Cj+2 = −Cj + αj+1Cj+1. This implies, with the matrix
notation Q(α) of Subsection 2.1, that (Cj , Cj+1)Q(αj+1) = (Cj+1, Cj+2).
It follows that for any natural number j, one has

(C0, C1)Q(α1) . . . Q(αj) = (Cj , Cj+1), (2.7)

We conclude by using Eq.(2.3).
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Suppose first that i = 1. Then, with Eq.(2.6),

q(α2, . . . , αn)C0 + Cn+1

= q(α2, . . . , αn)C0 − q(α2, . . . , αn)C0 + q(α1, . . . , αn)C1

= q(α1, . . . , αn)C1,

which proves the identity for i = 1. Suppose now that i > 1. Then we have
by Lemma 2.2 (with u the empty word, a = α1, v = α2 · · ·αi−1, b = αi,
w = αi+1 · · ·αn):

q(α1, . . . , αi−1)q(α2, . . . , αn)
= q(αi+1, . . . , αn) + q(α1, . . . , αn)q(α2, . . . , αi−1).

Thus we obtain, with Eq.(2.6), the previous equality and Eq.(2.6) again,

q(αi+1, . . . , αn)C0 + q(α1, . . . , αi−1)Cn+1

= q(αi+1, . . . , αn)C0 + q(α1, . . . , αi−1)(−q(α2, . . . , αn)C0 + q(α1, . . . , αn)C1)
= (q(αi+1, . . . , αn)− q(α1, . . . , αi−1)q(α2, . . . , αn))C0

+ q(α1, . . . , αi−1)q(α1, . . . , αn)C1

= −q(α1, . . . , αn)q(α2, . . . , αi−1)C0 + q(α1, . . . , αi−1)q(α1, . . . , αn)C1

= q(α1, . . . , αn)(−q(α2, . . . , αi−1)C0 + q(α1, . . . , αi−1)C1)
= q(α1, . . . , αn)Ci.

�

It has been shown in [9] (in the more general case of SLk-tilings) that
tameness of SL2-tilings is characterized by the fact that the infinite matrix
of 2 by 2 minors is of rank 1. This is important for the proof of the next
result.

Corollary 2.6. For n,m ≥ 0, let (aij)0≤i≤n+1,0≤j≤m+1 be a connected
submatrix of a tame SL2-tiling t (i denotes the row number and j the col-
umn number). Let β0, . . . , βn+1 denote the linearization coefficients of the
corresponding rows of t and α0, . . . , αm+1 denote those of the correspond-
ing columns. Then

det(
(
a00 a0,m+1
an+1,0 an+1,m+1

)
) = q(β1, . . . , βn)q(α1, . . . , αm).
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Proof. We suppose first that n = 0. Denote by Cj the column vector of
the first two elements of column j of matrix (aij):

Cj =
(
a0,j

a1,j

)
.

Then we have by Lemma 2.5, q(α2, . . . , αm)C0 +Cm+1 = q(α1, . . . , αm)C1.
Thus

det(C0, Cm+1) = q(α1, . . . , αm) det(C0, C1) = q(α1, . . . , αm),

since t is an SL2-tiling and therefore det(C0, C1) = 1.
Now, in the general case, it follows from [9], Prop.4, that the determi-

nant of the corollary is equal to the product

det(
(
a00 a0,m+1
a1,0 a1,m+1

)
) det(

(
a00 a0,1
an+1,0 an+1,1

)
),

which proves the corollary, by the first part. �

2.6. Frontier

We call frontier a bi-infinite sequence

. . . ξ−2x−2ξ−1x−1ξ0x0ξ1x1ξ2x2ξ3x3 . . . (2.8)

where ξi ∈ {x, y} and xi are elements of K∗, for any i ∈ Z. It is called
admissible if there are arbitrarily large and positive, and arbitrarily large
and negative i’s such that ξi = x, and similarly for y; in other words, none
of the two sequences (ξn)n≥0 and (ξn)n≤0 is ultimately constant. The xi’s
are called the variables of the frontier.

Each frontier may be embedded into the plane, though not uniquely:
the variables label points in the plane, and the x (resp. y) determine a
bi-infinite discrete path, in such a way that x (resp. y) corresponds to a
segment of the form [(a, b), (a + 1, b)] (resp [(a, b), (a, b − 1)]); recall the
coordinate conventions, see Figure 2.4. For example, the path correspond-
ing to the frontier . . . x−4xx−3yx−2yx−1yx0xx1xx2yx3xx4xx5 . . . is given
in Figure 2.4.

We need the following notation of [6]. Let

M(a, x, b) =
(
a 1
0 b

)
and M(a, y, b) =

(
b 0
1 a

)
.
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Figure 2.4. A frontier

Given an admissible frontier, embedded in the plane as explained pre-
viously, let P ∈ Z2. Then we obtain a finite word, which is a factor of
the frontier, by projecting the point P horizontally and vertically onto
the frontier. We call this word the word of P . It is illustrated in Figure
2.4, where the word of the point P is x−3yx−2yx−1yx0xx1xx2yx3xx4. We
define the word of a point only for points below the frontier; for points
above, the situation is symmetric and the definition is exactly similar.

Theorem 2.7. Given an admissible frontier, there exists a unique tame
SL2-tiling t of the plane over K, extending the embedding of the frontier
into the plane. It is defined, for any point P below the frontier, with asso-
ciated word x0ξ1x1ξ2 · · · ξn+1xn+1, where n ≥ 1, xi ∈ K∗ and ξi ∈ {x, y},
by the formula

t(P ) = 1
x1x2 · · ·xn

(1, x0)M(x1, ξ2, x2) · · ·M(xn−1, ξn, xn)(1, xn+1)t.

(2.9)

The existence of the tiling, together with the formula, are proven in
[6]. The uniqueness and the tameness follow from [9] (uniqueness was
proved in [6] without the hypothesis of tameness, but under some extra
assumption on K). Note that ξ1 = y and ξn+1 = x, by definition of the
word associated to P .
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For later use, we introduce the notation
M(x1ξ2x2 · · ·xn−1ξnxn) = M(x1, ξ2, x2) · · ·M(xn−1, ξn, xn).

As a particular case of the previous construction, consider a frontier
having period n; this means that it is of the form ∞(x1ξ1 . . . xnξn)∞. Then
the associated tiling has period determined by the vector (p,−q), where p
(resp. q) is the number of x’s (resp. of y’s) among ξ1, . . . , ξn. Note that p+
q = n. Moreover, the sequence of linearization coefficients of the columns
of the tiling has period p, and the sequence of linearization coefficients of
the rows has period q.

3. Representative functions

Fix a commutative ring R. Let A,B be R-algebras. We say that a function
f : A → B is representative over R with values in B if there exists a
natural number n, an R-algebra homomorphism µ : A → Bn×n, a row
matrix λ ∈ B1×n and a column matrix γ ∈ Bn×1 such that for any a ∈ A

f(a) = λµ(a)γ.
This definition may seem too general1, but it is justified by the following

result.

Proposition 3.1. The composition of two representative functions is rep-
resentative.

Proof. Let A,B,C be three R-algebras and f : A → B, g : B → C be
representative functions. We have for any a ∈ A f(a) = λµ(a)γ, where the
notations are as above; and for any b ∈ B, g(b) = κν(b)δ where for some
natural number p, ν is an R-algebra homomorphism B → Cp×p, κ ∈ C1×p

and δ ∈ Cp×1.
1. For a matrix M ∈ Bq×r, denote by ν(M) the matrix in (Cp×p)q×r

by replacing each entry of M by its image under ν. Note that if M,N
are matrices over B whose product is defined, then ν(MN) = ν(M)ν(N).
Note also that, under p× p-block decomposition, the rings (Cp×p)q×r and
Cpq×pr are canonically isomorphic, and we identify them.

2. Define the mapping π : A→ (Cp×p)n×n by π(a) = ν(µ(a)). Then by
1., π is a ring homomorphism and ν(λ)π(a)ν(γ) = ν(f(a)). Thus g◦f(a) =

1It could even be more general, by replacing rings by semirings, with applications in
Automata Theory and Tropical Geometry
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κν(f(a))δ = κν(λ)π(a)ν(γ). This shows that g ◦ f is a representative
function A → C, since κν(λ) is a row vector of size 1 × np, π a ring
homomorphism A→ Cnp×np and ν(γ)δ a column vector of size np×1. �

Given a group G and an R-algebra B, we say that a function from G
into B is representative with values in B if the natural extension of this
function to the group algebra RG is representative.

These definitions fit with the classical case. If A is a K-algebra, K a
field, then a linear mapping A→ K is representative, in the classical sense
if and only if it is representative over K with values in K, in the above
meaning. In particular, a function from a group G (or a semigroup) into
K is representative (see [1] p.72) if and only if the linear mapping from
the group algebra KG into K that it defines is representative over K with
values in K (see [20] Ex.1.5.11 p. 41).

By diagonal sum of matrices, it is easily seen that the sum of two
representative functions is representative. Moreover, if f is a representative
function defined in a groupG and a is an element of the group, the function
h(g) = f(ag) is also representative; we denote h = f.a.
Lemma 3.2. Let R be a commutative ring and B an R-algebra, G a
group, H a subgroup of finite index and f a representative function of H
over R with values in B. Define for any g ∈ G,

φ(g) =
{
f(g) if g ∈ H,
0 otherwise.

Then φ is a representative function of G with values in B.
Proof. This is proved by mimicking the matrix construction of an induced
character. We know the existence of a group homomorphism µ from H
into the group GLn(B), a row matrix λ ∈ B1×n, a column matrix γ ∈
Bn×1 such that for h ∈ H, one has f(h) = λµ(h)γ. Let x1, . . . , xd be
representatives of the left cosets gH of G mod H. For j = 1, . . . , d and g
in G, let i = g.j and hj ∈ H be such that gxj = xihj ; they are uniquely
defined by this equation. Define the square matrix R(g) of size nd, with
d× d blocks of size n as follows: the (i, j)-block is µ(hj); all other blocks
are zero.

It is then classical that R is a group homomorphism from G into
GLnd(B). We may assume that x1 = 1. Then the (1, 1)-block of R(g)
is nonzero if and only if g is in H, in which case it is equal to µ(g). De-
fine the 1 × nd-row matrix L = (λ, 0, . . . , 0) and the the nd × 1-column
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matrix C = (γt, 0, . . . , 0)t. Then φ(g) = LR(g)C and φ is a representative
function of G with values in B. �

Corollary 3.3. Let R be a commutative ring and B an R-algebra, G
a group, and H a subgroup of finite index. For each left coset C of G
mod H, with representative aC , let fC be a representative function of the
group H with values in B. Define the function f on G by f(g) = fC(h) if
g ∈ C, g = aCh. Then f is a representative function of G with values in
B.

Proof. Let the function hC be equal to fC on H and 0 elsewhere; it is
representative by the lemma. Now f is the sum over all cosets C of the
functions hC .a

−1
c , which proves the corollary. �

Proposition 3.4. Suppose that K is a field. Let t be the SL2-tiling of
the plane associated to a periodic frontier. Let R be the subring of K
generated by the variables of the frontier and their inverses. Then the
function Z2 → R, (x, y) 7→ t(x, y) is a representative function of the group
Z2 with values in R.

Lemma 3.5. Consider a function Z2 → R, (x, y) 7→ s(x, y) which is of the
following form: s(x, y) is the (1, 1)-coefficient of the matrix AyBCx, where
A,B,C are fixed square matrices of the same size with A,C invertible over
the commutative ring R. Then s is a representative function of the group
Z2 with values in R.

Proof. Consider the free R-module H of square matrices over R of the
same size as A. Then the group Z2 acts on it by (x, y).M = AyMCx.
Then s(x, y) = φ((x, y).B), where φ is the linear form on H which maps
M onto its (1, 1)-coefficient. Taking a basis of H, we obtain that t is
representative. �

Lemma 3.6. Let n, p be positive integers and si,j , with0 ≤ i ≤ n− 1, 0 ≤
j ≤ p − 1 be representative functions of the group Z2 into R. Define
t : Z2 → R, t(x, y) = sr1,r2(q1, q2) if x = nq1 + r1 and y = q2p + r2
(euclidean division of x by n and of y by p). Then t is representative.

Proof. Let H be the subgroup of Z2 generated by the vectors (n, 0) and
(0, p). Then we obtain the lemma by applying Corollary 3.3. �

Proof. (Proposition 3.4) We know by Th.2.7 that the tiling is tame; more-
over the bi-infinite sequence of column (resp. row) linearization coefficients
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is periodic; denote by (αj)j∈Z (resp. (βi)i∈Z) this sequence and denote its
period by n (resp.p).

These coefficients belong to R; this fact follows indeed from Th.2.7
and from the fact that for each three adjacent columns, one may find
three points A,B,C on them, on the same horizontal line, and such that
A,B are on the frontier; then the linearization coefficient of the middle
column is t(A)+t(C)

t(B) , which is in R since t(A) and t(B) are variables of
the frontier and t(C) is given by Eq.(2.9). It follows from Eq.(2.7) that
one has (C0, C1)Q(α1 . . . αj) = (Cj , Cj+1), for any natural number j, if we
denote Q(α1 . . . αj) = Q(α1) · · ·Q(αj).

Now, we have αj+n = αj . It follows that for any natural numbers q, r,
we have

(C0, C1)[Q(α1) · · ·Q(αn)]qQ(α1) · · ·Q(αr) = (Cnq+r, Cnq+r+1). (3.1)

We claim that this is even true for any integer q. Indeed, an equality
similar to Eq.(2.7) holds for negative indices: for j > 0,

(C0, C1)Q(α0)−1 · · ·Q(α−i+1)−1 = (C−j , C−j+1).

From this the claim follows by induction on negative q.
Eq.(3.1) implies that if x = nq + r, then(
t(0, 0) t(0, 1)
t(1, 0) t(1, 1)

)
[Q(α1 . . . αn)]qQ(α1 . . . αr) =

(
t(x, 0) t(x, 1)

t(x+ 1, 0) t(x+ 1, 1)

)
Now, similar calculation apply to rows. Putting this together, we obtain

that for any integers x, y with x = nq1 + r1, y = pq2 + r2, one obtains that
the matrix (

t(x, y) t(x, y + 1)
t(x+ 1, y) t(x+ 1, y + 1)

)
is equal to

Q(βr2 . . . β1)[Q(βp . . . β1)]q2

(
t(0, 0) t(0, 1)
t(1, 0) t(1, 1)

)
[Q(α1 . . . αn)]q1Q(α1 . . . αr1).

Note that

[Q(α1 . . . αn)]q1Q(α1 . . . αr2) = Q(α1 . . . αr2)[Q(αr2+1αr2+2 . . . αr2)]q1 ,

since both sides are equal to

Q(α1, . . . , αn, . . . , α1, . . . , αn, α1, . . . , αr2)
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(with the sequence α1, . . . , αn repeated q1 times), and similarly for the
β’s.

Thus we have, for the given x, y, t(x, y) = sr1,r2(q1, q2), where sr1,r2 is
of the form given in Lemma 3.5, hence is a representative function on Z2

with values in R.
This implies the proposition, by Lemma 3.6.

�

4. Case Ã

We call Ãn−1-quiver an acyclic quiver of type Ãn−1; that is, an acyclic
directed graph such that the underlying undirected graph is an n-gon.

4.1. The mutated quivers

A description of the mutated quivers of type Ã is known, see [7] or [3].
Our description below is equivalent to it.

A decorated Ã-quiver is a quiver G defined as follows. Let Q be a quiver
of type Ãr for some r with 1 ≤ r ≤ n − 1. Choose a subset of the set
of arrows of Q and, for each arrow x → y in this subset, associate a
pre-continuant tree, connected to Q via its root r and the two additional
arrows y → r → x. This yields a planar quiver G having Q as a full
subquiver; the latter is referred to as the cyclic part of G.

See Figure 4.1 for an example of a decorated Ã-quiver: the arrows of Q
are boldfaced.

Lemma 4.1. The class of decorated Ã-quivers is closed under mutation.

Proof. Let j be a vertex of a decorated Ã-quiver G, and denote by G′ its
mutation at j. We claim that G′ is a decorated Ã-quiver with cyclic part
Q′.

a) Suppose first that j is a vertex in Q. Let i, k be the vertices adjacent to
j in Q. If in Q these three vertices form a path of length 2, i→ j → k
say, then Q′ is obtained by suppressing j in Q and replacing these two
arrows by an arrow i → k; the pre-continuant tree corresponding to
the new arrow i → k of Q′ is obtained by taking the new root j, and
putting the tree of i → j as the left subtree and the tree of j → k as
the right subtree;
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Figure 4.1. A decorated Ã-quiver with n = 19 vertices

b) If in Q one has i → j ← k or i ← j → k, then these two arrows are
reversed in Q′; the corresponding pre-continuant trees are exchanged:
more precisely, if there is a pre-continuant tree with root l such that
i← l ← j (resp. j → l → k), then, after mutation, it becomes so that
we have j ← l← k (resp. i→ l→ j);

c) Suppose now that j is a vertex in G \ Q; that is, j is a vertex on one
of the continuant trees, T say. If j is not the root of T , we apply the
construction of Subsection 2.3, disregarding the labels;

d) If j is a root, then denote by i, k the adjacent vertices in Q, with
i← j ← k. Then Q is replaced by Q′, which has the new vertex j, with
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Figure 4.2. Mutation at 7

new arrows i → j → k. The pre-continuant tree corresponding to the
arrow i→ j (resp. j → k) in Q′ is the left (resp. right) subtree of T .

�

Note that the mutations of type a) are inverse of those of type d), and
that mutations of type b) and c) are their own inverses. As an example
of case d), see Figure 4.2 which is obtained by mutation at vertex 7 of
Figure 4.1. Case a) is obtained by reversing this mutation. An example of
case b) is seen in Figure 4.3, which is obtained by mutation at vertex 5 of
Figure 4.1.

4.2. Elementary properties of decorated Ã-quivers

Consider a decorated Ã-quiver with n vertices and cyclic part Q. We
associate to each arrow of Q a positive natural number that we call its
length: it is 1 if this arrow has no associated pre-continuant tree, and it is
l if this arrow has a pre-continuant tree with l−1 vertices. For example, in
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Figure 4.3. Mutation at 5

Figure 4.1, the arrow 4→ 3 has length 1 and the arrow 4→ 1 has length
8.

Each arrow of length l is naturally isometric to an euclidean segment of
length l. For later use, we need to consider other points than the vertices
in G; we call them points: a point is either a vertex of Q, or a point on an
arrow of Q located at an integer distance from each of the vertices of this
arrow, considering the previous isometry. Thus an arrow of length l has
l+ 1 points on it: its two vertices (tail and head) and the l− 1 additional
points, which are not vertices of the graph. For example the arrow 4→ 1
in Figure 4.1, of length 8, has 9 points on it, including the two vertices.

We denote by p (resp. q) the sum of the lengths of the clockwise oriented
(counter-clockwise) arrows. Then by definition of the length, p + q = n.
It is easy to verify that p and q are invariant under mutation. We call p, q
the parameters of G.

Note also that, as it was observed in Subsection 2.2, that each pre-
continuant tree of G will become naturally a continuant tree once we

50



Mutating seeds: types A and Ã.

associate to the corresponding arrow of Q, of length l, a sequence of length
l − 1 on the ring R. This will be done in the next subsection.

For this we fix a planar Ãn−1-quiver, denoted byG0 and called the initial
quiver, with set of vertices {1, . . . , n} and p clockwise oriented arrows of
the form i→ i+1 (in which case we define ξi = x) and q counterclockwise
oriented arrows of the form i ← i + 1 (in which case we define ξi = y),
with i + 1 taken mod n; then p + q = n. Note that this is a particular
decorated Ã-quiver, with no attached pre-continuant trees, and therefore
with all arrows of length 1.

We associate to G0 the SL2-tiling t as in [6]. In other words we consider
the frontier ∞(x1ξ1 . . . xnξn)∞ where xi is the initial variable attached to
vertex i.

Note that this tiling t is periodic modulo the vector (p,−q), since its
frontier is the infinite power of a word having p times the letter x and q
times the letter y. Note also that the sequence of linearization coefficients
of the columns (resp. rows) of t is periodic of period p (resp. q). See
Subsection 2.6.

Given two points on the same horizontal line in Z2, call linearization
sequence between them the word (the finite sequence) formed by the col-
umn linearization coefficients of t for the columns lying strictly between
them, scanning in increasing order of the x-coordinate. Similarly, for two
points lying on the same vertical line.

4.3. Embedding of a decorated Ã-quiver into Z2

An embedding of a decorated Ã-quiver G into Z2 is a universal covering
of its cyclic part Q, contained in the euclidean plane, which respects the
length of arrows, and which respects the orientation; that is, in such a way
that clockwise (resp. counter-clockwise) oriented arrows of length l of Q
correspond to horizontal (resp. vertical) segments of the form [(u, v), (u+
l, v)] (resp. [(u, v), (u, v + l)]) with u, v integers.

We denote by π(i) the set of points in Z2 which correspond to the vertex
i ∈ G. This set of points is by construction of the form A+ Z(p,−q), for
some A ∈ Z2.

For example, Figure 4.4 shows an embedding of the quiver of Figure 4.1.
In this figure, we have represented the pre-continuant trees of G, which
however are not formally part of the embedding and which are represented
for a better understanding.
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Figure 4.4. Embedding of Figure 4.1

Now, we see that in an embedded decorated Ã-quiver G, all pre-contin-
uant trees of G become continuant trees: indeed, to each clockwise (resp.
counter-clockwise) arrow, associate to it the sequence of column (resp.
row) linearization coefficients between A and B, where A → B is one of
the corresponding arrows in the embedding; note that the length of this
sequence is equal to l − 1, where l is the length of the arrow, since the
embedding respects the length. There are infinitely many arrows, but by
periodiciy, this is well-defined. We call this sequence the linearization se-
quence of the arrow; it depends on the embedding. For later use, note that
this dependence is modulo the subgroup of Z2 generated by the vectors
(p, 0) and (0, q); indeed, the column (resp. row) linearization coefficients
have period p (resp. q). Hence, if we translate correspondingly the embed-
ding, the linearization sequences of arrows do not change.

Recall the definition of points of G given in Subsection 4.2. Clearly, the
mapping π may naturally be extended to the arrows of Q, hence to the
points of G, by respecting the length.
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For technical reasons, we need to introduce the following notions. Given
an embedding π of G, there is a unique point P = P (G, π) in Z2 defined
as follows: it is the intersection of the bi-infinite path defined by π and
the x-axis, and which has the smallest x-coordinate (the intersection may
be a horizontal segment). We denote by ξ(G, π) the x-coordinate of P .
We note that P corresponds to a unique point on the cyclic part Q of
G, that we denote by u(G, π); this point is called the distinguished point
associated to the pair (G, π). It depends on the embedding.

Lemma 4.2. Let u be a point on G. Then for each vertex k on the cyclic
part of G,there is a vector (i, j) ∈ Z2 such that π(k) = π(u) + (i, j) +
Z(p,−q) for any embedding π of G.

Proof. This follows because the covering respects the lengths of arrows
and their orientations. �

We describe now how the embeddings are modified by mutations. We
refer to the cases a) to d) in Subsection 4.1:

a) the new embedding is obtained by suppressing the vertices correspond-
ing to j in the covering and by gluing the arrows i→ j and j → k into
a unique one i→ k;

b) in the embedding of G, the points corresponding to i, j, k form three
consecutive corners of a rectangle; then j is replaced by the fourth
corner;

c) the new embedding is the same as the old one;

d) this is the reversal of case a).

As examples, see Figure 4.5, which is the embedding of Figure 4.2 and
which is obtained from Figure 4.4 by a type d) mutation on vertex 7; and
Figure 4.6, which is the embedding of Figure 4.3 and which is obtained
from Figure 4.4 by a type b) mutation on vertex 5.

We have defined mutations on the pairs (G, π). They induce mutations
on the distinguished points u(G, π). We show below that if one considers
only the pair (G, u(G, π)), the mutations may be defined independently
of π. This will be useful when we want to build representative functions
and finite group actions of the mutation group; indeed, the pairs (G, π)
are infinitely many, but the pairs (G, u(G, π)) are finite in number.
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Figure 4.5. Mutation at 7: embedding

Lemma 4.3. Given a decorated Ã-quiver G with distinguished point u,
one may define the mutation at vertex j of the pair (G, u) in such a way
that the mutated pair (G′, u′) satisfies: for each embedding π of G with
u(G, π) = u, one has u(G′, π′) = u′.

In other words, the distinguished point of G corresponding to an em-
bedding π is mutated independently of π itself.

Proof. This is verified as follows: the point u(G, π) is invariant except
if the mutation is of type b) and if the point P = P (G, π) is on the
counterclockwise arrow a of Q (the cyclic part of G) incident to j; in this
case the x-coordinate ξ(G, π) of P is increased or decreased by the length
of the clockwise arrow incident to j, depending whether j is the tail or
the head of these two arrows; moreover, if u is at distance l1 of j, with
l = l1 + l2 equal to the length of the arrow a, then u′ is on the counter-
clockwise arrow incident to j in the mutated graph G′, at distance l2 of
j. �
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Figure 4.6. Mutation at 5: embedding

See for example Figure 4.4 and Figure 4.6 (mutation at 5 of Figure 4.4),
with P on the arrow 5 → 6 in Figure 4.4 (thus the x-axis intersects this
arrow); then after mutation, P is in Figure 4.6 on the arrow 3→ 5.

4.4. The mutated seeds in type Ã
Using the notations of Subsection 4.2, we start with the initial quiver
G0 and we let t be the corresponding SL2-tiling. Recall that G0 has p
clockwise arrows and q counter-clockwise arrows, with p+ q = n which is
the number of vertices of G0. We let S0 denote the initial seed, that is,
S0 = (G0, {x1, . . . , xn}).

Theorem 4.4. Each seed S = (G, {y1, . . . , n}) in the mutation class of
S0 is obtained as follows: for some decorated Ã-quiver G with parameters
p, q and some embedding π of G, the i-th cluster variable yi of S is:

• if i is on the cyclic part of G, then yi is equal to t(π(i)), where t
is the SL2-tiling associated to S0;
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• if i is a vertex of one of the continuant trees of G, then yi is equal
to the variable associated to this vertex.

In order to understand this result, note that the tiling t is periodic
modulo the vector (p,−q), since so is its frontier; and the set π(i) is of the
form A+Z(p,−q) for some point A, by definition of an embedding; hence
t(π(i)) is well-defined. Moreover, as seen previously, each pre-continuant
tree of G becomes naturally a continuant tree, once an embedding of G is
given.

To illustrate the theorem, consider Figure 4.4: the vertices of G that
appear as vertices in the covering (that is, 2,6,5,3,4,1) have as variable
their image under t. The other ones correspond to the second case in
the theorem: for example, let a, b, c, d, e, f, g be the sequence of column
linearization coefficients corresponding to the column lying strictly be-
tween the columns of 4 and that of 1; then the vertex 7 gets the variable
q(abcdefg), the vertex 10 gets q(defg), 8 gets q(ab) and 12 gets q(e).

Proof. It is enough to prove that: (i) the initial seed is obtained in this
way and that: (ii) the statement is compatible with mutations. For (i),
this follows by choosing the initial embedding π0 in such a way that the
corresponding covering of G0 = Q0 (G0 is equal to its cyclic part; there
are no pre-continuant trees in G0) is the frontier of the tiling. The latter
has been constructed in such a way that this is possible.

We prove now (ii). Suppose that the mutation at j is of type d) (of
which we take the notations). By symmetry, we may assume that i→ k is
a clockwise oriented arrow. Let A,C denote two points in the embedding
π on the same horizontal which correspond to i and k respectively (the
reader may use Figure 4.4 with i = 4, j = 7, k = 1, and A,C correspond-
ing to 4 and 1 in the figure). Let α1, . . . , αr, β, γ1, . . . , γs be the column
linearization coefficients for the columns strictly lying between A and C,
with r (resp. s) equal to the number of vertices of the left (resp. right)
subtree of the continuant tree corresponding to this arrow (in the figure
r = 2, s = 4); denote by a (resp. b) the roots of these subtrees (in the
figure, a, b correspond to 8,10). Then the variables at i, k, j, a, b are respec-
tively: t(A), t(C), q(α1, . . . , αr, β, γ1, . . . , γs), q(α1, . . . , αr), q(γ1, . . . , γs).
Moreover the arrows incident to j are j → i, j → b, k → j, a → j. After
mutation, j is on the cyclic part Q′ of the mutated quiver G′ and corre-
sponds to a point B in the new embedding located between A and C at
distance r+ 1 of A (see Figure 4.5, with B corresponding to 7); hence the
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mutated variable at j is t(B). Thus we must verify that
t(B)q(α1, . . . , αr, β, γ1, . . . , γs)

= t(A)q(γ1, . . . , γs) + t(C)q(α1, . . . , αr, β, γ1, . . . , γs).
This is Lemma 2.5.

Suppose now that the mutation is of type b). We may by symmetry
assume that j is such that the arrows incident to j are of the form j → k
and j → i. Let A,B,C be three consecutive points in the embedding
π corresponding to i, j, k. See Figure 4.4 with i, j, k equal to 6, 5, 3 and
A,B,C the corresponding points. Denote by α1, . . . , αr (resp. β1, . . . , βs)
the column (resp. row) linearization coefficients of the columns (resp. rows)
strictly lying between B and C (resp. B and A). Let D be the fourth point
of the rectangle on A,B,C (in Figure 4.6,D corresponds to 5). Let a (resp.
b) be the root of the tree of the arrow j → k (resp. j → i) (in Figure 4.4,
a, b correspond to 19, 16). Then we have the arrows a→ j and b→ j. The
variables in G at i, j, k, a, b are respectively t(A), t(B), t(C), q(α1, . . . , αr),
q(β1, . . . , βs); after mutation, the variable at j becomes t(D). Thus we
have to verify that

t(B)t(D) = t(A)t(C) + q(α1, . . . , αr)q(β1, . . . , βs).
This is a consequence of Corollary 2.6.

A type a) mutation is the reverse of a type d) mutation and is treated
similarly. The case of a type c) mutation follows from Lemma 2.4. �

4.5. Transjective/Nontransjective variables
It follows from the previous theorem that the cluster variables either ap-
pear as elements of the SL2-tiling, or as continuant polynomials of the
linearization coefficients of the tiling; actually, only finitely many of them
are of the latter form, since the pre-continuant trees appearing on deco-
rated Ã-quivers are finite in number and since the sequence of linearization
coefficients of the tiling are periodic. We shall see below that the two cases
are mutually exclusive.

Let Q be a finite acyclic quiver and K an algebraically closed field. We
denote by KQ the path algebra of Q, by modKQ the category of finitely
generated right KQ-modules and by Db (modKQ) the bounded derived
category over modKQ. Let τ denote the Auslander-Reiten translation and
[1] the shift in Db (modKQ) .The cluster category CQ of Q is defined to be
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the orbit category of Db (modKQ) under the action of the automorphism
τ−1[1], see [11]. The Auslander-Reiten quiver Γ (CQ) of CQ has a unique
component containing all the objects in KQ[1], that is, the shifts of the
indecomposable projective KQ−modules. This component is the transjec-
tive component Γtr of Γ (CQ) and its objects are called transjective. If Q is
a Dynkin quiver, then Γ (CQ) = Γtr . Otherwise, Γtr is isomorphic to the
repetitive quiver ZQ of Q, and Γ (CQ) has infinitely many additional, so-
called regular, components which are either stable tubes (ifQ is euclidean),
or of type ZA∞ (if Q is wild). Now, it is shown in [15] that there exists a
bijection X? (called canonical cluster character) between the isomorphism
classes of indecomposable objects M in CQ which have no self-extensions
and the cluster variables XM . A cluster variable which is the image of a
transjective object in CQ under the canonical cluster character is called
transjective. The others will be called nontransjective.

Lemma 4.5. Let Q be a quiver of type Ã with p clockwise oriented arrows
and q counterclockwise oriented arrows. Then there are exactly p(p− 1) +
q(q − 1) nontransjective cluster variables.

Proof. According to the description of the cluster category CQ, the non-
transjective cluster variables are in bijection with the regular indecom-
posable objects in CQ without self-extensions lying in the stable tubes.
Now such an indecomposable lies necessarily in one of the two exceptional
tubes of ranks p and q.Using the fact that the tubes are standard, it is
easily seen that the tube of rank p (resp. q) contains exactly p(p−1) (resp.
q(q − 1)) objects without self-extensions. �

Theorem 4.6. The transjective cluster variables are exactly those ap-
pearing on the SL2-tiling. The nontransjective variables are exactly those
appearing on the continuant trees of the decorated Ã-quivers.

Proof. It is known [4] that the transjective variables are exactly those
that are obtained by mutating only on sources or on sinks of the quivers.
Now, as already observed in [6], the variables appearing on the SL2-tiling
are obtained by this kind of mutations, hence are all transjective. Thus
the nontransjective variables all appear on the continuant trees. Hence
it suffices to show that the number of variables on the continuant trees
is at most p(p− 1) + q(q − 1). Now, the sequence of column linearization
coefficients is periodic of period p; and the variables on the continuant trees
corresponding to columns are of the form q(α1, . . . , αk) with 1 ≤ k ≤ p−1,
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since p is the maximum length of a clockwise oriented arrow in the cyclic
part of a decorated Ã-quiver in the mutation class of G0, because it has
necessarily parameters p, q. Therefore, the number of such variables is at
most the number of factors of length k, 1 ≤ k ≤ p − 1, of the sequence
of column linearization coefficients; hence there are at most p(p− 1) such
variables. This ends the proof, by symmetry. �

As in the Introduction, let M denote the group generated by the set
{µ1, . . . , µn} of mutations, subject to the relations µ2

i = 1.

Theorem 4.7. Let i ∈ {1, . . . , n}. Let y be a nontransjective cluster vari-
able. The set of m ∈ M such that yi(Sm

0 ) = y is a union of cosets of a
subgroup of finite index ofM.

Proof. Consider the set of decorated Ã-quivers in the mutation class of
G0, with embedding considered modulo the subgroup H of Z2 generated
by the vectors (p, 0) and (0, q). This set is finite. By a remark made in
Subsection 4.3, the continuant trees attached to G using π depend only
on π mod H. Now M acts on this finite set. Moreover, yi(Sm

0 ) = y is
equivalent to the fact that G0.m = G satisfies: i is a vertex of one of the
continuant trees of G and to this vertex is associated the variable y. These
two conditions depend only on the previous action. �

Observe that the transjective variables are given, following [6], by For-
mula (2.9) in Theorem 2.7; this formula gives at the same time positivity
and the Laurent phenomenon. We conclude this subsection by giving a
similar formula for nontransjective variables. We limit ourselves to the
case where these variables are obtained as continuant polynomials of col-
umn linearization coefficients, the case of rows being symmetric.

Given a finite set of consecutive columns of the SL2-tiling associated to
a frontier, we call word of this set the word that codes the intersection of
the frontier with this set of columns, augmented with the first step to its
left and the first to its right. For example the word of the set of columns
containing the variables from x0 to x4 in Figure 2.4 is

x−4xx−3yx−2yx−1yx0xx1xx2yx3xx4xx5.

Note that the first and last steps of the path are always horizontal.

Theorem 4.8. Consider an SL2-tiling t associated to some frontier with
variables in K. Let C1, . . . , Ck be k successive columns of t, with lineariza-
tion coefficients α1, . . . , αk. Let w = x0ξ1 · · · ξnxn+1 be the word associated
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to this set of columns. Then the continuant polynomial q(α1, . . . , αk) is
equal to

1
x1x2 · · ·xn

(x0, 1)M(x1, ξ2, x2) · · ·M(xn−1, ξn−1, xn)(1, xn+1)t.

Lemma 4.9. Let x1, . . . , xn, y1, . . . , yp be nonzero elements of K. Then

1
x1 · · ·xny1 · · · yp

M(x1yx2 · · · yxnxy1yy2 · · · yyp)

= 1
x1 · · ·xn

M(x1yx2 · · · yxn)
(

1
y1

) 1
y1 · · · yp

(xn, 1)M(y1yy2 · · · yyp)

−
(

0 0
1 0

)
.

Proof. We have

M(x1yx2 · · · yxnxy1yy2 · · · yyp)
= M(x1yx2 · · · yxn)M(xnxy1)M(y1yy2 · · · yyp).

Now

M(xnxy1) =
(
xn 1
0 y1

)
=
(

xn 1
xny1 y1

)
−
(

0 0
xny1 0

)
=
(

1
y1

)
(xn, 1)− xny1

(
0 0
1 0

)
.

Moreover
M(x1yx2 · · · yxn)

(
0 0
1 0

)
M(y1yy2 · · · yyp)

=
(
x2 0
1 x1

)
· · ·
(
xn 0
1 xn−1

)(
0 0
1 0

)(
y2 0
1 y1

)
· · ·
(
yp 0
1 yp−1

)
=
(

0 0
x1 · · ·xn−1y2 · · · yp 0

)
.

Putting all this together, we obtain the lemma. �

Proof. (Theorem 4.8) Consider first the case k = 1, that is, there is only
the column C1. Then

w = x0xx1yx2 . . . yxnxxn+1.

Note that x1 is in column C1. Let P be the point in the discrete plane at the
right of the point on the frontier which is labelled by the variable x1. Then
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the linearization coefficient α1 of column C1 is equal to x0+t(P )
x1

. Now, the
word associated to P (as in Subsection 2.6) is x1yx2 . . . yxnxxn+1. Thus
by Th. 2.7, we have

t(P ) = 1
x2 · · ·xn

(1, x1)M(x2, y, x3) · · ·M(xn−1, y, xn)(1, xn+1)T .

Let
A =

(
b
d

)
= M(x1, y, x2) · · ·M(xn−1, y, xn)(1, xn+1)T .

Then, since the second row of M(x1, y, x2) is (1, x1), we have t(P ) =
d

x2···xn
. Since M(x1, y, x2) · · ·M(xn−1, y, xn) is a product of lower triangu-

lar matrices, its (1,1)-entry is by definition of M(a, y, b) equal to x2 · · ·xn.
Thus b = x2 · · ·xn. Now (x0, 1)A is equal to x0b+ d. Divided by x1 · · ·xn,
this gives

x0b+ d

x1 · · ·xn
= x0x2 · · ·xn + d

x1 · · ·xn
=
x0 + d

x2···xn

x1
= α1.

This proves the result for k = 1.
We now verify that the expression rk = r(α1, . . . , αk) in the theorem

satisfies the recursion (2.2), first for k = 2 then for k ≥ 3. This will end
the proof.

Let C1, C2 be two successive columns, with α1, α2 as respective lin-
earization coefficients. Then the words associated to the sets of columns
{C1}, {C2} and {C1, C2} are respectively
x0xx1yx2 · · · yxnxy1, xnxy1yy2 · · · yypxz, x0xx1yx2 · · · yxnxy1yy2 · · · yypxz

for some integers n, p. Thus
r1 = (1/x1 · · ·xn)(x0, 1)M(x1yx2 · · ·xn)(1, y1)T

and r2 = (1/x1 · · ·xny1 · · · yp)(x0, 1)M(x1yx2 · · ·xnxy1 · · · yp)(1, z)T . Now
multiply the identity of the lemma on the left by (x0, 1) and on the right
by (1, z)T . We obtain r2 on the left-hand side. On the right-hand side we
have r1α2 − 1, since by the first part of the proof

α2 = 1
y1 · · · yp

(xn, 1)M(y1yy2 · · · yyp)(1, z)T

and since
(x0, 1)

(
0 0
1 0

)
(1, z)T = 1.
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Thus r2 = r1α2 − 1.
Let C1, C2, . . . , Ck be k successive columns. Then the words associated

to the three sets of columns {C1, . . . , Ck−2}, {C1, . . . , Ck−1}, {C1, . . . , Ck}
are respectively of the form

wxx1, wxx1yx2 · · · yxnxy1, wxx1yx2 · · · yxnxy1yy2 · · · yypxz,

for some word w and some natural numbers n, p. Moreover, the word
associated to {Ck} is

xnxy1yy2 · · · yypxz.

Thus
rk−2 = (1/X)(x0, 1)M(w)(1, x1)T ,

rk−1 = (1/Xx1 · · ·xn)(x0, 1)M(wxx1yx2 · · ·xn)(1, y1)T

and
rk = (1/Xx1 · · ·xny1 · · · yp)(x0, 1)M(wxx1yx2 · · ·xnxy1 · · · yp)(1, z)T ,

where x0 is the first letter of w and where X is the product of all the
variables in w, except x0. We multiply the identity of the lemma on the
left by (1/X)(x0, 1)M(wxx1) and on the right by (1, z)T . We obtain an
identity whose left-hand side is

(1/X)(x0, 1)M(wxx1) 1
x1 · · ·xny1 · · · yp

M(x1yx2 · · · yxnxy1yy2 · · · yyp)(1, z)T

= 1
Xx1 · · ·xny1 · · · yp

(x0, 1)M(wxx1 · · ·xnxy1 · · · yp)(1, z)T ,

that is, rk; its right-hand side is equal to

(1/X)(x0, 1)M(wxx1)[ 1
x1 · · ·xn

M(x1yx2 · · · yxn)
(

1
y1

) 1
y1 · · · yp

(xn, 1)

M(y1yy2 · · · yyp)−
(

0 0
1 0

)
](1, z)T

= 1
Xx1 · · ·xn

(x0, 1)M(wxx1yx2 · · · yxn)
(

1
y1

) 1
y1 · · · yp

(xn, 1)

M(y1yy2 · · · yyp)(1, z)T − (1/X)(x0, 1)M(wxx1)
(

0 0
1 0

)
(1, z)T .

This is equal to rk−1αk − rk−2, since by the first part of the proof

αk = 1
y1 · · · yp

(xn, 1)M(y1yy2 · · · yyp)(1, z)T ,
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since M(wxx1) = M(w)M(z0xx1) (where z0 is the last letter of w), and
since (

z0 1
0 x1

)(
0 0
1 0

)
(1, z)T = (1, x1)T .

�

4.6. A linear representation of the mutation group
Recall thatM denotes the group of mutations. We have a right action of
M on the finite set G of decorated Ã-quivers with n vertices and parame-
ters p, q, defined on the generators (the mutations) in Subsection 4.1. We
denote by G.m this action, for G ∈ G and m ∈ M. Likewise (see Sub-
section 4.3)M acts on the right on the set of pairs (G, π), where π is an
embedding of G into Z2. Note that, by definition of the mutations, we have
a compatibility condition between both actions: (G, π).m = (G.m, π′).

Denote by G0 the finite set of pairs (G, u), where u is a point of G.
There is a natural action of M on the pairs (G, u) ∈ G0, that we denote
by (G, u).m for m ∈ M . This action has been defined on the generators
at the end of Subsection 4.3.

To G and π as above, we have associated in Subsection 4.3 a point
u = u(G, π) of G. The following lemma is a consequence of Lemma 4.3.
Lemma 4.10. For any m ∈M , one has u((G, π).m) = (G, u).m.

We now define a function δ : G0×M→ Z[x, x−1], whereM is the group
of mutations. This mapping is defined as follows: let (G, u) ∈ G0, m ∈M ;
let π be some embedding of G ∈ G into Z2 such that u = u(G, π); and
define (G′, π′) = (G, π).m; let i = ξ(G′, π′)− ξ(G, π); then δ((G, u),m) is
the Laurent monomial xi. This is well-defined, that is, does not depend
on the chosen embedding π satisfying u = u(G, π).

From this construction follows
Lemma 4.11. One has for any m,m′ ∈M ,

δ((G, u),mm′) = δ((G, u),m)δ((G, u).m,m′).
We can now define a linear representation of the group of mutations.

Lemma 4.12. For m ∈ M, define a matrix µ(m), indexed by G0 as
follows: for any (G, u) ∈ G0, the ((G, u), (G, u).m)-entry is equal to the
element δ((G, u),m). The other entries are 0. Then µ is a homomorphism
from M into the group GLN (Z[x, x−1]), where N is the cardinality of G0.
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Proof. The matrix µ(m) has exactly one nonzero entry in each row and
each column, and this entry is a Laurent monomial. Hence it is an ele-
ment of GLN (Z[x, x−1]). The fact that it is a homomorphism follows from
Lemma 4.11. �

Theorem 4.13. Let k ∈ {1, . . . , n}. Then the function

M→ R = Z[x±1
1 , . . . , x±1

n ],m 7→ yk(Sm
0 )

is a representative function of the group of mutations M with values in
R.

Proof. We define the initial embedding π0 of the initial seed S0 as at the
beginning of the proof of Th. 4.4. Let u0 = u(G, π). Define λ ∈ R1×G0

by λ(Q0,u0) = xi0 , where i0 = ξ(Q0, π0), while the other components of λ
are 0. Define now γ ∈ RG0×1 by: if k is not on the cyclic part of G, then
γ(G,u) = 0; if k is on the cyclic part of G, choose some vector (i, j) ∈ Z2

such that for any embedding π of G, π(k) = u(G, π) + (i, j) + Z(p,−q)
(see Lemma 4.2); then let γ(G,u) = xiyj .

It is seen that then one has λµ(m)γ = xiyj where (Q0, π0).m = (G, π),
with π(k) = (i, j) + Z(p,−q) if k is on the cyclic part of G, and = 0
otherwise. Call φ the representative function φ(m) = λµ(m)γ of M with
value in Z[x±1, y±1].

Now, by Prop.3.1 and Prop.3.4, the composition ψ = t ◦ φ is a rep-
resentative function of M with value in R such that ψ(m) is equal, by
Th.4.4 to yk(Sm

0 ) if k lies in the cyclic part of Q0.m, and to 0 otherwise.
Moreover the set of m ∈ M such that k does not lie in the cyclic part of
Q0.m and has as associated variable a fixed variable y is by Th.4.7 a finite
union of cosets of a normal subgroup ofM; thus the theorem follows from
Corollary 3.3 and the additivity of representative functions. �

4.7. A noncommutative rational series

Consider the free monoid M generated by the set {µ1, . . . , µn} of muta-
tions. In this monoid consider the subset L of words m that do not contain
two successive occurrences of the same letter.

Theorem 4.14. Let k ∈ {1, . . . , n}. The series
∑

m∈L yk(Sm
0 ) is rational

over the ring Z[x±1
1 , . . . , x±1

n ].
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Proof. This follows by the Kleene-Schützenberger theorem ([10, Th. 7.1]):
a series is rational if and only it is a representative function of the monoid
M. It implies, using Th. 4.13, that the series

∑
yk(Sm

0 ), where the sum is
over all elements m ofM, is rational over the ring Z[x±1

1 , . . . , x±1
n ]. Now,

by Hadamard product with the language L (which is a rational language),
the series of the theorem is rational (Cor. III.2.3 in [10]). �

In view of the positivity conjecture of [25] and the rationality over N of
the sequences considered in [6], it is legitimate to ask if the series of the
theorem is also rational over the semiring N[x±1

1 , . . . , x±1
n ]. We show by a

counterexample that this is not true in general.
Indeed, consider the Ã2-quiver with the arrows 1 → 2 → 3 and 1 → 3.

The corresponding function δ is shown in Figure 4.7, with the following
conventions: ijk denotes the decorated Ã2-quiver with arrows i → j → k
and i→ k with no attached pre-continuant tree; ik denotes the decorated
Ã1 quiver with a double arrow i→ k and with a one node pre-continuant
tree j attached by the arrows i ← j ← k. Note that, due to the special
form of these quivers, the distinguished point u(G, π) is always equal to
i. On the figure, an arrow from vertex a to vertex b labelled µi/x

l means
that a.µi = b (action of the mutations on the set G) and δ(a, µi) = xl (we
use here the formalism of input/output automata); we have represented
only one half of the arrows: to the previous arrow is associated the reverse
arrow b→ a with label µi/x

−l.
All this allows to compute the function δ. For example, let w(p, q) =

(µ1µ2µ3)pµ2µ1µ2(µ3µ2µ1)q. Then we have

123.w(p, q) = 321, δ(123, w(p, q)) = x3px2x3q = x3p+2+3q.

This implies that starting from the initial seed (123, {x1, x2, x3}) and
initial embedding π0, and applying the sequence of mutations w(p, q) gives
the seed ((321, {y1, y2, y3}), and the embedding π with π(1) = π0(1)+(3p+
3q, 0).

Suppose now that the series S(x1, x2, x3) of the theorem is, for k =
1, rational over the semiring N[x±1

1 , . . . , x±1
n ]. Then replacing each vari-

able xi by 1, we obtain a series T = S(1, 1, 1) which is rational over
N. Since the set of w(p, q), p, q ∈ N is a rational language, the series
W =

∑
(T,w(p, q))w(p, q) is also rational over N, see [10] Cor. III.2.3.

Hence the set of words w(p, q) whose coefficient in W is 1 must be a ra-
tional language, by [10] Cor. III.2.7. Now, the SL2-tiling over N obtained
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µ1/xµ3/x

µ2/x

Figure 4.7. The function δ

by replacing the variables by 1 has 1’s only on its frontier (compare with
the SL2-tiling given on p.3152 in [6]); moreover the only linearization co-
efficient which come into play here is 2. Hence this language is the set of
words w(p, p): this set is well-known to be not a rational language.

5. Case A

5.1. Mutation of a continuant tree at the root

We show that, under suitable hypothesis (which are satisfied in the case
A), each continuant tree has at least two structures of continuant tree, if
one changes the parameters.

Lemma 5.1. Let a1, . . . , an+3 be a sequence of elements of R such that

Q(a1)Q(a2) · · ·Q(an+3) = −1. (5.1)

66



Mutating seeds: types A and Ã.

i

ab

a

ijab

ghijab

ghijabc

g

ghijabc

ghijab

g ijab

i ab

a

Figure 5.1. The tree of Figure 1 viewed differently

Let G be a continuant tree with root equal to the word a1 · · · an. Then for
some k with 1 ≤ k ≤ n, G has a leaf labelled k and there is a continuant
tree G′ isomorphic to G as labelled quiver, with the root of G′ corresponding
to k in G.

The lemma is illustrated by Figure 5.1, which shows the same quiver
as in Figure 2.1: at the left the nodes get new words, which give the
same continuant polynomials thanks to lemma 2.3 (under the hypothesis
Q(abcdefghij) = −1; for example, q(i) = q(abcdefg), and also q(defg) =
q(ijab) since we have also Q(defghijabc) = −1); at the right, this quiver
is shown to be a continuant tree.

Proof. In order to prove the lemma, we associate to the continuant tree a
triangulation of an n + 3-gon whose vertices are labelled by a1, . . . , an+3
in this order: to each node ai . . . aj of the continuant tree, associate the
diagonal joining the vertices ai−1 and aj+1, with the indices taken mod-
ulo n + 3; in particular, the root will give the diagonal from an+1 to
an+3. The construction is illustrated in Figure 5.2: this triangulation cor-
responds to the tree of Figure 2.1, but also to the tree of Figure 5.1,
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right part. Inspection of this example shows that for a given triangula-
tion, one obtains a corresponding tree for each isolated vertex (that is, a
vertex without incident diagonal), which corresponds to the root of that
tree. Since each triangulation has at least two isolated vertices, the lemma
follows if one takes into account the identity on continuant polynomials
given by Lemma 2.3: indeed, the hypothesis of this lemma implies that
Q(ai)Q(ai+1) · · ·Q(an+3)Q(a1) · · ·Q(ai−1) = −1, so that q(ai · · · aj) =
q(aj+2 · · · an+3a1 · · · ai−2). �

5.2. The mutated seeds in type A
Consider the Dynkin diagram An, with vertex set {1, . . . , n}, edge set
{{i, i + 1}, i = 1, . . . , n − 1}. We give to this diagram some orientation,
obtaining the initial quiver Q0, which determines the initial seed S0 =
(Q0, {x1, . . . , xn}).

The following result is essentially due to Conway and Coxeter, see [17,
(18) p. 91] and [18, p. 177-178].
Theorem 5.2. There exists a sequence a1, . . . , an+3 of Laurent polynomi-
als in the initial variables, with coefficients in N, such that Eq. (5.1) holds
and that each mutated seed is a continuant tree with vertex set {1, . . . , n}
and with root (ai+1, . . . , ai+n), for some i = 1, . . . , n+3, with indices taken
mod n+ 3.
Proof. It is enough by Lemma 2.4 and Lemma 5.1 to show that there
exists a sequence as in the statement such that the initial seed S0 is a
continuant tree of the form described in the statement. Consider the frieze
with variables associated to the quiver Q0, see [6] 8.2 , [14] Section 5. Its
period is n + 3. The lemma follows using the same method as in [9] 8.1,
with N replaced by the semiring N[x±1

i ], and the formula of [9] which gives
the value of each entry of the tiling using a continuant polynomial. �

Note that mutation of a continuant tree corresponds to the classical
flip of a triangulation: in some quadrilateral, replace one diagonal by the
opposite one. This is illustrated in Figure 5.3: the triangulation on the
right part corresponds (this correspondance is explained in the proof of
Lemma 5.1) to the continuant tree on the left part, which, when mutated
at vertex abcde gives the continuant tree of Figure 2.1, corresponding to
the triangulation of Figure 5.2: the two triangulations are obtained by
exchanging the diagonals hc and jf . This is a particular case of a general
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Figure 5.2. The triangulation corresponding to the con-
tinuant trees of Figures 1 and 12
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Figure 5.3. Another continuant tree and its associated triangulation

construction indicated in [24] 12.2, see also [14] Section 5. Our approach
however is different and quite elementary.
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6. Conjectures

Theorem 4.4 describes each seed in the mutation class of the initial seed S0;
it is the seed which is naturally associated (as explained in the theorem)
to some decorated Ã-quiver G and some embedding π of G. Conversely,
it seems likely that each seed of this form is in the mutation class of the
initial seed.

Moreover, we conjecture that Th. 4.7, Th. 4.13 and Th. 4.14 extend to
all euclidean diagrams. Note that for Dynkin diagrams, these extensions
are immediate since the mutation classes of seeds are finite, by Fomin and
Zelevinsky’s finite type classification [26].
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[8] K. Baur & R. March – “Categorification of a frieze pattern deter-
minant”, arXiv:1008.5329v1.

[9] F. Bergeron & C. Reutenauer – “SLk-tilings of the plane”, Illi-
nois J. Math. 54 (2010), no. 1, p. 263–300.

[10] J. Berstel & C. Reutenauer – Noncommutative rational series
with applications, Encyclopedia of Mathematics and its Applications,
vol. 137, Cambridge University Press, Cambridge, 2011.

[11] A. B. Buan, R. Marsh, M. Reineke, I. Reiten & G. Todorov
– “Tilting theory and cluster combinatorics”, Adv. Math. 204 (2006),
no. 2, p. 572–618.

[12] A. B. Buan, R. J. Marsh & I. Reiten – “Cluster mutation via
quiver representations”, Comment. Math. Helv. 83 (2008), no. 1,
p. 143–177.

[13] A. B. Buan & D. F. Vatne – “Derived equivalence classification
for cluster-tilted algebras of type An”, J. Algebra 319 (2008), no. 7,
p. 2723–2738.

[14] P. Caldero & F. Chapoton – “Cluster algebras as Hall algebras
of quiver representations”, Comment. Math. Helv. 81 (2006), no. 3,
p. 595–616.

[15] P. Caldero & B. Keller – “From triangulated categories to cluster
algebras”, Invent. Math. 172 (2008), no. 1, p. 169–211.

[16] P. M. Cohn – Free rings and their relations, second éd., London
Mathematical Society Monographs, vol. 19, Academic Press Inc. [Har-
court Brace Jovanovich Publishers], London, 1985.

[17] J. H. Conway & H. S. M. Coxeter – “Triangulated polygons and
frieze patterns”, Math. Gaz. 57 (1973), no. 400, p. 87–94.

[18] , “Triangulated polygons and frieze patterns”, Math. Gaz. 57
(1973), no. 401, p. 175–183.

[19] H. S. M. Coxeter – “Frieze patterns”, Acta Arith. 18 (1971),
p. 297–310.

[20] S. Dăscălescu, C. Năstăsescu & Ş. Raianu – Hopf algebras,
Monographs and Textbooks in Pure and Applied Mathematics, vol.
235, Marcel Dekker Inc., New York, 2001, An introduction.

71



I. Assem & C. Reutenauer

[21] G. Dupont – “Cluster multiplication in regular components via gen-
eralized Chebyshev polynomials”, Algebras and Representation The-
ory, in press.

[22] , “Generalized Chebyshev polynomials and positivity for reg-
ular cluster characters”, arXiv:0911.0714.

[23] , “Quantized Chebyshev polynomials and cluster characters
with coefficients”, J. Algebraic Combin. 31 (2010), no. 4, p. 501–532.

[24] S. Fomin, M. Shapiro & D. Thurston – “Cluster algebras and
triangulated surfaces. I. Cluster complexes”, Acta Math. 201 (2008),
no. 1, p. 83–146.

[25] S. Fomin & A. Zelevinsky – “Cluster algebras. I. Foundations”,
J. Amer. Math. Soc. 15 (2002), no. 2, p. 497–529 (electronic).

[26] , “Cluster algebras. II. Finite type classification”, Invent.
Math. 154 (2003), no. 1, p. 63–121.

[27] A. Fordy & R. Marsh – “Cluster mutation-periodic quivers and
associated laurent sequences”, arXiv:0904.0200v3.

[28] R. L. Graham, D. E. Knuth & O. Patashnik – Concrete math-
ematics, second éd., Addison-Wesley Publishing Company, Reading,
MA, 1994, A foundation for computer science.

[29] D. Happel & C. M. Ringel – “Construction of tilted algebras”, in
Representations of algebras (Puebla, 1980), Lecture Notes in Math.,
vol. 903, Springer, Berlin, 1981, p. 125–144.

[30] G. P. Hochschild – Basic theory of algebraic groups and Lie alge-
bras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New
York, 1981.

[31] B. Keller – “Cluster algebras, quiver representations and triangu-
lated categories”, in Triangulated categories, London Math. Soc. Lec-
ture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010,
p. 76–160.

[32] M. E. Sweedler – Hopf algebras, Mathematics Lecture Note Series,
W. A. Benjamin, Inc., New York, 1969.

72



Mutating seeds: types A and Ã.
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