The unitary implementation of a measured quantum groupoid action
[L’implémentation unitaire d’une action de groupoïde quantique mesuré]
Annales Mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 233-302.

Frank Lesieur a introduit une notion de groupoïde quantique mesuré, dans le cadre des algèbres de von Neumann, en s’inspirant des groupes quantiques localement compacts de Kustermans et Vaes (dans la version de cette construction faite dans le cadre des algèbres de von Neumann). Dans un article précédent, l’auteur a introduit les notions d’action, de produit croisé, d’action duale d’un groupoïde quantique mesuré ; un théorème de bidulaité des actions a éte démontré. Cet article continue ce programme : nous démontrons l’existence d’une implémentation standard d’une action, et un théorème de bidulaité pour les poids. Sont ainsi généralisés des résultats qui avaient été démontrés par S. Vaes pour les groupes quantiques localement compacts, et par T. Yamanouchi pour les groupoïdes mesurés.

Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.

DOI : https://doi.org/10.5802/ambp.284
Classification : 46L55,  46L89
Mots clés : Groupoïdes quantiques mesurés, actions, théorèmes de bidualité
@article{AMBP_2010__17_2_233_0,
     author = {Michel Enock},
     title = {The unitary implementation of a measured quantum groupoid action},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {233--302},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {2},
     year = {2010},
     doi = {10.5802/ambp.284},
     mrnumber = {2778919},
     zbl = {pre05839423},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.284/}
}
Michel Enock. The unitary implementation of a measured quantum groupoid action. Annales Mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 233-302. doi : 10.5802/ambp.284. https://ambp.centre-mersenne.org/articles/10.5802/ambp.284/

[1] Saad Baaj; Georges Skandalis Unitaires multiplicatifs et dualité pour les produits croisés de C * -algèbres, Ann. Sci. École Norm. Sup. (4), Volume 26 (1993) no. 4, pp. 425-488 | Numdam | MR 1235438 | Zbl 0804.46078

[2] Saad Baaj; Georges Skandalis; Stefaan Vaes Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Volume 235 (2003) no. 1, pp. 139-167 | Article | MR 1969723 | Zbl 1029.46113

[3] Saad Baaj; Stefaan Vaes Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu, Volume 4 (2005) no. 1, pp. 135-173 | Article | MR 2115071 | Zbl 1071.46040

[4] Etienne Blanchard Tensor products of C(X)-algebras over C(X), Astérisque (1995) no. 232, pp. 81-92 (Recent advances in operator algebras (Orléans, 1992)) | MR 1372526 | Zbl 0842.46049

[5] Étienne Blanchard Déformations de C * -algèbres de Hopf, Bull. Soc. Math. France, Volume 124 (1996) no. 1, pp. 141-215 | Numdam | MR 1395009 | Zbl 0851.46040

[6] Gabriella Böhm; Kornél Szlachányi Weak C * -Hopf algebras: the coassociative symmetry of non-integral dimensions, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publ.) Volume 40, Polish Acad. Sci., Warsaw, 1997, pp. 9-19 | MR 1481730 | Zbl 0894.16018

[7] Gabriella Bòhm; Korníl Szlachónyi A coassociative C * -quantum group with nonintegral dimensions, Lett. Math. Phys., Volume 38 (1996) no. 4, pp. 437-456 | Article | MR 1421688 | Zbl 0872.16022

[8] A. Connes On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980) no. 2, pp. 153-164 | Article | MR 561983 | Zbl 0443.46042

[9] Alain Connes Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR 1303779 | Zbl 0818.46076

[10] Marie-Claude David C * -groupoïdes quantiques et inclusions de facteurs: structure symétrique et autodualité, action sur le facteur hyperfini de type II 1 , J. Operator Theory, Volume 54 (2005) no. 1, pp. 27-68 | MR 2168858 | Zbl 1120.46048

[11] Kenny De Commer Monoidal equivalence for locally compact quantum groups, 2008 (mathOA/0804.2405, to appear in J. Operator Theory)

[12] Michel Enock Produit croisé d’une algèbre de von Neumann par une algèbre de Kac, J. Functional Analysis, Volume 26 (1977) no. 1, pp. 16-47 | Article | MR 473854 | Zbl 0366.46053

[13] Michel Enock Inclusions irréductibles de facteurs et unitaires multiplicatifs. II, J. Funct. Anal., Volume 154 (1998) no. 1, pp. 67-109 | Article | MR 1616500 | Zbl 0921.46065

[14] Michel Enock Inclusions of von Neumann algebras and quantum groupoïds. III, J. Funct. Anal., Volume 223 (2005) no. 2, pp. 311-364 | Article | MR 2142344 | Zbl 1088.46036

[15] Michel Enock Quantum groupoids of compact type, J. Inst. Math. Jussieu, Volume 4 (2005) no. 1, pp. 29-133 | Article | MR 2115070 | Zbl 1071.46041

[16] Michel Enock Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) no. 114, ii+150 pp. (2009) pages | Numdam | MR 2541012 | Zbl 1189.58002

[17] Michel Enock Measured Quantum Groupoids with a central basis, 2008 (mathOA/0808.4052, to be published in J. Operator Theory)

[18] Michel Enock Outer actions of measured quantum groupoids, 2009 (mathOA/0909.1206)

[19] Michel Enock; Ryszard Nest Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras, J. Funct. Anal., Volume 137 (1996) no. 2, pp. 466-543 | Article | MR 1387518 | Zbl 0847.22003

[20] Michel Enock; Jean-Marie Schwartz Produit croisé d’une algèbre de von Neumann par une algèbre de Kac. II, Publ. Res. Inst. Math. Sci., Volume 16 (1980) no. 1, pp. 189-232 | Article | MR 574033 | Zbl 0441.46056

[21] Michel Enock; Jean-Marie Schwartz Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin, 1992 (With a preface by Alain Connes, With a postface by Adrian Ocneanu) | MR 1215933 | Zbl 0805.22003

[22] Michel Enock; Jean-Michel Vallin Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal., Volume 172 (2000) no. 2, pp. 249-300 | Article | MR 1753177 | Zbl 0974.46055

[23] V. F. R. Jones Index for subfactors, Invent. Math., Volume 72 (1983) no. 1, pp. 1-25 | Article | MR 696688 | Zbl 0508.46040

[24] Johan Kustermans; Stefaan Vaes Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4), Volume 33 (2000) no. 6, pp. 837-934 | Article | Numdam | MR 1832993 | Zbl 1034.46508

[25] Johan Kustermans; Stefaan Vaes Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., Volume 92 (2003) no. 1, pp. 68-92 | Numdam | MR 1951446 | Zbl 1034.46067

[26] Franck Lesieur Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) no. 109, iv+158 pp. (2008) pages | Numdam | MR 2474165 | Zbl pre05382984

[27] T. Masuda; Y. Nakagami; S. L. Woronowicz A C * -algebraic framework for quantum groups, Internat. J. Math., Volume 14 (2003) no. 9, pp. 903-1001 | Article | MR 2020804 | Zbl 1053.46050

[28] Tetsuya Masuda; Yoshiomi Nakagami A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci., Volume 30 (1994) no. 5, pp. 799-850 | Article | MR 1311393 | Zbl 0839.46055

[29] Dmitri Nikshych; Leonid Vainerman Algebraic versions of a finite-dimensional quantum groupoid, Hopf algebras and quantum groups (Brussels, 1998) (Lecture Notes in Pure and Appl. Math.) Volume 209, Dekker, New York, 2000, pp. 189-220 | MR 1763613 | Zbl 1032.46537

[30] Dmitri Nikshych; Leonid Vainerman A characterization of depth 2 subfactors of II 1 factors, J. Funct. Anal., Volume 171 (2000) no. 2, pp. 278-307 | Article | MR 1745634 | Zbl 1010.46063

[31] Dmitri Nikshych; Leonid Vainerman Finite quantum groupoids and their applications, New directions in Hopf algebras (Math. Sci. Res. Inst. Publ.) Volume 43, Cambridge Univ. Press, Cambridge, 2002, pp. 211-262 | MR 1913440 | Zbl 1026.17017

[32] Jean-Luc Sauvageot Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory, Volume 9 (1983) no. 2, pp. 237-252 | MR 703809 | Zbl 0517.46050

[33] Şerban Strătilă Modular theory in operator algebras, Editura Academiei Republicii Socialiste România, Bucharest, 1981 (Translated from the Romanian by the author) | MR 696172 | Zbl 0504.46043

[34] Kornél Szlachányi Weak Hopf algebras, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, pp. 621-632 | MR 1491146 | Zbl 1098.16504

[35] M. Takesaki Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, Volume 125, Springer-Verlag, Berlin, 2003 (Operator Algebras and Non-commutative Geometry, 6) | MR 1943006 | Zbl 1059.46031

[36] Stefaan Vaes The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 426-480 | Article | MR 1814995 | Zbl 1011.46058

[37] Stefaan Vaes Strictly outer actions of groups and quantum groups, J. Reine Angew. Math., Volume 578 (2005), pp. 147-184 | Article | MR 2113893 | Zbl 1073.46047

[38] Stefaan Vaes; Leonid Vainerman Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., Volume 175 (2003) no. 1, pp. 1-101 | Article | MR 1970242 | Zbl 1034.46068

[39] Jean-Michel Vallin Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory, Volume 35 (1996) no. 1, pp. 39-65 | MR 1389642 | Zbl 0849.22002

[40] Jean-Michel Vallin Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Volume 44 (2000) no. 2, pp. 347-368 | MR 1794823 | Zbl 0986.22002

[41] Jean-Michel Vallin Groupoïdes quantiques finis, J. Algebra, Volume 239 (2001) no. 1, pp. 215-261 | Article | MR 1827882 | Zbl 1003.46040

[42] Jean-Michel Vallin Multiplicative partial isometries and finite quantum groupoids, Locally compact quantum groups and groupoids (Strasbourg, 2002) (IRMA Lect. Math. Theor. Phys.) Volume 2, de Gruyter, Berlin, 2003, pp. 189-227 | MR 1976946 | Zbl 1171.47306

[43] Jean-Michel Vallin Measured quantum groupoids associated with matched pairs of locally compact groupoids, 2009 (mathOA/0906.5247)

[44] S. L. Woronowicz Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted SU (N) groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | Article | MR 943923 | Zbl 0664.58044

[45] S. L. Woronowicz From multiplicative unitaries to quantum groups, Internat. J. Math., Volume 7 (1996) no. 1, pp. 127-149 | Article | MR 1369908 | Zbl 0876.46044

[46] S. L. Woronowicz Compact quantum groups, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845-884 | MR 1616348 | Zbl 0997.46045

[47] Takehiko Yamanouchi Crossed products by groupoid actions and their smooth flows of weights, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 4, pp. 535-578 | Article | MR 1191875 | Zbl 0824.46080

[48] Takehiko Yamanouchi Dual weights on crossed products by groupoid actions, Publ. Res. Inst. Math. Sci., Volume 28 (1992) no. 4, pp. 653-678 | Article | MR 1191881 | Zbl 0824.46081

[49] Takehiko Yamanouchi Duality for actions and coactions of measured groupoids on von Neumann algebras, Mem. Amer. Math. Soc., Volume 101 (1993) no. 484, vi+109 pages | MR 1127115 | Zbl 0822.46070

[50] Takehiko Yamanouchi Canonical extension of actions of locally compact quantum groups, J. Funct. Anal., Volume 201 (2003) no. 2, pp. 522-560 | Article | MR 1986698 | Zbl 1034.46070

[51] Takehiko Yamanouchi Takesaki duality for weights on locally compact quantum group covariant systems, J. Operator Theory, Volume 50 (2003) no. 1, pp. 53-66 | MR 2015018 | Zbl 1036.46056