The unitary implementation of a measured quantum groupoid action
[L’implémentation unitaire d’une action de groupoïde quantique mesuré]
Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 233-302.

Frank Lesieur a introduit une notion de groupoïde quantique mesuré, dans le cadre des algèbres de von Neumann, en s’inspirant des groupes quantiques localement compacts de Kustermans et Vaes (dans la version de cette construction faite dans le cadre des algèbres de von Neumann). Dans un article précédent, l’auteur a introduit les notions d’action, de produit croisé, d’action duale d’un groupoïde quantique mesuré ; un théorème de bidulaité des actions a éte démontré. Cet article continue ce programme : nous démontrons l’existence d’une implémentation standard d’une action, et un théorème de bidulaité pour les poids. Sont ainsi généralisés des résultats qui avaient été démontrés par S. Vaes pour les groupes quantiques localement compacts, et par T. Yamanouchi pour les groupoïdes mesurés.

Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.

DOI : 10.5802/ambp.284
Classification : 46L55, 46L89
Keywords: Measured quantum groupoids, actions, biduality theorems
Mot clés : Groupoïdes quantiques mesurés, actions, théorèmes de bidualité

Michel Enock 1

1 Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Paris 6 & Paris 7 175, rue du Chevaleret, Plateau 7E, F-75013 Paris France
@article{AMBP_2010__17_2_233_0,
     author = {Michel Enock},
     title = {The unitary implementation of a measured quantum groupoid action},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {233--302},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {2},
     year = {2010},
     doi = {10.5802/ambp.284},
     zbl = {1235.46066},
     mrnumber = {2778919},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.284/}
}
TY  - JOUR
AU  - Michel Enock
TI  - The unitary implementation of a measured quantum groupoid action
JO  - Annales mathématiques Blaise Pascal
PY  - 2010
SP  - 233
EP  - 302
VL  - 17
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.284/
DO  - 10.5802/ambp.284
LA  - en
ID  - AMBP_2010__17_2_233_0
ER  - 
%0 Journal Article
%A Michel Enock
%T The unitary implementation of a measured quantum groupoid action
%J Annales mathématiques Blaise Pascal
%D 2010
%P 233-302
%V 17
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.284/
%R 10.5802/ambp.284
%G en
%F AMBP_2010__17_2_233_0
Michel Enock. The unitary implementation of a measured quantum groupoid action. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 233-302. doi : 10.5802/ambp.284. https://ambp.centre-mersenne.org/articles/10.5802/ambp.284/

[1] Saad Baaj; Georges Skandalis Unitaires multiplicatifs et dualité pour les produits croisés de C * -algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488 | Numdam | MR | Zbl

[2] Saad Baaj; Georges Skandalis; Stefaan Vaes Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Volume 235 (2003) no. 1, pp. 139-167 | DOI | MR | Zbl

[3] Saad Baaj; Stefaan Vaes Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu, Volume 4 (2005) no. 1, pp. 135-173 | DOI | MR | Zbl

[4] Etienne Blanchard Tensor products of C(X)-algebras over C(X), Astérisque (1995) no. 232, pp. 81-92 Recent advances in operator algebras (Orléans, 1992) | MR | Zbl

[5] Étienne Blanchard Déformations de C * -algèbres de Hopf, Bull. Soc. Math. France, Volume 124 (1996) no. 1, pp. 141-215 | Numdam | MR | Zbl

[6] Gabriella Böhm; Kornél Szlachányi Weak C * -Hopf algebras: the coassociative symmetry of non-integral dimensions, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publ.), Volume 40, Polish Acad. Sci., Warsaw, 1997, pp. 9-19 | MR | Zbl

[7] Gabriella Bòhm; Korníl Szlachónyi A coassociative C * -quantum group with nonintegral dimensions, Lett. Math. Phys., Volume 38 (1996) no. 4, pp. 437-456 | DOI | MR | Zbl

[8] A. Connes On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980) no. 2, pp. 153-164 | DOI | MR | Zbl

[9] Alain Connes Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl

[10] Marie-Claude David C * -groupoïdes quantiques et inclusions de facteurs: structure symétrique et autodualité, action sur le facteur hyperfini de type II 1 , J. Operator Theory, Volume 54 (2005) no. 1, pp. 27-68 | MR | Zbl

[11] Kenny De Commer Monoidal equivalence for locally compact quantum groups, 2008 (mathOA/0804.2405, to appear in J. Operator Theory)

[12] Michel Enock Produit croisé d’une algèbre de von Neumann par une algèbre de Kac, J. Functional Analysis, Volume 26 (1977) no. 1, pp. 16-47 | DOI | MR | Zbl

[13] Michel Enock Inclusions irréductibles de facteurs et unitaires multiplicatifs. II, J. Funct. Anal., Volume 154 (1998) no. 1, pp. 67-109 | DOI | MR | Zbl

[14] Michel Enock Inclusions of von Neumann algebras and quantum groupoïds. III, J. Funct. Anal., Volume 223 (2005) no. 2, pp. 311-364 | DOI | MR | Zbl

[15] Michel Enock Quantum groupoids of compact type, J. Inst. Math. Jussieu, Volume 4 (2005) no. 1, pp. 29-133 | DOI | MR | Zbl

[16] Michel Enock Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) no. 114, pp. ii+150 pp. (2009) | Numdam | MR | Zbl

[17] Michel Enock Measured Quantum Groupoids with a central basis, 2008 (mathOA/0808.4052, to be published in J. Operator Theory)

[18] Michel Enock Outer actions of measured quantum groupoids, 2009 (mathOA/0909.1206)

[19] Michel Enock; Ryszard Nest Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras, J. Funct. Anal., Volume 137 (1996) no. 2, pp. 466-543 | DOI | MR | Zbl

[20] Michel Enock; Jean-Marie Schwartz Produit croisé d’une algèbre de von Neumann par une algèbre de Kac. II, Publ. Res. Inst. Math. Sci., Volume 16 (1980) no. 1, pp. 189-232 | DOI | MR | Zbl

[21] Michel Enock; Jean-Marie Schwartz Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992 (With a preface by Alain Connes, With a postface by Adrian Ocneanu) | MR | Zbl

[22] Michel Enock; Jean-Michel Vallin Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal., Volume 172 (2000) no. 2, pp. 249-300 | DOI | MR | Zbl

[23] V. F. R. Jones Index for subfactors, Invent. Math., Volume 72 (1983) no. 1, pp. 1-25 | DOI | MR | Zbl

[24] Johan Kustermans; Stefaan Vaes Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 6, pp. 837-934 | DOI | Numdam | MR | Zbl

[25] Johan Kustermans; Stefaan Vaes Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., Volume 92 (2003) no. 1, pp. 68-92 | Numdam | MR | Zbl

[26] Franck Lesieur Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) no. 109, pp. iv+158 pp. (2008) | Numdam | MR

[27] T. Masuda; Y. Nakagami; S. L. Woronowicz A C * -algebraic framework for quantum groups, Internat. J. Math., Volume 14 (2003) no. 9, pp. 903-1001 | DOI | MR | Zbl

[28] Tetsuya Masuda; Yoshiomi Nakagami A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci., Volume 30 (1994) no. 5, pp. 799-850 | DOI | MR | Zbl

[29] Dmitri Nikshych; Leonid Vainerman Algebraic versions of a finite-dimensional quantum groupoid, Hopf algebras and quantum groups (Brussels, 1998) (Lecture Notes in Pure and Appl. Math.), Volume 209, Dekker, New York, 2000, pp. 189-220 | MR | Zbl

[30] Dmitri Nikshych; Leonid Vainerman A characterization of depth 2 subfactors of II 1 factors, J. Funct. Anal., Volume 171 (2000) no. 2, pp. 278-307 | DOI | MR | Zbl

[31] Dmitri Nikshych; Leonid Vainerman Finite quantum groupoids and their applications, New directions in Hopf algebras (Math. Sci. Res. Inst. Publ.), Volume 43, Cambridge Univ. Press, Cambridge, 2002, pp. 211-262 | MR | Zbl

[32] Jean-Luc Sauvageot Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory, Volume 9 (1983) no. 2, pp. 237-252 | MR | Zbl

[33] Şerban Strătilă Modular theory in operator algebras, Editura Academiei Republicii Socialiste România, Bucharest, 1981 (Translated from the Romanian by the author) | MR | Zbl

[34] Kornél Szlachányi Weak Hopf algebras, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 621-632 | MR | Zbl

[35] M. Takesaki Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, 125, Springer-Verlag, Berlin, 2003 (Operator Algebras and Non-commutative Geometry, 6) | MR | Zbl

[36] Stefaan Vaes The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 426-480 | DOI | MR | Zbl

[37] Stefaan Vaes Strictly outer actions of groups and quantum groups, J. Reine Angew. Math., Volume 578 (2005), pp. 147-184 | DOI | MR | Zbl

[38] Stefaan Vaes; Leonid Vainerman Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., Volume 175 (2003) no. 1, pp. 1-101 | DOI | MR | Zbl

[39] Jean-Michel Vallin Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory, Volume 35 (1996) no. 1, pp. 39-65 | MR | Zbl

[40] Jean-Michel Vallin Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Volume 44 (2000) no. 2, pp. 347-368 | MR | Zbl

[41] Jean-Michel Vallin Groupoïdes quantiques finis, J. Algebra, Volume 239 (2001) no. 1, pp. 215-261 | DOI | MR | Zbl

[42] Jean-Michel Vallin Multiplicative partial isometries and finite quantum groupoids, Locally compact quantum groups and groupoids (Strasbourg, 2002) (IRMA Lect. Math. Theor. Phys.), Volume 2, de Gruyter, Berlin, 2003, pp. 189-227 | MR | Zbl

[43] Jean-Michel Vallin Measured quantum groupoids associated with matched pairs of locally compact groupoids, 2009 (mathOA/0906.5247)

[44] S. L. Woronowicz Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU (N) groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI | MR | Zbl

[45] S. L. Woronowicz From multiplicative unitaries to quantum groups, Internat. J. Math., Volume 7 (1996) no. 1, pp. 127-149 | DOI | MR | Zbl

[46] S. L. Woronowicz Compact quantum groups, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845-884 | MR | Zbl

[47] Takehiko Yamanouchi Crossed products by groupoid actions and their smooth flows of weights, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 4, pp. 535-578 | DOI | MR | Zbl

[48] Takehiko Yamanouchi Dual weights on crossed products by groupoid actions, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 4, pp. 653-678 | DOI | MR | Zbl

[49] Takehiko Yamanouchi Duality for actions and coactions of measured groupoids on von Neumann algebras, Mem. Amer. Math. Soc., Volume 101 (1993) no. 484, pp. vi+109 | MR | Zbl

[50] Takehiko Yamanouchi Canonical extension of actions of locally compact quantum groups, J. Funct. Anal., Volume 201 (2003) no. 2, pp. 522-560 | DOI | MR | Zbl

[51] Takehiko Yamanouchi Takesaki duality for weights on locally compact quantum group covariant systems, J. Operator Theory, Volume 50 (2003) no. 1, pp. 53-66 | MR | Zbl

Cité par Sources :