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The unitary implementation of a measured
quantum groupoid action

MICHEL ENOCK

Abstract

Mimicking the von Neumann version of Kustermans and Vaes’ locally compact
quantum groups, Franck Lesieur had introduced a notion of measured quantum
groupoid, in the setting of von Neumann algebras. In a former article, the author
had introduced the notions of actions, crossed-product, dual actions of a measured
quantum groupoid; a biduality theorem for actions has been proved. This article
continues that program: we prove the existence of a standard implementation for
an action, and a biduality theorem for weights. We generalize this way results which
were proved, for locally compact quantum groups by S. Vaes, and for measured
groupoids by T. Yamanouchi.

L’ implémentation unitaire d’une action de groupoide quantique
mesuré

Résumé

Frank Lesieur a introduit une notion de groupoide quantique mesuré, dans le
cadre des algebres de von Neumann, en s’inspirant des groupes quantiques locale-
ment compacts de Kustermans et Vaes (dans la version de cette construction faite
dans le cadre des algebres de von Neumann). Dans un article précédent, 'auteur
a introduit les notions d’action, de produit croisé, d’action duale d’un groupoide
quantique mesuré ; un théoreme de bidulaité des actions a éte démontré. Cet article
continue ce programme : nous démontrons ’existence d’une implémentation stan-
dard d’une action, et un théoréme de bidulaité pour les poids. Sont ainsi généralisés
des résultats qui avaient été démontrés par S. Vaes pour les groupes quantiques
localement compacts, et par T. Yamanouchi pour les groupoides mesurés.

1. Introduction

In two articles ([39], [40]), J.-M. Vallin has introduced two notions (pseudo-
multiplicative unitary, Hopf-bimodule), in order to generalize, up to the

Keywords: Measured quantum groupoids, actions, biduality theorems.
Math. classification: 46155, 461.89.
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M. ENOCK

groupoid case, the classical notions of multiplicative unitary [1] and of
Hopf-von Neumann algebras [21] which were introduced to describe and
explain duality of groups, and leaded to appropriate notions of quantum
groups ([21], [44], [45], [1], [28], [46], [24], [25], [27]).

In another article [22], J.-M. Vallin and the author have constructed, from
a depth 2 inclusion of von Neumann algebras My C M;, with an operator-
valued weight T verifying a regularity condition, a pseudo-multiplicative
unitary, which leaded to two structures of Hopf bimodules, dual to each
other. Moreover, we have then constructed an action of one of these struc-
tures on the algebra M; such that M is the fixed point subalgebra, the
algebra My given by the basic construction being then isomorphic to the
crossed-product. We construct on My an action of the other structure,
which can be considered as the dual action.

If the inclusion My C M; is irreducible, we recovered quantum groups, as
proved and studied in former papers ([19], [13]).

Therefore, this construction leads to a notion of "quantum groupoid", and
a construction of a duality within "quantum groupoids'.

In a finite-dimensional setting, this construction can be mostly sim-
plified, and is studied in [29], [7], [6], [34],[41], [42], and examples are
described. In [30], the link between these "finite quantum groupoids" and
depth 2 inclusions of II; factors is given.

F. Lesieur, in [26], starting from a Hopf-bimodule, as introduced in
[39], when there exist a left-invariant operator-valued weight, and a right-
invariant operator-valued weight, mimicking in that wider setting the tech-
nics of Kustermans and Vaes ([24], [25]), obtained a pseudo-multiplicative
unitary, which, as in quantum group theory, "contains" all the information
about the object (the von Neumann algebra, the coproduct) and allows
to construct important data (an antipod, a co-inverse, etc.) Lesieur gave
the name of "measured quantum groupoids" to these objects. A new set of
axioms for these had been given in an appendix of [16]. In [14] had been
shown that, with suitable conditions, the objects constructed from [22] are
"measured quantum groupoids" in the sense of Lesieur.

In [16] have been developped the notions of action (already introduced
in [22]), crossed-product, etc, following what had been done for locally
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MEASURED QUANTUM GROUPOID ACTION

compact quantum groups in ([12], [20], [36]); a biduality theorem for ac-
tions had been obtained in ([16], 11.6). Several points were left apart in
[16], namely the generalization of Vaes’ theorem ([36], 4.4) on the stan-
dard implementation of an action of a locally compact quantum group,
which was the head light of [36], and a biduality theorem for weights, as
obtained in [49], [51] (in fact, we were much more inspired by the shorter
proof given in an appendix of [3]).

We solve here these two problems when there exists a normal semi-finite
faithful operator-valued weight from the von Neumann algebra on which
the measured quantum groupoid is acting, onto the copy of the basis of
this measured quantum groupoid which is put inside this algebra. In fact,
these results appear much more as a biduality theorem of operator-valued
weights rather than a biduality theorem on weights, which seems quite
natural in the spirit of measured quantum groupoids, where, for instance,
left-invariant weight on a locally compact quantum group is replaced by
a left-invariant operator-valued weight. The strategy for the proofs had
been mostly inspired by [36] and [3].

This article is organized as follows:

In chapter 2, we recall very quickly all the notations and results needed in
that article; we have tried to make these preliminaries as short as possible,
and we emphazise that this article should be understood as the continua-
tion of [16].

In chapter 3, we follow ([36], 4.1 to 4.4), and prove, for any dual action,
the result on the standard implementation of an action.

Chapter 4 is rather technical; let & = (N, M, «,3,T,T,T",v) be a mea-
sured quantum groupoid, and let b be an injective *-anti-homomorphism
from NN into a von Neumann algebra A; let us suppose that there exists
a normal semi-finite faithful operator-valued weight ¥ from A onto b(NN),
and let us write ¢ = v° 0o b~! 0o T. Then, we can define on A b;a L(H) a

weight 1), which will generalize the tensor product of ¢ and Try_, (when
& is a locally compact quantum group, and therefore N = C).

In chapter 5, using this auxilliary weight introduced in chapter 4, and
the particular case of the dual actions studied in chapter 3, we calculate
the standard implementation of an action, whenever there exists a normal
semi-finite faithful operator-valued weight from A onto b(/N). This condi-
tion is fulfilled trivially when the measured quantum groupoid is a locally
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compact quantum group, or is a measured groupoid; therefore, we recover

in both cases the results already obtained.

Chapter 6 is another technical chapter; we define conditions on a weight

1 defined on A which allow us to construct on A p*x L(H) a weight
N Ys

which generalize the tensor product of ¢ and Tr( 5R)-1 (when & is a locally

compact quantum group, and therefore N = C).

In chapter 7 we use both auxilliary weights constructions made in chapters
4 and 6; then, when there exists a normal semi-finite faithful operator-
valued weight T from A onto b(N) such that ¢ = v°ob~! 0T, we can
define a Radon-Nikodym derivative of the weight v with respect to the
action, which will be a cocycle for this action. This condition is fulfilled
trivially when the measured quantum groupoid is a locally compact quan-
tum group, or is a measured groupoid, and, therefore, we recover in both
cases the results already obtained.

2. Definitions and notations

This article is the continuation of [16]; preliminaries are to be found in
[16], and we just recall herafter the following definitions and notations:

2.1. Spatial theory; relative tensor products of Hilbert spaces
and fiber products of von Neumann algebras ([8], [32],
[35], [22])

Let N a von Neumann algebra, 1) a normal semi-finite faithful weight on
N; we shall denote by Hy, My, Sy, Jy, Ay... the canonical objects of
the Tomita-Takesaki theory associated to the weight 1; let o be a non
degenerate faithful representation of N on a Hilbert space H; the set of
1-bounded elements of the left-module H is:

DM, ) = {€ € H;3C < o0, laly)é]l < CllAp(y)ll; Vy € Ny}

Then, for any ¢ in D(,H, 1), there exists a bounded operator R*¥ (&)
from Hy to H, defined, for all y in Ny, by:

R*(€)Ay(y) = a(y)é
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MEASURED QUANTUM GROUPOID ACTION

which intertwines the actions of N.
If &,  are bounded vectors, the operator product

(€ Maw = B () R (€)

belongs to my(NN)’, which, thanks to Tomita-Takesaki theory, will be iden-
tified to the opposite von Neumann algebra N°.

If now [ is a non degenerate faithful antirepresentation of N on a Hilbert
space K, the relative tensor product K g®, H is the completion of the

¥
algebraic tensor product K © D(,H, ) by the scalar product defined, if
&1, & are in K, ny, no are in D(,H, ), by the following formula:

(&1 ©ml&2 ©@n2) = (B((n1, m2)a,w)é1lée) -

If ¢ € K, n € D(oH,), we shall denote & 3®, 7 the image of £ ® 7 into
P
K 3®qH, and, writing pff‘”(ﬁ) = £3®a 1, we get a bounded linear operator
¥ ¥
from K into K 3®4 H, which is equal to 1x ®, R*¥(n).

v
Changing the weight 1 will give a canonical isomorphic Hilbert space, but
the isomorphism will not exchange elementary tensors !

We shall denote oy, the relative flip, which is a unitary sending K g®, H

onto H ®g K, defined, for any & in D(KCg,¢°), nin D(H, ), by: Y
bo
oy(§ sBa ) =N a®p§.
% pe

In z € B(N), y € a(N)', it is possible to define an operator = 3®, y on
K s®q H, with natural values on the elementary tensors. As this operator
doe;p not depend upon the weight ¢, it will be denoted z 3®, y. We can
define a relative flip ¢y at the level of operators such that gx(:c 300 Y) =
Yy o®g x. If P is a von Neumann algebra on H, with a(N) C P,Nand Q

No
a von Neumann algebra on I, with G(IN) C @, then we define the fiber
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product Q g*o P as {z s®q v,z € Q',y € P'}, and we get that
N N

§N(Qﬁ*a P) = P ox5 Q.
N Neo

Moreover, this von Neumann algebra can be defined independantly of
the Hilbert spaces on which P and @ are represented; if (i = 1,2), «; is
a faithful non degenerate homomorphism from N into F;, 3; is a faithful
non degenerate antihomomorphism from N into @;, and ® (resp. ¥) an
homomorphism from P; to P, (resp. from (1 to Q2) such that Poa; = ay
(resp. Wofy = [32), then, it is possible to define an homomorphism Vg, o, @

N

from Q1 g,*q, P1 into Q2 gy*ay Po.
N N

The operators 0% (£,n7) = RYY(§)R*¥(n)*, for all &, n in D(,H,v),
generates a weakly dense ideal in a(N)'. Moreover, there exists a family
(e;)ier of vectors in D(,H, 1)) such that the operators 0% (e;,e;) are 2
by 2 orthogonal projections (6%¥(e;, e;) being then the projection on the
closure of a(N)e;). Such a family is called an orthogonal («a,)-basis of

H.

2.2. Measured quantum groupoids ([26], [16])

A measured quantum groupoid is an octuplet & = (N, M, o, 3, T, T,T",v)

such that ([16], 3.8):

(i) (N, M, o, 3,T) is a Hopf-bimodule (as defined in [16], 3.1),

(ii) T is a left-invariant normal, semi-finite, faithful operator valued weight

T from M to a(N),

(iii) 7" is a right-invariant normal, semi-finite, faithful operator-valued

weight 7" from M to B(N),

(iv) v is normal semi-finite faitfull weight on N, which is relatively invari-

ant with respect to T" and T".

We shall write ® =voa ' oT, and H = Hg, J = Jg, and, for all n € N,

B(n) = Ja(n*)J, &(n) = JB(n*)J. The weight ® will be called the left-

invariant weight on M.

Then, & can be equipped with a pseudo-multiplicative unitary W from

H 3®q H onto H ®5 H ([16], 3.6), a co-inverse R, a scaling group 7, an
14 o

14
antipod S, a modulus 4, a scaling operator A\, a managing operator P, and
a canonical one-parameter group ~y; of automorphisms on the basis N ([16],
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MEASURED QUANTUM GROUPOID ACTION

3.8). Instead of &, we shall mostly use (N, M, «, 5,1, T, RT'R,v) which is
another measured quantum groupoid, denoted &, which is equipped with
the same data (W, R, ...) as &.

A dual measured quantum group QAﬁ, which is denoted

~

(N7]/\Z7a71371—‘7 A’Rfﬁ’y)’
6.

)

can be constructed, and we have ® =
Canonically associated to &, can be defined also the opposite measured
quantum groupoid is ° = (N°, M, 5, a,syI', RT'R, T, v°) and the commu-
tant measured quantum groupoid &¢ = (N°, M, 3,&,T¢, T¢, R°TR®, 1°);
we have (6°)° = (6°)¢ = &, B° = (&)°, B¢ = (6)°, and & = & is
canonically isomorphic to & ([16], 3.12).
The pseudo-multiplicative unitary of & (resp. 9, &°) will be denoted W
(resp. WO, W¢). The left-invariant weight on & (resp. &°, &) will be de-
noted ® (resp. ®°, d°).
Let 49, be a N — N-bimodule, i.e. an Hilbert space $ equipped with a nor-
mal faithful non degenerate representation a of N on $) and a normal faith-
ful non degenerate anti-representation b on ), such that b(N) C a(N)'. A
corepresentation of & on ) is a unitary V from §,®3 He onto 9,®, Hs,
Vo 12

satisfying, for all n € N:
V(b(n) a®p 1) = (14®a B(n))V
Ne N

V(1,0 a(z)) = (a(n) y®q 1)V
No N

such that, for any £ € D(.$,v) and 1 € D($),v°), the operator (we,, *
id)(V') belongs to M (then, it is possible to define (id x 8)(V'), for any 6
in M®? which is the linear set generated by the wg, with £ € D(oH,v) N
D(Hg,v°)), and such that the application § — (id*6)(V') from M2 into
L($) is multiplicative ([16] 5.1, 5.5).

2.3. Action of a measured quantum groupoid ([16])

An action ([16], 6.1) of ® on a von Neumann algebra A is a couple (b, a),
where:
(i) b is an injective x-antihomomorphism from N into A;
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(ii) a is an injective *x-homomorphism from A into A p*, M;
N
(iii) b and a are such that, for all n in NV:
a(b(n)) = 1580 5(r)

(which allow us to define ab;l;a id from A bjifa M into A b;kva M pgxq M) and
N
such that:

(Cl b*a zd)a = (Zd b*a F)Cl .
N N
The set of invariants is defined as the sub von Neumann algebra:

A“:{:UEAﬂb(N)’,a(ac):xb%a 1}.

If the von Neumann algebra acts on a Hilbert space ), and if there exists
a representation a of N on §) such that b(N) C A C a(N)', a corepresenta-
tion V' of & on the bimodule ,$); will be called an implementation of a if we
have a(x) = V(xa]%@b 1)V* for all z € A ([16], 6.6); we shall look at the fol-

lowing more precise situation: let ¢ is a normal semi-finite faithful weight
on A, and V an implementation of a on (Hy), (wWith a(n) = Jypb(n*)Jy),
such that:

V= (Jy a®s Jg)V(Jy p@a J3) -

Such an implementation had been constructed ([16] 8.8) in the particular
case when the weight ¢ is called d-invariant, which means that, for all
n € D(oHg,v) ND(6/2), such that §'/2n belongs to D((Hg)g,v°), and
for all z € 91y, we have:

¥((id pro wy)a(z*z)) = [|Ay(z) o2p 6"/
Z/O
and bears the density property, which means that the subset
D((Hy)p,v°) N D(oHy,v)

is dense in H,,. This standard implementation is then given by the formula
([16], 8.4):

V¢(A¢(:L‘) a@:ﬁ 51/2,,7) — Z Aw((ld b;t[a wn,ei)a(x)) b(%a €;

for all 2 € My, n € D(oH,v) N D(Y?) such that §/%n belongs to
D(Hg,v°), (€i)icr any orthonormal («, v)-basis of H. Moreover ([16], 8.9),
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MEASURED QUANTUM GROUPOID ACTION

it is possible to define one parameter groups of unitaries Af}f a®p 5‘“A§t
No

and Afz b%a (5‘“A§t, with natural values on elementary tensors, and we
have:

Vw(AZf a;?f 5—z‘tA§'t) (A¢ b@ﬂ 5 itAéit)Vw
and, therefore, for any = in A, ¢t in R, we have:

a(o} () = (AF 490 6~ AF)al) (A" 90 6 AL)

2.4. Crossed-product ([16])

The crossed-product of A by & via the action a is the von Neumann
algebra generated by a(A) and 1,®, M’ ([16], 9.1) and is denoted A x4 &;
N

then there exists ([16], 9.3) an action (1 ,®q @&, a) of ()¢ on A x4 &.
N

The biduality theorem ([16], 11.6) says that the bicrossed-product (A x4
®) x5 B¢ is canonically isomorphic to A p*o L(H); more precisely, this
N

isomorphism is given by:

O(a p*a id)(A pxa LIH)) = (A xq B) x5 B°
N N

where O is the spatial isomorphism between L($) b®a H 5®a H) and
L($p®a H a®5 H) implemented by 1g b®a o, W°,; the blduahty theo-

rem says also that this isomorphism sends the action (1 ,®4 ﬂ, a) of & on
N

Apxq L(H), defined, for any X € A pxo L(H), by:
N N
Q(X) = (1 b&Qa UVOWUVO)(id b*a CN)(CL b*a Zd)(X)(l »&Qa JVOWJVO)*
N N N N

on the bidual action (of ) on (A x4 &) x5 &°.

There exists a normal faithful semi-finite operator-valued weight T; from
A Xq & onto a(A); therefore, starting with a normal semi-finite weight
Y on A, we can construct a dual weight ¢ on A x4 & by the formula
Y = oatoTs ([16] 13.2). These dual weights are exactly the §~1-
invariant Welghts on A X, & bearing the density property ([16] 13.3).
Moreover ([16] 13.3), the linear set generated by all the elements (1 b%a
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a)a(z), for all x € Ny, a € Nz NNy, s a core for Aq;, and it is possible

to identify the GNS representation of A x4 & associated to the weight
with the natural representation on Hy ,®, He by writing:
v

Ay (@) 130 Age(a) = Agl(L b%a a)a(z)]

which leads to the identification of H b with Hy ,®q H. Moreover, using

that identification, the linear set generated by the elements of the form
a(y*)(Ay(z) p®a Aac(a)), for z,y in My, and a in Ng, NNz N ‘3‘%6 N ‘ﬁ*TC
12

is a core for Sd;, and we have:
Spa(y") (A (2) 1®a Age(a)) = a(z") (Ay(y) ®a Age(a”)) .-
Then, the unitary Uy = J;(Jy ajt\é?ag Jz) from Hy a%g Hg onto Hy, b(%)a Hy
satisfies:
U (Jy v%a J5) = (Jy b J) (UG

and we have ([16] 13.4):
(i) for all y € A:

a(y) = Uy(y a®p 1)(Uy)",
NO
(ii) for all b € M:
(1 b%a J{DbJCI>)U12 = U;Z(l a®ﬂ Jq;chp) R
NO

(iii) for all n € N:
Uy(b(n) a®p 1) = (1@ B(n))U};
Ne N

Up(1a®p a(n)) = (a(n) p@a 1)Uy, -
Ne N

Therefore, we see that this unitary Uf; "implements" a, but we do not know
whether it is a corepresentation. If it is, we shall say that it is a standard
implementation of a. R

We can define the bidual weight 1) on (A x4 &) Xz ®°, and the weight

1; 00O o0 (apxqid) on Ayxq L(H), that we shall denote v, for simplification
N N

(or ¢ if there is no ambiguity about the action). Then we get ([16], 13.6)

dy
dyo

that the spatial derivative is equal to the modulus operator Ad;. There
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exists a normal semi-finite faithful operator-valued weight T, from A p*,
- N

L(H) onto A x4 & such that 1, = 1 o Ty.
Using twice ([35] 4.22(ii)), we obtain, for any z € A and ¢t € R, that

af’“(a(m)) = a(of’ (z)); and if 11 and 1 are two normal semi-finite faithful
weights on A, we get:

(D1g : Do) = (D1 : Do)y = a((Dapy = Dipo)y) -

2.5. Examples of measured quantum groupoids

Examples of measured quantum groupoids are the following:

(i) Locally compact quantum groups, as defined and studied by J. Kuster-
mans and S. Vaes ([24], [25], [36]); these are, trivially, the measured quan-
tum groupoids with the basis N = C.

(ii) Measured groupoids, equipped with a left Haar system and a quasi-
invariant measure on the set of units, as studied mostly by T. Yamanouchi
([47], [48], [49], [51]); it was proved in [17] that these measured quantum
groupoids are exactly those whose underlying von Neumann algebra is
abelian.

(iii) The finite dimensional case had been studied by D. Nikshych and
L. Vainermann ([29], [30], [31]), J.-M. Vallin ([41], [42]) and M.-C. David
([10]); in that case, non trivial examples are given, for instance Temperley-
Lieb algebras ([31], [10]), which had appeared in subfactor theory ([23]).
(iv) Continuous fields of (C*-version of) locally compact quantum groups,
as studied by E. Blanchard in ([4], [5]); it was proved in [17] that these
measured quantum groupoids are exactly those whose basis is central in
the underlying von Neumann algebras of both the measured quantum
groupoid and its dual.

(v) In [11], K. De Commer proved that, in the case of a monoidal equiv-
alence between two locally compact quantum groups (which means that
these two locally compact quantum group have commuting ergodic and
integrable actions on the same von Neumann algebra), it is possible to
construct a measurable quantum groupoid of basis C? which contains all
the data. Moreover, this construction was useful to prove new results on
locally compact quantum groups, namely on the deformation of a locally
compact quantum group by a unitary 2-cocycle; he proved that these mea-
sured quantum groupoids are exactly those whose basis C? is central in
the underlying von Neumann algebra of the measured quantum groupoid,
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but not in the underlying von Neumann algebra of the dual measured
quantum groupoid.

(vi) Starting from a depth 2 inclusion My C M; of von Neumann algebras,
equipped with an operator-valued weight 17 from M; onto My, satisfying
appropriate conditions, such that there exists a normal semi-finite faith-
ful weight x on the first relative commutant M) N M, invariant under
the modular automorphism group o7, it has been proved ([22], [14]) that
it is possible to put on the second relative commutant M} N My (where
My C My C My C My C --- is Jones’ tower associated to the inclu-
sion My C Mj) a canonical structure of a measured quantum groupoid;
moreover, its dual is given then by the same construction associated to
the inclusion M7 C M, and this dual measured quantum groupoid acts
canonically on the von Neumann algebra M, in such a way that My is
equal to the subalgebra of invariants, and the inclusion M; C My is iso-
morphic to the inclusion of M; into its crossed-product. This gives a "geo-
metrical" construction of measured quantum groupoids; in another article
in preparation ([18]), in which is used the biduality theorem for weights
proved in 7.3, had been proved that any measured quantum groupoid has
an outer action on some von Neumann algebra, and can be, therefore,
obtained by this "geometrical construction". The same result for locally
compact quantum groups relies upon [37] and the corresponding result for
measured quantum groupoids had been pointed out in [16].

(vii) In [38] and [2] was given a specific procedure for constructing locally
compact quantum groups, starting from a locally compact group G, whose
almost all elements belong to the product G1G2 (where G; and Gy are
closed subgroups of G whose intersection is reduced to the unit element
of G); such (G1,G29) is called a "matched pair" of locally compact groups
(more precisely, in [38], the set G1G2 is required to be open, and it is
not the case in [2]).Then, G; acts naturally on L*°(G2) (and vice versa),
and the two crossed-products obtained bear the structure of two locally
compact quantum groups in duality. In [43], J.-M. Vallin generalizes this
constructions up to groupoids, and, then, obtains examples of measured
quantum groupoids; more specific examples are then given by the action
of a matched pair of groups on a locally compact space, and also more
exotic examples.
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3. The standard implementation of an action: the case of a
dual action

In this chapter, following [36], we prove that the unitary Uy, introduced in
2.4 is a standard implementation of a, for all normal semi-finite faithful
weight ¢ on A, whenever a is a dual action (3.4). For this purpose, we
prove first that, if for some weight 1, the unitary Uy is a standard
implementation, then, for any weight 1, Ui is a standard implementation
(3.1). Second (3.2), we prove, for a d-invariant weight ¢, that Uy is equal
to the implementation Vi, constructed in ([16] 8.8) and recalled in 2.3.
Thanks to ([16] 13.3), recalled in 2.4, we then get the result.

3.1. Proposition

Let & be a measured quantum groupoid, and (b,a) an action of & on a

von Neumann algebra A; let 11 and o be two normal faithful semi-finite

weights on A and U;Zl and U;Zz the two unitaries constructed in 2.4; let

u be the unitary from Hy, onto Hy, intertwining the representations my,

and Ty, ; then:

(i) The unitary u p®q 1 intertwines the representations of A xq & on
N

Hy, y®a He and on Hy, @4 He; moreover, we have:
14 14
(’LL pRa 1)U,3)1 = U"?’Z (u a1 ®g3 1)
N No

where ai(n) = Jy, myp, (b(n*))Jy,, for alln € N.

(i) If U??u is a corepresentation of & on Hy, , then UgQ 18 a corepresenta-
tion of & on Hy,.

(iii) If Uy, is a standard implementation of a, then Uy, is a standard
implementation of a.

Proof. Let us write Jo 1 the relative modular conjugation, which is an
antilinear surjective isometry from Hy, onto Hy,. Then we have u =
Jo1Jy, = JyyJo,1, by ([33] 3.16). Moreover, let us define, for z € A, and

t € R, o7 (x) = [Dya : Dynliol (z); then, by ([33], 3.15), for 2 € Ny,
y € D(az’ilm), xy* belongs to Ny, and:

Ay (2y") = Tam, (07 15(9)) Ty, Ay ().
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Therefore, if a € Ng,., (11,(]8\@[0[ a)a(zy*) belongs to Ny, and, we have, where
Vi (i = (1,2)) denotes the unitary from Hy, b@Sa Hg onto H,; defined in
2.4:
Ap[(1e@a a)a(zy™)] = ValAy, (2y") 1@ Ag.(a))
= Vadoumy, (o 2/2( D)1 Ay (2) 480 Age(a))
which is equal to:

Vo (a1, (075 (4)) T ba DViA [ b @ a)a(z)]

and, as the linear set generated by the elements of the form (1,®4 a)a(x)
N

is a core for A, we get, for any z € N, that za(y*) belongs to N,
and that:

Ay, (za(y") = Val(Jaamy, (075 (4) Ty b0 DVIA, (2) -

Let us denote by Jil the relative modular conjugation constructed from

the weights 1), and 1, and 5t2 1 the one-parameter group of isometries
of A x4 & constructed from these two weights by the formula, for any
X eAx, &

521 (X) = [Dify = Diilio} (X).
Using ([33], 3.15) applied to these two weights, we get that a(y) belongs
to D(G 1/2) and that:

T, (5735 (@) g, = Va(Jaamus (075 () Jun 18 DVE
We easily get that 5. (a(y)) = a(o;"' (y)) and, therefore, we have:
75 @(0% 5 () = Jon Vol Jaamy, (025 (4) Ty, ¥Ba VI, -
As we have, using 2.4:
(Jy, b%a JIVidy, =Ug, Vi
we get:

™5, (0 2520)) = T Vel 01 @5 J) (0, (023 (4)) 0y @ DU, Vi
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and, therefore, using 2.4:

T Vel 0 J5)(r0s (0230 w @5 1) = 7, (alo™ 1 ) Ve (U, )

— Via(o®!,u)(US,)"
which, using 2.4, is equal to:

VlUiZl (7, (U%g/z(y)) alN®g 1).

By density, we get:

Uj, = VitJan Va(J2a a1N®g J3)

and, therefore, using 2.4 again:

1H¢1 b%a 1y, = Vl*ngl*‘/?(JQ’l a19s J@)(J@[,l b%a J&;)Vl*Jd;lVl
Neo

= ViJa: Va(u ¥Ca DV T Vi
which implies that:

1, v®a Ly = J2,1 Va(u@a DV
N N 1

¥y
and:

Va(us@a DVI = a1 Ty,

But J;l ']1,51 = Jd;Q Jil is the unitary from H W onto H e which intertwines
T, and ;s from which we get the first result.
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This formula gives also, where aa(n) = Jy, Ty, (b(n*))Jy,, for all n € N:
U’l?& = ‘/2*J¢~2‘/2(J¢2 a2]\f®ﬂ ‘]6)
= (u b%a 1)V1*J1Z;1 J571*Jqﬁ2‘/2(<]¢2 as®3 Jg)
Neo
= (us®a DV a1 Va(Jyy 0@ J5)
N No
u b%a DU, (Jy, b%a TSV, J21 Va(Jyy a®p J3)
NO
(S b®a Jg)VI*Vl(U* p®@a D)VoVa(Jyp, 0,®3 J@)
N N No
U R0 VUG, (T, 600 J5) (0" 400 1) (Jy, 0, J5)
N N N Neo
(U* a; ®p 1)
No
from which we finish the proof of (i). Using the intertwining properties of
u, (i) and ([16] 5.2), we then get (ii). Using then (ii) and the properties of
Uy, ([16] 13.4) recalled in 2.4, we get (iii). O
3.2. Proposition

Let & be a measured quantum groupoid, and (b,a) an action of & on a
von Neumann algebra A; let v be a d-invariant weight on A, bearing the
density condition, as defined in 2.3; then:

(i) The unitary qu‘} constructed in 2.4 is equal to the implementation Vi,
of a constructed in 2.3.

(ii) The dual weight satisfies AZ = Af; b%a (5Aa)*”, where this last one-

parameter group of unitaries had been defined in 2.3.

P?”OOf. Let 5 € D(chp,V), €,y in ml/) ﬁmqjﬂ a € mTC ﬁm}c mm@c ﬂmf*ﬁc’

such that Az (a”) belongs to the set &: introduced in ([16]4.4). We have,
using 2.4:

(2" S 302" ) Ao (1) 12 Agel0)) = (4E%)"aly") (D) 180 A ()
and, as Az, (a*) belongs to D(oHg,v), thanks to ([16]4.4) it is equal to:

(’Ld b;‘:[a wAgc(a*)’g)a(y*)Aq/}(l’) = Aw((’bd b;‘:[a wAgc(a*)’g)a(y*):L‘) .
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Let us suppose now that z is analytic with respect to 1; as 6%/ QA& (a*)
belongs to D((Ha)g,v?), thanks again to ([16]4.4), we get, using ([16]
8.4.(iii)), that it is equal to:

Juo¥; o (@) Ty Ay [(id o W, (a).£)a(y")
= J\I’Ui‘/z(x*)*]d)(id W12, (a),6) (Vi) Ay (y7)
= (") (T p(@") Ty 180 DVa(Auly") @5 02 Ag (")
from which we get that:
Spa(z")(Ay(y) v®a Ag.(a)) =
(Jyo®, (@) Ty b®a 1)V (Ay (y7) aDp 0" Az (a%))

and, taking a bounded net x; strongly converging to 1, such that aﬂ. /2(3:;5‘)
is also converging to 1, and using the fact that Sd; is closed, we get:

S5 (A () 180 Age(a)) = Vw[JwAL/QAw(y) a®g J5(0A5) "2 A5, (a)]

from which we deduce that:

Vi (Ty %0 T5)(Ay? 1o 5a; 7

)CSI;

where All/ %\ @4 (5A5)_1/ 2 is the infinitesimal generator of the one-parame-
N

ter group of unitaries Af/fb@)a o _itAgt introduced in 2.3. But, on the other
N

hand, for all ¢ € R, we have, using 2.4:
(A 180 35S 0l (A00) 150 A (0)

= (A} b 5 AZa(y") (Mg (2) bPa Age(a”))

which, using 2.3, is equal to:
Yo% A P S~ 5_itA*itA,\ —
a(oy (7)) (Ay (o) (2)) b®a Sg. 5 Age(a))

a0} (") (Ao (0} (2)) 10 S50 AT A (a))
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which is equal, using again 2.4, to:
Spa(0f (1) (A (07 (1)) b 0 AZ NG (a))

Taking again a family x; converging to 1, and using the closedness of S,
we get that:

(A7 4@a 6 AZ)S5(Au(y) 1@a Age(a) =
S5(Au(0f (1)) b@a 0" AT NG (a))

S@(Afﬁ b%oz 5_itA§t)<A¢(y) bBa Az.(a))

from which, using 2.4, we deduce that
it —it A=\ QL O AGt —it A —it
(A% b%a 0 A&; )8y = Sg(Ay b%& 0 A&; )
and, therefore, we have:

Vi (Jy b%a J@)(Aif b(]%a 5A5_1/2

) =155
and, by polar decomposition, we have:
J& = V¢(Jw b(]%a Jg)

which, by definition of U, leads to (i).

We also get:

/2 A1/2 A —1/2
A@ _Aw b%aéAa

which leads to (ii). O

3.3. Corollary

Let & be a measured quantum groupoid, and (b, a) an action of & on a von
Neumann algebra A; let us suppose that there exists on A a d-invariant
weight on A, bearing the density condition, as defined in 2.3; then, for any
normal semi-finite faithful weight 1 on A, the unitary U;}) constructed in
2.4 is a standard implementation of a as defined in 2.4.

Proof. 1f ¢ is a d-invariant weight on A, bearing the density condition,
as defined in 2.3, we have the result using 3.2; for another weight, using
3.1(iii), we get the result. O
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3.4. Corollary

Let & be a measured quantum groupoid, and (b,a) an action of & on a
von Neumann algebra A; let us suppose that A is isomorphic to a crossed-
product B Xy ®° where b is an action of ®° on a von Neumann algebra B,
and that this isomorphism sends a on b. Then, for any normal semi- ﬁmte
faithful weight ¢ on A, the unitary Uy, constructed in 2.4 is a standard
implementation of a as defined in 2.4.

Proof. We have recalled in 2.4 that any dual weight on B Xy ®° is a o-
invariant weight on B X, ®°, bearing the density condition; therefore, using
3.3, we get the result. O

3.5. Corollary

Let & be a measured quantum groupoid, and (b,a) an action of & on a
von Neumann algebra A; let us consider the action (1 ,® 5,a) of & on
N

A ko L(H), introduced in 2.4; then, for any normal semi-finite faithful
N

weight ¢ on A yxq L(H), the unitary Ui is a standard implementation of
N

the action a.

Proof. This is just a corollary of 3.4 and of the biduality theorem, recalled
in 2.4. (I

3.6. Corollary

Let & be a measured quantum groupoid, and (b,a) an action of & on a
von Neumann algebra A; let ¢ be a d-invariant weight on A, bearing the
density condition, as defined in 2.3; then, for any x € M', t € R, we have:

0?(1 bR T) = 1p®q Ang(_Dit .
N N

Proof. Using 3.2(ii), we get that:

i),
o? —it it
oy (1 b®a x)=1 b%a (5A&;) $(5A$)

But, using ([16]3.11(ii)), we know that (§A5)" = (6Ag)™; as 6 is affili-
ated to M , we get the result. (Il
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3.7. Corollary

Let & be a measured quantum groupoid, and (b,a) an action of & on a
von Neumann algebra A; let ¢ be a normal semi-finite faithful weight on
A; then, for any x in M', t € R, we have:

0’;1}(1 bR 1 a®g 3]') =1pRal a®g AZHp AR
N Ne N Ne 4 o
Proof. Let’s apply 3.6 to the dual action (1,®4 &, a) of & on A x4 &, and
N

the dual weight v, and we get the result. (I

3.8. Corollary

Let & be a measured quantum groupoid, and (b, a) an action of & on a von

Neumann algebra A; let ¢ be a normal semi-finite faithful weight on A;

let (1p®q (,a) be the action of & on Ayxo L(H) obtained by transporting
N N

on Aypxq L(H) the bidual action and 1, be the normal semi-finite faithful
N
weight on A pxq L(H) obtained by transporting the bidual weight. Then,
N

for any x in M', t € R, we have:

U;ba(l b%oa r)=1 b(]%a AgtazA% .

Proof. The canonical isomorphism between Ayxq £(H) and (Ax,®) x3 &
N
sends, for all z € M', 1,®q 2 on 1,®414®gx (cf. [16] 11.2). So, the result
N N Neo

is a straightforward consequence of 3.7. (|

4. An auxilliary weight ).

If b is a normal faithful non degenerate anti-homomorphism from N into

a von Neumann algebra A, such that there exists a normal faithful semi-

finite operator-valued weight T from A on b(IN), we associate to the weight

1 =1°0b"toT a weight 1) on Ay, L(H) (4.4); we calculate its modular
- N

automorphism group (4.8), and the GNS representation of A %, L(H)
N
given by this weight (4.10).
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4.1. Definitions

Let b be an injective *-antihomorphism from a von Neumann algebra N
into a von Neumann algebra A; we shall then say that (N, b, A) (or simply
A) is a faithful right von Neumann N-module. If there exists a normal
semi-finite faithful operator-valued weight ¥ from A onto b(/N), we shall
say that this faithful right N-module is weighted.

Let then v be a normal faithful semi-finite weight on A; if, for all ¢ in
R, n in N, we have afj(b(n)) = b(c¥;(n)), then there exists a normal
semi-finite faithful operator-valued weight ¥ from A onto b(N) such that
Y = 1°0b ! o F; such a weight 1) on A will be said lifted from v° by ¥
(or, simply, a lifted weight).

If ¢ is a normal semi-finite faithful weight on A, lifted from v° by ¥, then
the weight 1 bears the density property introduced in ([16], 8.1), recalled
in 2.3. Namely, using ([16], 2.2.1), one gets that D(qHy,v) N D((Hy)p, v°)
contains all the vectors of the form Ay(z), where z € NeNNZNN, NI, is
analytical with respect to 1, and such that, for any z € C, o,(x) belongs
to Ng NINT NN, NIT; therefore D (o Hy, v) N D((Hy)p, v°) is dense in Hy,
which is the density property.

If (b,a) is an action of a measured quantum goupoid

&= (N,M,a,3,0, T, T ,v)

on a von Neumann algebra A, we shall say that this action is weighted if
the faithful right N-module (N, b, A) is weighted.

4.2. Lemma

Let (N, b, A) be a faithful weighted right von Neumann N -module, and let T

be a normal semi-finite faithful operator-valued weight from A onto b(N);

let o be a nomal faithful representation of N on a Hilbert space H and

v a normal semi-finite faithful weight on N; then, it is possible to define

a canonical normal semi-finite faithful operator-valued weight (T pkq id)
N

from A yxq L(H) onto 1@, a(N)' (which is equal to b(N) pxq L(H), by
N N N

(116], 2.4)), such that, if 1 denotes the weight on A lifted from v° by ¥, we
get, for any X € (Aprq L(H))", that (Tpxaid)(X) = 1,@q (¥ p*a id)(X),
N N N v

where X pxq id and VY pxq id are slice maps introduced in [14] and recalled

in (16], 2.5).
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Proof. Let us represent A on a Hilbert space H; using Haagerup’s theorem

([35], 4.24), there exists a canonical normal semi-finite faithful operator

valued weight =1 from b(N)" onto A’; considering the representation of

b(N) on H ,®q H, and using again Haagerup’s theorem, we obtain an-
v

other normal semi-finite faithful operator-valued weight (~1)~! from the
commutant of A" on H ,®, H (which is A px, L(H)) onto the commutant
v N

of b(N)" on ‘H @ H (which is b(N) p*o L(H)). As both T and (T~1)~! are
v N

obtained by taking the commutants, within two different representations,

of the same operator-valued weight !, a closer look at this construction

leads ([19], 10.2) to the fact that (T71)~! = (T p*, id). The link between
N

(T pxq id) and (¢ p*4 id) is recalled in ([16] 2.5). O
N 14

4.3. Proposition

Let (N,b, A) be a von Neumann faithful right N-module, and let o be a
normal faithful non degenerate representation of N on a Hilbert space H
and v a normal semi-finite faithful weight on N ; then:

(i) Let’s represent A on a Hilbert space IC; the linear set generated by all

operators on K 3@, H, of the form pg’aa(pga)*, with a in A and &1, & in
D(,H,v), is a x-algebra, which is weakly dense in A pxq L(H).
N

(ii) Let 1) be a normal faithful semi-finite weight on A, and let’s represent
A on Hy; then, for any a in Ny and § in D(H,v), Ay(a) s®q & belongs

to D(Hy b@SaH, Y°) (where we deal with the representation x +— wb%a 1 of
A° = JyAJy), and we have 0%° (Au}((l)b@;aﬁ, qu(a)b%ag) = pg’aaa*(pg’a)*.
(711) For all n € N, let us define a(n) = Jyb(n*)Jy; let
&= (N,M,a,3,T,T, T v)
be a measured quantum groupoid; then, the representation of A pxq L(H)
on H 3®, Hy, b(%a H defined by x — 1 g®, x is standard, when ge equip
v N

the Hilbert space with the antilinear involutive isometry J defined, for any
&, nin D(oH,v), ¢ in Hy, by:

J(J?{;U B8R C b(%a 5) = J@ﬁ 8a J’L/JC b(%a n
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and with the closed cone P generated by all elements of the form J5& s®q
('p®a&, when & isin D(oH,v), and (' in the cone Py given by the Tomz’zlfja—
Takyesak:z' theory associated to the weight 1.

(iv) Let ¢ be a normal semi-finite faithful weight on A bj:/a L(H); then
Ay(a )b®a§ belongs to D((dwo)l/Q) if and only if p?aaa*(pg’a)* belongs to
fm+, cmd then:

Pl aa (o)) = | (55 2 (Bula) 2 €I

Moreover, if Ay(a )b®a£ belongs to D(( )1/2), the vector

(o) 2 (0(a) 120 )

belongs to D(H,, b®a H, ), and the canonical isomorphism between H,
and H 5®aH¢b®aH sends R?((£5)"/2(Ay(0)p2a€))* (Co@an) on J3€s@a
JypaJyC b(%)oc n.

Proof. Using 2.1, we get, for aj, as in A, and &, &, &3, &4 in D(JH,v),
that:

P ar(pe®) pe an(p®) = pl % arb((Es. E2)aw)az (L)

from which we see that this linear set is indeed an algebra; moreover, it
is clear that it is invariant under taking the adjoint. Let’s take ¢ € A’; we
have:

PLa(pl) (cp®al) = pltac(pl”)
N
— ety

= (%0 Dpl%a(pd®)"

from which we get that pé a(pg “)* belongs to A 5*0 L(H). Let now
X € Agxq L(H), and let (e;)ier be a (o, v)- orthogonal basis of H; we get
N
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that (id g*q we, ;) (X) belongs to A, and we have, when we take the weak

limits over the finite subsets .J, J' of I:

X = li’rTLJJ/ Z (1 8®a Qa’y(ei, ei))X(l 8Ra ea’y(e’j, Ej))
ied,jeJ’ N N

= limyy Z Pg’a(idﬁ*awem@j)(X)(Pg;a)*
i€JjeJ’ v

which proves (i).
Let a € My, £ € D(oH, v); then, for all x € 9, we have:

waJ¢A¢(a) bR f = CLJwAd, (3?) P f
v 12
bv
= pe “adyAy(z)
Therefore, Ay(a) y®q & belongs to D(Hy, p®@q H,1°), and RY° (Ay(a) p®a
12 v v
) = p?aa. So, we get that 0¥° (Ay(a) p®@a &, Ay (a) p®a &) = pg’aaa*(pg’a)*,
v v
which is (ii).
By [32](3.1), we know that A*, L(H) has a standard representation z —
N
x®y 1 on the Hilbert space (Hyp®a H )@y (Hy 5®q H). Using then (ii) and
[32](0.3.1), we get that this Hilbert space is isomorphic to H 3@, Hys®a H,
v 14

and that this isomorphism sends, for b € My, n € D(/H,v):
a) the vector (Ay(a)p®a&) @y (Ay (D) p®a ) o0 J5n 30 JybJyAy(a)s@aé,

b) the standard representation x — x ®, 1 on the representation = —
1 8Qq T,
N

c) the antilinear involutive isometry which sends
(Ap(a) b®a €) @y (Ay(0) b@a ) to (Ay(b) 6®a 1) @y (Ay(a) p@a €)

on J,
d) the cone generated by all elements of the form (Ay(a) p®a &) @y
v

(Ay(a) p®q &) on P, which gives (iii).
v
Using (ii), we get that:

p(pgaa*(pr)") = (0% (Ay(a) 180 & Ay (a) 180 €))
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and, by definition of the spatial derivative, we know that, if Ay(a) p®a &
N

belongs to D((-42)1/2), we have:

&

(" aa™(p")") = (0% (A () 1@a € Au(a) 120 €)
de vij2 s 2

= 1(22) (A ola) 130

and, if Ay(a) b®a ¢ does not belong to D((<22)1/2), we know that

di°

pp¢aa* (pe)7) = +oo.

So, we have the first part of (iv). Then, the second part of (iv) is given by
32](3.2) and (iii). O

4.4. Proposition

Let & = (N,M,o,3,T,T,T",v) be a measured quantum groupoid; let
(N,b, A) be a faithful weighted right von Neumann N -module, and let
be a normal semi-finite faithful weight on A lifted from v° in the sense of
4.1. Then:

(i) It possible to define a one-parameter group of unitaries on Aij pQq
v

Aéit on Hy y®q H, with natural values on elementary tensors. This one-
14
parameter group of unitaries implements on Apkxq L(H) the one-parameter
N

group of automorphisms a;p b¥a AdA_’t
N

(ii) There exists a normal semz—ﬁmte faithful weight ¥ on A pyxq L(H)
- N

d
such that the spatial derivative Tz%’ is equal to the generator Ay p®q Aél
14
of the one-parameter group of unitaries constructed in (i); the modular au-
tomorphism group U% s equal to the automorphism group aff’ b*a AdAgt
N

constructed in (7).
(iii) For any a in My NN, and § € D(oH,v) N D(A 1/2), such that

% 172 € belongs to D(oH,v), we have:

g aa” (o)) = |18y Ay (a) y2a AF €.
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Proof. If € € D(,H,v), we get, for all t € R and n € N,:

a(n)AZite = :%;P (a(n))€

= AZ"a(of(n))¢
= AFURM(AYA(n)
from which we get that AAth belongs to D(oH,v), and Rayy(Ath -
A(I,ZtRO‘V(f)A,Zf Therefore, we have <A$ltf Aait§>g,u = o2,((&, )3

a,zz)'

Taking now n € Hy, we get:

A% AZ 2 b(AZ"E, AZE)? ) AYn|AYn)

(

(b(a”,((£,€)0.,)) An|Aln)

= (07 (b({&,€)5,,)) Alin| Alln)
(b({&: E)aInln)

= |n bégaSHZ

from which we get the existence of the one-parameter group of unitaries.
It is then easy to finish the proof of (i).

As (AY b®a AZ) (T dy v%a (A" b%a AY) = Tyof (x)Jy pa 1, we
obtain ([35], 3.11) that there exists a normal faithful semi-finite weight 1
on A pxq L(H) such that:
N
dy
oo

Moreover, the modular automorphism group th is then equal to the one-

parameter automorphism group azp b¥a AdAgt, constructed in (i), which
N

finishes the proof of (ii).
So, using now 4.3(iv) applied to 9, we get that pg “aa* (pg’a)* belongs to

Sm$ if and only if Ay(a) b®af belongs to D(A 1/2 b® A_l/ ), and then,

we have:
ba ks bk 1/2 —-1/2
(pg aa*(pg®)) = |18 Au(a) b0 A€

from which we get (iii). O
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4.5. Corollary

Let & = (N,M,o,3,T,T,T",v) be a measured quantum groupoid; let
(N,b, A) be a faithful weighted right von Neumann N-module, 11 (resp.
9) be a normal faithful semi-finite weight on A lifted from v° and
(resp. 1) be the normal semi-finite faithful weight on A b?\[a L(H) con-

structed in 4.4(1i); then:
(i) the cocycle (D : Dibg), belongs to ANB(N)';
(i) we have: (D1 : Do)y = (D)1 : Dipa)y b%a 1.

Proof. As 11 and 1y are lifted weights, (i) is well known ([35], 4.22. (iii)).
Let ($), 7, J,P) be a standard representation of the von Neumann algebra
A; then A° is represented on $) by JAJ; for any normal semi-finite faithful

weight v on A, we have 4£ = All/ 2; moreover, we have then:

o
% it o, oy (A3 it _ A VT iy A3y dUS
_ Ay o gy
=gy g
= (D1 : D)y

and, therefore (Dvy§ : Dyg); = A;jt(Dz/Jl : Dl/}g)tAf;Q. By similar argu-
ments, we have on §) Q. H:

diby . due

(D D)y = (ot Gy
dpy . iy
= dZ?”(DW : Dwé’)t(dzz))”

As (D9 : Dy3); belongs to JAJ b%a 1z and is therefore equal to:
ALH(Dy = Dipa)eAY, ¥@a Li
we obtain, using 4.4(ii), that (D1 : D) is equal to:
(AY, +@a AZ (AL (D1 - Do) Ay, v L) (A b A%)
from which we get the result. (Il
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4.6. Remarks

Let us consider the trivial action (id, 3) of  on N° ([16], 6.2); it is clearly
a weighted action (with the identity of N¢ as operator-valued weight); the
crossed product is then M’, and the dual action is equal to I'® ([16], 9.4);
the operator-valued weight from M’ onto 3(NV) is then TC, and, therefore,
the dual weight v° of the weight v° on N° is the Haar weight ¢ by the
biduality theorem (2.3), we get that the crossed-product M’ X, B s
isomorphic to N° x £L(H) = a(N)’; transporting the bidual weight v° on
M’ x5, ¢ by this isomorphism, we obtain the weight 73 on a(N)’, which
verifies, thanks to 2.4, for all £ € D(oH,v) N D(AZ'?);

— ~1/2

VR0 (€,€)) = | A%
and, for all t € R, z € a(N), 0," (x) = AgtxA%.
On the other hand, for any y € 9. N N5, 2 € Npoc N Ngoc, we have, by

¢)C7
construction of ug:

Vi(y" 2 zy) = @y T (2" 2)y) = Az (1) a®p Awec (2)]|*.

Let now (b, a) be an action of & on a von Neumann algebra A, and ¢ a
normal semi-finite faithful weight on A; by construction of ., we have,
for any x € My:

a(a(@")(16@a y"2"2y)a(@)) = Ay (@) b0 Mg (y) @5 Agoc ()|

and, by applying ([16],13.3) to the weight l/zo, we get, for any X € ‘J’tﬁ
such that A%(X) belongs to D(OCH@7 v):

Pa(a(z")(1 b X" X)a(x)) = Ay (7) 1o A@(X)II2 :

4.7. Lemma

Let & = (N,M,a,3,T,T,T",v) be a measured quantum groupoid; let
(N, b, A) be a faithful weighted right von Neumann right N-module; then:
(i) if & n are in D(,H,v) N D( ;/2), such that Aélpﬁ and A;mn
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1/2

belong to D(oH,v), (A=, )3, belongs to D(c”, 5) and

011/2(< 1/267 > ) <§7 _1/2 >a )

(ii) there exists an (a,v)-orthogonal basis of H such that, for alli € I, e;
belongs to D(,H,v)N D(Aélm) and Aélﬂei belongs to D(oH,v);

(iii) for any such basis, the weight iz defined in 4.6 satisfies, for all x €
a(N)*:

vg(x) = Z(m:l/z ,yA‘W ).

7
Proof. We get, for any n € 9, analytic with respect to v:

ROV(AZ2E)A, (n) = a(n) A%
= A a(0”, 5(n))e
= AR €AY AL ()

and, using ([9], 1.5):

Au((n, 821260, = JAL2A (A2, m)s, )
= LA R (A5
= LR (€A™
= J,,A,,((g, Aj;;l/277>a,u)
from which we get (i).

Applying ([15]2.10) to the inclusion a(N) C M and the operator-valued

weight T, we get that it is possible to construct an orthogonal (a,v)-
basis (e;);cr such that e; = Jgf\g(mz% with z; € 95 N ‘3‘% NI N W*T;

so, e; belongs to D(Aélm), and Aélmei = JzAg(z}) which belongs to
D(oH,v); which is (ii).
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Using (ii) and (i), we have:

a,v -1/2 (A-1/2 \ v ek A—1/2 12
(07 (&, A Feil A Tei) = ROV (€) A ey
= 1A ((er, AZ2€)3,) I

= v((R(A2€)"07 (e, e0) ROV(A5 1))

and we get, using (i) and 4.6:

D0 (685 Pela ) = v(ng e A5 e)0,)

7

= Azt
= V3(6°"(¢,€))

from which we get that >, w A1z, IS a normal semi-finite weight on

o}
a(N)'; and, by unicity of the spatial derivative, we get this weight is equal
to vg. O

4.8. Theorem

Let & = (N,M,o,3,T,T,T",v) be a measured quantum groupoid; let
(€i)ier be an (o, v)-orthogonal basis of H such that, for alli € I, e; belongs
to D(oH,v) ﬂD(Aélp) and A:;/Qei belongs to D(oH,v); let (N,b, A) be
a faithful weighted right von Neumann right N-module, and let 1 be a

normal semi-finite faithful weight on A lifted from v°; then, we have, with
the notations of 4.4, 4.2 and 4.6:

y = zﬁ:@b bta WA&—;lﬁei = VE © (77/) bta Zd) .
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Proof. Let X € (A pxq L(H))™; we have:
N

Zwb*a 1/2 (X) = ZVOb b*a 1/26i((zb;kvaid)(X)

<I>

= (V ¢} b bﬂ;a I/ﬂ)(‘z b]";oz Zd) (X)
= v§(wob ! pra id)(T prq id)(X)

N
= TEO (w b’]‘;a Zd)(X)

which is the second equality, and proves therefore that >, 1 pxq w A2,

v 2 g

defines a normal semi-finite faithful weight on A%, L(H ), which does not
N

depend on the choice of the («, v)-orthogonal basis (e;);er. Let us denote
1o that weight.
We get:

o (pg aa® pf Z¢ :1/2%§>g,y)*aa*b(<A§/2€i’§>gc,v))'

Applying 4.7(i), if £ belongs to D(oH,v) N D( _1/ ), and is such that
1/ ¢ belongs to D(,H,v), we get that b(( _1/2 ei,§)a,,)") belongs to

D( ) and that:

9_i/2

o (A2, €08,)7) = b(ol)5 (6, A1 7€) a)”)
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So, with such an hypothesis on &, and if a belongs to 9, N ‘ﬂ;z, we get
that:

to(pg aa* (p)")
= D ub(ler, 857602 ) Ty (@)
= 2 Ib(AG e e )AL Ay (@)
= 2 0(AG 6 e (en, AF1702,) A Ay (@) A Ay (@)
= (A6, A 262 A Ay (@) A2 Ay (a))

g ;ﬁ o,V P
= Ay A (a) 0 A€

Using 4.4(iii), we get that y(pg’aaa*(pg’a)*) = ¢0(p2’aaa*(pg’a)*), for all a
in Ny, NI, and § € D(oH,v)ND( :}Fl/?)’ and is such that Agﬂf belongs
to D(oH,v). By polarisation, we get y(pg’aab(pg’a)*) = ¢0(p2’o‘ab(p%a)*),
for all a, b in 9y NN, and &, 7 in D(oH,v) ND(AZ'?), such that A%

and Aél/ 277 belong to D(,H, v). The linear set generated by such elements

is an involutive algebra, whose weak closure contains, using ([16] 2.2.1) and

the semi-finiteness of 1, all operators of the form pg’lac(pg;a)*, for any &1,

& in D(oH,v) and c in A; therefore, using 4.3, we get that ¢ and v are

equal on a dense involutive algebra.

We easily get that g o atg = g o (o}f’ b;kva AdAgt) is equal to > ;¢ p*q
v

W,y~1/24-it, 3 the family Aéitei is another (o, v)-orthogonal basis of H,
Lo o ‘
which bears the same properties as (e;);cr. As, using (i), we know that

the definition of 1)y does not depend on the choice of the orthogonal (c, v/)-

basis, we get that vy is invariant under Utg, and, therefore ¢ = 1)y, which
finishes the proof. O

4.9. Example

Looking again at the particular example given in 4.6, we get, using 4.8,
that 1% = V5.
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4.10. Theorem

Let & = (N,M,a,3,T,T,T",v) be a measured quantum groupoid; let
(e:)icr be an (a,v)-orthogonal basis of H such that, for alli € I, e; belongs
to D(oH,v)ND( ;m) and Aél/zei belongs to D(oH,v); let (N,b, A) be
a faithful weighted right von Neumann right N-module, and let T be a
normal semi-finite faithful operator-valued weight from A onto b(N); let
us write 1 = v° o b~ o T and 1 the normal semi-finite faithful weight on

Apxo L(H) constructed in 4.4; forn € N, let us define a(n) = Jypb(n*)Jy.
N
Let & be in D(oH,v) ND( 51/2)7 such that A;ﬂﬁ belongs to D(oH,v);
let , & be in D(oH,v), and & € D(Hg,v°); let z be in My, ¢ be in Hy,
X be in Apxq L(H). Then:
N
(i) The operator ,0%0‘2(,02’0‘)* belongs to Ny, and we have:
« O\ % —1/2
Ap(pn®2(p)") = J505 %€ 5®a Ay(2) 10 1.

Moreover, the linear set generated by the operators p%o‘z(pz’o‘)*, where z
is in My, n is in D(oH,v), and £ is in D(oH,v) ND( gﬂ), such that
Aél/zf belongs to D(oH,v), is a core for Ay.
(i) We have: Jy (&2 ﬁ(?a ¢ b@a §1) = Jz& ﬁ‘?a Jy¢ b®a Jz62.
(iii) We have: myp(X) =1 @, X.

N

(iv) It is possible to define a one parameter group of unitaries Agt 38Ra
14

AZ(Q%A%“ on Hg®qHyp®qH with natural values on elementary tensors,
v v v

1/2 1/2 —-1/2

and A}/Q is equal to its generator Aé B®a Ay~ v®a 3
= v 14
Proof. We have

(P52 2(p2 ) ) b2 (pg ™)™ = p2 =" b((n,m)5,,) 2(pg )",
which belongs to My, by 4.4(iii).
Let a in 91, N ’)’t;z; let us take n; satisfying the same hypothesis as £&. We
have, using 4.3(iv) applied to the weight 1), and 4.4(ii):

Jzm ﬁ%% JypadyC bBa 1 = RQ(ALmAw(a) v&a Agmm)*(C bDa &1)
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and, therefore:
(P20 ™)) p@a JpaTuC pBa €1) =
(W 20" ("M (@) 180 A" m)IC 180 &)
which, using 4.7(i), and the definition of 4, is equal to:
(P DA, €28 Ap(@)|C B 1) =
(B((AG 11, )58, Ap(@) 18 11 180 €1) =
(2b(0” iyo((m, A1 2)2,)) 8, M (@) 180 1IC 10 1) =
(0200, 851%€)8,)00 (@) 10 11 180 1)
Let us suppose that z belongs to D(UZ%); we get that:
A0, A28 )M p(a) = Aol (2)b((m, A2 ) A ()
= JuAp (@ (A€ )5 )o—ija(27)
= Jpab((A2€, )8, T Ay (2)
= Jypa*Jya(in, AZ26)0 )A(2)
= Jya* Jya((JgAS 7€, Jom)s.e) Ay (2)
which remains true for all z € 91,; therefore, we then get that:
(Ag(Pg’az(Pg’a)*)’ng 5@3@ JypadyC b@a &) =
(Joa* Jya((T5A5"%E Tym) s.m)hu(2) 1 nl¢ 10 1) =
(a((J5A5"%€ Tgm)sue) Ao (2) 180 Ml TsadsC 40 &1) =
(J5A-" % 590 Ay(2) 20 1l Tgm s@a JyadsC 4a &1)

from which, by density, we get the first result of (i).

Using 4.4(ii), we get that o7 (ph2(p¢")") = i ot (2)(pl )" so,
D D
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the linear set generated by the operators p%o‘z(pg’a)*, where 2z belongs to

My N, and & (resp. 1) is in D(oH,v) N D(Aélm), such that Aélﬂf

(resp. Agﬂn) belongs to D(oH,v) is a x-subalgebra of 97, N ‘ﬁ*y, dense

in A pkq L(H) by 4.3, and globally invariant under 0’?. It is possible to
N

put on the image of this algebra under A, a structure of left-Hilbert
algebra, which, in turn, leads to a faithful normal semi-finite weight ¢y on

A p*q L(H), equal to 9 on this subalgebra, and invariant under atﬂ. So,
N v

we get g = 1P, which finishes the proof of (i).
On the other hand, let’s apply 4.3(iii) to the standard representation of
Apxq L(H) given by the weight 1, and we get (ii) and (iii).

N Y

Let now { € D(Hg, v°); we have, for all t € R, n € N,

Bn*)AZ"E = AZ T (B(n"))¢
= A (ot ()¢
= AZURI(€) T, Ay (of (n))
= AZURPY(€)J, AL, ()

and, therefore, Agtﬁ belongs to D(Hg, 1), and
RO (AZME) = AZURM (A,

and

(AZ"E, AZ"E) 0 = 07, ((€,E) g o).
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Therefore, if ¢’ belongs to D(H,v), n € Hy, we get:
HAA §B®a Aqﬂl b®a A’_\Z't§/||2

= (b((AZ" AZME)2 ) a({AZ1E, AZ1E) 500 ) A Alin)
= (b(e”((€,€)5,))a ( ¥ 1 ((€,€) o)) An| AYfn)
= (07 (b({€, €2, ) Tub(0” (€, €) o)) Ty Alin| Alln)
= (b€, €))L Tyal (D((E,€) 5 ve)) Ty AlmIn)
= (b((§',€")2.0) Jub({&; €) gue) Jymln)
= (b((¢',€)an)al(& E)pwo)nln)

— I 4®a 1130 €1

Now, from (i) and (ii), we get that the infinitesimal generator A:l/ 2 5®a

Al/ 2 ®a AAl/ 2 of this one- parameter of unitaries is included in Al/ 2

these operators being self-adjoint, we get (iv). O

4.11. Corollary

Let & = (N,M,«,3,T,T,T",v) be a measured quantum groupoid, (b,a)
an action of & on a von Neumann algebra A, ¥ a normal semi-finite
faithful weight on A, 1, the normal semi-finite faithful weight constructed
on A b;kva L(H) by transporting the bidual weight. Then, for any x € My,

£ € D(WH,v), n € D(o,H,v)N D(Aélm) such that A:l/Zn belongs to
D(Hpg,v°), the operator (1,@4,0%"(&,n))a(x) belongs to ‘J’t —, and we have:
N

Uala(a)(150a0° (610 (€. m)al@) = A4 (@) 55 nsSat].

Proof. Using 4.10 applied to v°, we get that
a,v —1/2
Apo (077 (&) = TAZ 0 50 &,

which belongs to D(oH,e,v); so, using 4.6 and 4.9, we get the result. [0
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5. Standard implementation: using the weight 1.
In that section, we calculate (5.5) the dual weight (717) of 1, with respect

to the action a (5.2(ii)); this will allow us to calculatei]wfv) (5.5), and then,

to obtain a formula linking Uj, and Ui (5.6). As Ui is a corepresentation
by 3.5, we obtain then that Ui is a corepresentation (and, therefore, a
standard implementation) whenever it is possible to construct 1 (5.8).

5.1. Proposition

Let & = (N, M,a, 3,1, T, T",v) be a measured quantum groupoid; let A be

a von Neumann algebra acting on a Hilbert space $), (b,a) be an action of

& on A, (1,®4 5,0a) be the action of & on Apxo L(H) introduced in 2.4;
N N

then, let us write, for any Y in L($) Qo H 3%« H),
14
14

O(Y) = (1p®a W) (id pa sv) (Y ) (1 p@4 W)
N N N

which belongs to L($ y®q H g®a H); then, we have:
(i) for any X € Ao L(H), O(a(X)) = (ap*q id)(X) and:
N N

o((A b;;a L(H)) Xg®) = (Ax,0)pxq LIH);

B N

(i1) (1p@a &, (idy*asn ) (8 g*aid)) is an action of B on (Axy®) g L(H),
N N N N
and:

(O axg id)(a) = (id p*a sno)(d axg id)O
Neo N No

where (a) is the dual action of a (it is therefore an action of B¢ on (Ap*qa
N

L(H)) xg &).

Proof. By the definition of a, we get the first formula of (i). The second
formula of (i) was already proved in ([16] 11.4). Moreover, using (i), we
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have, for all X € Ay, L(H):
N

(@ axpid)(a)(a(X)) = (©axpid)(a(X) a}%ﬂ 1)

NO NO
= (apxqid)(X) a®p1
N Ne
= (id pxq SNo) (0 a*g id)(a pxq id)(X)
N No N
= (id p*o sno) (@ a*5 id)O(a( X))
N Neo

and, for all z € M’, we have:

(© ax5id)(a)(1 40 145 2) = (O a*p id)(1 ;@0 T°(2))
No N No No N

which, thanks again to ([16] 11.4), is equal to:
(1 p®a 1 8R6 J@J@ ,8®d 1)(foc a*p id)fc(z)(l Qa1 ,8®a Jalﬂp d@ﬁ 1)
N N N No N N Ne

and we have:

(id p*a sno) (8 axp id)O(1 @0 1 a®p 2) =
N No N Ne

(id yra sve ) (T€ gra id)[(1 p®4 JoJ5)T(2) (1 sR0a J5Jo)]
N N N N

from which we deduce that:

(© axpid)(a)(15®a 1 a®p 2) = (id yxa sne) (@ axg id)O(1 R0 1 45 2)
No N Ne N No N Neo

and we get that:

(@ a*g zd)(g) == (’Ld b*a gNo)(a a*p Zd)@
No N No

from which we deduce that (1 ,®q &, (id p*a SN) (@ g*q id)) is an action of
N N N

®° on the von Neumann algebra (A xq &) g*q L(H), which finishes the
N
proof.

0
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5.2. Corollary

Let & = (N, M, o, 3,T,T,T",v) be a measured quantum groupoid; let A be

a von Neumann algebra acting on a Hilbert space §, (b,a) an action of &

on A, (1,®q 0,a) be the action of & on Apxo L(H) introduced in 2.4 and
N N

O the isomorphism introduced in 5.1 which sends (Ayxq L(H)) x4 & onto
K a
(A xq &) gkq L(H); then, we have © o T~ = (T; g% id)©.
N (a) N

Proof. Using 5.1(ii), we get:
C:) o Ta = (Zd b*o id a*s (/ISC)(@ a*s Zd)@
N N N N
= (id b¥q td a*g (/I\)C)(id b¥*a CND)(EI a*p Zd)(:)
N N N No
= ((id a5 ©°)@ g*q id)O
N N

= (Tﬁ B*a Zd)@
N

which is the result. |

5.3. Theorem

Let & = (N,M,«,3,T,T,T',v) be a measured quantum groupoid; let A

be a von Neumann algebra acting on a Hilbert space $), (b,a) a weighted

action of & on A, (1,®43, a) be the action of & on Ayxo L(H ) introduced in
N N

2.4 and © the isomorphism introduced in 5.1 which sends (Apxq L(H)) X ®
onto (A Xq &) gxq L(H); then: "

(i) (N,1,®q 3, ﬁ Xq B) is a von Neumann faithful right N-module; let 1
be a lifted]:;eight on A, then 1 is a lifted weight on A x4 . Let’s denote

then v and (1) the weights constructed by 4.4 applied to v and .

(ii) We have (1) 0 © = @ and, for allt € R, Uiﬂoé :C:)oat@).

(iii) Moreover, g is a lifted weight on A yxo L(H), and we can define a
N
normal semifinite faithful weight (Yg) on A pxq L(H) g*o L(H). On the
N N
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other hand, we can define the normal semi-finite faithful weight (¢)q on

Apxa L(H) g% L(H). Then, we have () 00 = (1)g.
N N -

Proof. Let ¥ be a normal faithful semi-finite operator valued weight from

A into b(N); then ao T oa~! is a normal faithful semi-finite operator

valued weight from a(A) into 1,®, B(N), and aoToa~! oTj is a normal
N

faithful semi-finite operator-valued weight from A x4 & into 1,®, B(V);
N

then, if we write ¢ = v° 0 b1 0 T, the dual weight 1) can be written as
1°0 (1,®q B) L o(aoToatoT;), which finishes the proof of (i).
N

We have then, using the notations of 4.4, and results 5.2 and 5.1(i):
@O (':) = Z(QIJ Bia wA:1/2€i) o (:‘)
i )

— Z(¢ o a—l oTy B*a wA_l/Qe') o C:‘)
i v s

(¢ p*a w172, ) © (apta id) ™" o (T pra id) 0 ©
v S5 @ N N

o (apkq id)_l 0Oo Ty
< a

|
&M

(ASEENESS

o(a) oy

(%)

which finishes the proof of (ii).
We have:

|

Pa=1°0(14@q0) to(aoToatoTs)oT,.
N a

So, by composition of operator-valued weights, we get that v, is a lifted
weight on the faithful right N-module (N, A pxo L(H),1,®4 (), and, ap-
N N

plying 4.4, we can construct the normal semi-finite faithful weight () on

A b;fa L(H) g*q L(H).
N

On the other hand, as v is a normal semi-finite faithful weight on A px*,

- N

L(H), and as (1,®4 3,a) (2.4) is an action of & on A yx, L(H), we can
N N

define (2.4) a weight (1)a on Apxq L(H) g% L(H). As O is an isomorphism
L X .
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from Ap#a L(H) gro L(H) onto Apka L(H) g*a L(H), we can define then
N N N N
another normal semi-finite faithful weight (1)q)0© on Apka L(H) o L(H).
N N

Let’s represent A on H,, and consider the isomorphism O from L(Hy p®a
v
H ;@0 H) onto L(Hyp®aH g@qH). The commutant of Apkq L(H)g*aL(H)
v v v N

N
on the Hilbert space Hy y®q H g®@q H is A’ 1®a 1g 3®q 11, which is iso-
v v N N

d(1)a0®~"
morphic to A°. Let us consider the spatial derivative %*TOO on Hy, b(%)a

HB(X)Q H. As, for z € A, © sends z ,®q4 1py 39a 1g on 2 4®a 1y g®a 1,
N N N
v N

we get that:

=}

d(¢)a 0 6! _ é(d(y)
dy° dip°
where the spatial derivative d(%?,g is taken on the Hilbert space Hy, ,®q
v
H ;®q H. But, (using [33] 12.11), we get that:
v

)

d(p)g  d(¥)oTy d(y)
dpe  dye e

where we write, for simplification, 1)° for the weight taken on (A p*q

N

L(H)x4®)', whose image by © is, thanks to (i), equal to (A x,8)’ 384 11
N

Therefore, using (ii), we get that:

51 Way _dw)o67! _dd) _ dba)
e’ dyge  dyge  dye
which gives the result. (I

5.4. Lemma

Let & = (N,M,a,3,T,T,T",v) be a measured quantum groupoid, W
its pseudo-multiplicative unitary, (e;)icr an orthogonal (o, v)-basis of H;
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then, we have, for all a € Mz, NNy, ¢ € D(oH,v)N D(Hﬁ’ V°):

ZA%C(WJ$J¢C’J$J¢61. d;f z’d)FC(a) g(%)a e; = W*(A$C(CL) a@ig C) .
T

v

Proof. Let us first remark that JoJ5¢ and JoJge; belong to D(aH,v),
and that Ag.(a) belongs, thanks to ([16] 2.2), to D(oH,v). Applying then
the definition ([16] 3.6 (i)) of the pseudo-multiplicative unitary W* of the
measured quantum group QAic, we get that:

A&;C((wl]gl]q)gjgj(bei d]:;oﬁ id)rc(a)) = (WJ&;Jq)C,Jng)ei * ’Ld)(WC*)A&;C (a) .

As We* = (Wo)* = oW, we get:
(W Jag e Twes * id) (W) = (id = Wi TaC. T e ) (W)
and, using [16] 3.12 (v) and 3.11(iii), we get:
(id* wiggpery, o) W) = Jg(id* wigg 0e ) (W) Jg = (id * wie, ) (W)

from which we get the result. O

5.5. Proposition

Let & = (N, M, o, 3,1, T,T",v) be a measured quantum groupoid; let A be
a von Neumann algebra, (b, a) a weighted action of & on A, (1,4 0,a) be
N

the action of & on A yxo L(H) introduced in 2.4 and © the isomorphism
N
introduced in 5.1 which sends (Apxo L(H)) xa® onto (Axq®)gxo L(H); let
X a

N
Y be a lifted weight on A, and 1) be the normal semi-finite faithful weight on
Apxo L(H) introduced in 4.4, and (V) its dual weight on (Apxq L(H)) X ®;
N N -

let (¢) be the normal semi-finite faithful weight on (A xq &) gxq L(H)
N

introduced by applying 4.4 to the weight ¥ on A xg &. Then:
(i) for any X € M~, O(X) belongs to Ny, and:

()’ W)
A (O(X)) = (1u ﬁ%a g, b W*UV)A@(X) ;
1) have: J, -\ (1g g®q 1 RaW*o,) = (15 Q¥ 1 Ra Wro,)J~.
(i) we have: J ) ( i 5a L, o ou) = ( 7 5%a L1, o o) @
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Proof. The fact that ©(X) belongs to Ny Is a straightforward corollary

of 5.2(ii). Let us take x in My, £ in D(H,v) N D(Aélp), such that

A;ﬂg‘ belongs to D(,H,v), n in D(,H,v), and a in Nz, NN Then,

by 4.10(i), we get that pl,’]’a:z(p?a)* belongs to My, and, by ([16] 13.3),

(1,®aq a)g(pg’ax(pg’a)*) belongs to ‘ﬁ(% Moreover, we have, where (e;)er
N ¥

is an orthogonal («, v)-basis of H:

)((:)(1 bPa @)(a p¥a id)(p%’%:(pga)*))
N N
= (w)(@(l b®a a)pgv a(x )(pg,a)*)

—ZA (P2 (p2)* O(148a a)pya(@)(pf )"

Then, using 5.1, we get that ©(1,@4a) = 1,®4 (1 524 Jq;Ja)IA“OC(a)(l B8R
N N Neo Ne
JgJo), and, therefore, that:

(PO 10 @) = 1420 (id g s sy E(0)
N Neo P i)
and, we get then, applying 4.10(i) to the weight ¥, that:
e b,y %
A (O((1 420 a)g(pi’;“x(pga) )

) Z Ay (P2 (11 (i g2 g samsgane P (@)a() (6 )

is equal to:

—1/2 . Toc
S T5AG € 080 Ag((108a (id o g san e T (@)a(2) 580 e

where, for all n € N, we put a(n) = J;(14®q B(n*))J;. We then get, by
N
2.4, that a(n) = Uj(1,®p a(n))(U)* = a(n) p®q 1. And, therefore, using
Ne N
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now ([16] 13.3), we get that A(@((:)((l »Pa a)g(p%agj<p27a)*)) is equal to:
N

—1/2 . e
> I3 g0 Ay(a) b@a Age((id p*a wigsan, a5 1ee) T (a)) p@a i
i v Neo 14

which, thanks to 5.4 is equal to:

-1/2

(1u 6®a La, 6@ W70u)(J5A5 78 b8a Ay () 180 ¢ 580 Age(a))

14

which, using 4.10(i) again, is equal to:
(Ui 520 Lty 130 W (A7 2(0))) 520 A )
14
and, by ([16] 13.3) again, to:

% N b, b, %
(1u B%a 1w, b%a W Uu)A@((l b%a a)a(pyx(pe™)")) -

Using now 4.10(i), we get that, for any a in 9z, NNz and Y in Ny

A (O((148a a)a(Y)) = (1n 5%a LHy 180 Wo,)A; (16@a a)a(Y))

and, using now ([16] 13.3), we finish the proof of (i).
Let’s suppose now that X is analytic with respect to (1), such that

U(_%)/Q(X*) belongs to M~ . Then, using 5.2(ii) and (i), we get that ©(X)

(%)
is analytic with respect to (¢), and that a(_wi>2((:)(X*)) belongs to 9Ny

More precisely, we then get:

J(Q;)<1H ﬁ%a 1H1¢) b(?\@[a W*O'V)A@(X)

= (1H 6?3(1 1H1/, b%oz w UV)A@(O'_?/Q(X )))

(1 S Lty 080 W0u) T A (X)
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which, by density, gives (ii). O

5.6. Proposition

Let & = (N, M,a,3,T,T,T",v) be a measured quantum groupoid; let A be
a von Neumann algebra, (b, a) a weighted action of & on A, and (1,0, a)
N

be the action of & on A pyxo L(H) introduced in 2.4; let 1 be a lifted
N
weight on A, and ¢ be the normal semi-finite faithful weight on Apxo L(H)
- N

introduced in 4.4. Then, the unitary Ui satisfies:
Ui = (11 ®a 1a, 1®@a oW o )(1h 5®@a (id a*5 sN)(Uy, o®p 11))
- N N N No Ne
N N
f’o‘ is the flip from
(H a®p H) 8®a Hw Qa0 H onto H B8R ((Hw pRa H) a®p H),
vo v v v v ve

where o

s

is the flip from
H 8®a H 8®a H,/) »®a H onto (H 8R4 Hw bQa H) a®g .
v v v v v v

and o

Proof. Let us recall (2.4) that (1,®4 3, a) is an action of & on Ayxq L(H).
N N
Let a be the representation of N on Hy defined, for all n € N by:

N

a(n) = Jymy(1 v%a B(n*))Jy -
Using 4.10 (iii) and (ii), we get that:
a(n) = J53(n*)J5 s@a 11, 1®a Lr = &(n) & 11, 1®a L
N N N N
and, therefore, Ui is a unitary from (H gt?a Hy, b(%)a H) dsxo)/gH onto Hg(%)a
Hy b(%a H 4®a H given by the formula:

g f— — A ~
Uy =T a2 J5).
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We have, using 5.5:
(Lt p®a 111, v@a W o, UG
N N -

= Joy(1ir 3®a 1a, 506 W0,)(Jy a®p =)o
() \HH 5 %a LHy b waEs g

Let &1, & in D(Hg,v°), & in D(oH,v), n € Hy; then J3&1 belongs to
D(oH,v), and let us define (; € D(Hg,v°) and (; € D(,H,v) such that:

W (561 a®p J3€2) = limy > (G s®a G)
Vo ieJ v

the limit being taken on the filter of finite subsets J C I. Let us look at
the image of the vector £ g®a4 &2 R4 7 6Ra §3 under the unitary:
v v v

Ty (18 680 Lty 180 W01)(Jy a5 Tg)oy®

This vector is first sent by o} % on (£258®amp®a&3)a®p&1, then (Jya®p ‘]6)
v v vo 7
sends it on J3&3 ﬁ%% Jyn bQSa J5&2 3®a J3&1, then (1 ﬁ%a lg, b%a W*o,)
14
sends it on
J$€3ﬁ(?ajw77b(§§aW*(Jg§1a®@<]5§2) = lim; Z(Ja€3ﬁ<§aanb(%aCiﬁ<§aC£)
ve ieJ

and J(,J)) sends it then on:

limy Y (J5¢ 3@a J5(Jpn 400 Gi) pQa &3)
ieJ v v v

=limy Y (J5(i 9a U (n a®p J5G) 5Ra €3)
icJ v ve v
which is equal to:

(IH ﬁ®a U;Z b®a 1H)(lH B@a Oy b®a 1H)(UWO* ﬁ®a 1Hw b®a IH)
N N N N N N

(&1 s®a &2 8R4 N R0 €3)
v v v
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from which, using again the density of finite sums of elementary tensors
in the relative Hilbert tensor product, we get that:

(1t 3®a 11, 1®a W*UV)Uialﬂ’d —
N N -
(1H ﬁ®a U"Z b®a 1H)(1H ﬂ@a Oy b®a 1H)(UWO* ﬁ®a 1Hﬂ) b®a 1H) =
N N N N N N
(11 5% (id a5 SN) (U 6@ 1))y (W 5®4 1a, 400 1)
N Ne N N N

from which we get the result. O

5.7. Proposition

Let & = (N, M,a,3,T,T,T',v) be a measured quantum groupoid; let A
be a von Neumann algebra, and let (b,a) be a weighted action of & on A;
let ¢ be a lifted weight on A; then, the unitary U, introduced in 2.4 is a
copresentation of &.

Proof. With the notations of 5.6, we get, using 5.6, that:

Ly p®q (id oxp SN ) (Uy b®a 1) =
N Neo N

(Lt p®a 11, 1@a oW ) UG, (W 5@4 11, 1®a 1i)(0) )"
N N N N

which we shall write, for simplification, with the usual leg numbering
notation:

(Uy)24 = W3,4U§(W0)4,1 :

But W is a corepresentation of &° ([16], 5.6), Ui is a corepresentation of

® by 3.5, and oW ° is a corepresentation of &° by ([16], 5.6 and 5.3). So,
we get:

(id*T)(Uy)2,45 = W3,5W3,4(Ui)1,2,3,4(Ui)1,2,3,5W§1W£1
= W3,5(U£)2,4Wﬁ(Ui)1,2,3,5W§1W£1
= (UD)24W7iWss (U235 We1 Wiy
= (Uj)24W1(U)25Wiy
= (Uy)24(Ug)25
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which shows that U;}) is a corepresentation. A more complete proof is a
painful exercise we leave to the reader. O

5.8. Theorem

Let & = (N, M,a,3,T,T,T',v) be a measured quantum groupoid; let A
be a von Neumann algebra, and let (b,a) be a weighted action of & on A;
then, for any normal semi-finite faithful weight ¢ on A, the unitary U,
introduced in 2.4 is a standard implementation of a, in the sense of 2.3.

Proof. As the action is weighted, there exists a normal semi-finite faithful
weight ¢ on A which is lifted from v?; we get that Uy is a corepresentation
by 5.7, and is therefore a standard implementation. Using now 3.1, we
easily get that it remains true for any normal semi-finite faithful weight
on A, which is the result. O

5.9. Remark

In 5.8, we had obtained that Uy is a standard implementation of a, if
there exists a normal-semi-finite faithful operator-valued weight from A
onto b(N); this is true in particular in the following cases:

(i) & is a locally compact quantum group (N = C); this result was ob-
tained in ([36] 4.4);

(ii) if N is abelian and b(N) C Z(A); in particular, if & is a measured
groupoid; we shall discuss this particular case in 5.10. More general, if &
is a continuous field of locally compact quantum groups (2.5 (iv)), or is
De Commer’s example (2.5 (v)).

(iii) A is a type I factor; if we write A = £(9), starting from any normal
semi-finite weight on b(IN)', we get a normal faithful semi-finite operator-
valued weight from A to b(NN). More generally, this remains true if A is a
sum of type I factors;

(iv) N is a sum of type I factors (in particular, if IV is a finite dimensional
algebra, which is the case, in particular if & is a finite dimensional quan-
tum groupoid);

(v) N and A are semi-finite.

In 3.2, the result was proved if a is a dual action.
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5.10. Example

Let G be a measured groupoid, with G(©) as its set of units, r and s its
range and source application, (A"),cgw its Haar system, and v a quasi-
invariant measure; let 4 = [0 A*dv ; let us consider the von Neumann
algebra L°(G, 1), which is a L>°(G(®)-bimodule, thanks to the two ho-
momorphisms g and sg defined, for f in L=(G®) by rg(f) = f or and
sg(f) = f o s. We have shown in ([16], 3.1, 3.4 and 3.17) how it is possi-
ble to put a measured quantum groupoid structure on this von Neumann
bimodule.
An action (b,a) of this measured quantum groupoid on a von Neumann
algebra A verifies that (L= (G())) C Z(A), and, therefore, A can be de-
composed as A = fé?o) A*dv(x) ([16], 6.1); moreover, let 1) be a normal
semi-finite faithful on A = fg?o) A*dy(zx). Then v is a lifted weight; more
precisely, there exists a measurable field ¢* of normal semi-finite faith-
ful weights, such that ¢ = fg‘?o) Y¥dv(z) in the sense of ([35] 4.6), and
Hy = [50) Hyedv(z).
On the other hand, the action a is ([16], 6.3) an action of G in the sense of
([49], 3.1), i.e. for all g € G, there exists a family of *-isomorphisms a4 from
A%9) onto A™9) | such that, if (g1, g2) € G, we have ay,,4, = a4 a4,, and
such that, for any normal positive functional w = fge(o) w¥dv(x), and any
y = fg%o) y*dv(z), the function g — w"(9)(a,(y>19))) is y-measurable. These
*-isomorphisms have standard implementations ug : Hysg) — Hyr(g) such
that a,(y*¥) = ugys(g)u;. if (g1,92) € G, we have ug, g = Ug, g,
More precisely, the Hilbert space Hy p®r, L?(G, i) can be identified with
v

fée Hr)dp(g). We then get:

® ®
a( [, vdv@) = [ ayy"@)dulg).
GO G
In [47] and [48] is given a construction of the crossed product of A by G;
using ([49] 2.14), we see ([16], 9.2) that this crossed-product is isomorphic
to the definition given in ([16], 9.1). Moreover, we get the same notion of
dual action ([16], 9.6) and of dual weight ([16], 13.1).
As b is central, we have a = b, and the Hilbert space Hy ,®s, L?(G, jt) can
po
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be identified with fg@ H,«(¢dp(g). Using then [49], 2.6, we get that Uj =
fée ugdp(g), which is a unitary from fée H .9 du(g) onto fée H e dp(g)-

6. The (b,) property for weights

If & = (N,M,a,3,T,T,T",v) be a measured quantum groupoid, and if
b is a normal faithful non degenerate anti-homomorphism from N into a
von Neumann algebra A, we define the (b,7) property for normal faithful
semi-finite weights on A (6.1). We define then, for such a weight, a normal
semi-finite faithful weight 15 on Ab}k\fa L(H) (6.4). We obtain then several

technical results (6.6, 6.7, 6.8) which will be used in chapter 7.

6.1. Definition

Let & = (N, M,«, 3,1, T,T",v) be a measured quantum groupoid, and let
b be a normal faithful non degenerate anti-homomorphism from N into a
von Neumann algebra A; we shall say that a normal faithful semi-finite

weight ¢ on A satisfies the (b, ) property if, for all n € N and t € R, we

have of (b(n)) = b(y¢(n)), where 7, is the one-parameter automorphism

group of N defined by o} (3(n)) = B(v:(n)) ([16], 3.8 (v)).

6.2. Example

Let & = (N,M,a,3,T,T,T',v) be a measured quantum groupoid, A a
von Neumann algebra, (b, a) an action of & on A, ¢ a d-invariant normal
faithful semi-finite weight on A bearing the density property, as defined
n ([16]) and recalled in 2.3. Then, ¢ satisfies the (b,) property.
Namely, for any « € A, t € R, we have:

a(o () = (Af 180 67 AFa(@) (A" 40 6 AL)
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and, therefore, for any n € N, we get, using ([16], 3.8(ii)):
a(of (b(n))) = (AY b2a atAaZh( ¥Ca Bn))(AL" 4o §tAL)
_ —it A —it it At
= 1&;%15 A B(n)d" AL
— 1y@a oo (5(n)
= 14@a 0 (B(n))
N
= 14@a B(7:(n))
N

= a(b(y:(n)))

from which we get the property, by the injectivity of a.

6.3. Example

Let & = (N,M,«,3,I,T,T',v) be a measured quantum groupoid, and

let (NV,b, A) be a faithful weighted right von Neumann right-module, in

the sense of 4.1; let 1 be a normal faithful semi-finite weight on A, lifted

from v°, and let ¢ be the normal faithful semi-finite weight on Ay, L(H)
- N

defined in 4.4. Then, 9 satisfies the (1 ,®, 8, ) property.
- N
Namely, using 4.8 and ([16] 3.10 (vii)), we get:

~

o7 (1600 Bn) = 1180 AF"B)AL = 1480 0% (A(n)

= 1@a B(H—t(n)) = 1 4®a B(1e(n))
N N

6.4. Theorem

Let & = (N, M, o, 3,1, T,T",v) be a measured quantum groupoid, and let

b be a normal faithful non degenerate anti-homomorphism from N into a

von Neumann algebra A; let ¢ be a normal faithful semi-finite weight on

A satisfying the (b,~y) property; then:

(i) it is possible to define a one-parameter group of unitaries Afﬁ pRa
v

(5Aa)*it on Hy y®@q H, with natural values on elementary tensors. We
v

shall denote A}/Q v®a (5A5)_1/2 its analytic generator;
12
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(7) there exists a normal semi-finite faithful weight ¢ on Ab;l;faﬁ(H) such
that: av, ”
T = = A7 48 (0A3)" /2.

(iii) for any a in Ny NI, and § € D(oH,v) N D((éA@)_l/Q), such that

(5A$)_1/2§ belongs to D(oH,v), we have:

Uy(peaa (pg®)) = 18, Au(a) 10 (585) 7€
Proof. Let n € D(,H,v), n € Ny,; then, we get:
a(n)(6Ag) "0 = (0A5) "o 2o, (a(n))n
= (5A5) a(Ut Y—toZ¢(n))n
= (045) "R () Ay (7-4(n))

There exists a positive self-adjoint non singular operator h on H, such
that:

Au () = KA, ()
We then get that:
a(n)(00g) " = (8A5) "R (n)h™ " Ay (n)
from which we get that (5A6)_”n belongs to D(,H,v), and that:
a,v N\t _\—it pa,v —it
R*((6A5)""n) = (645)""R*"(n)h
from which we get that:
((6AZ) " n, (6A5) " n)ap = b (n,M)arh™™.
As we have, for all m € N, v;(m) = h*mh~%, we therefore get that:
<(5A5)_it77’ (5A5)_it77>g,u - 7t(<777 77>g¢,1/)
and, therefore, for all § € Hy:
1A% §b®a (085)" nll? = by ((n, 1)) AEENAYE)

= (af (b({n,m3.,))ALg|Ae)
= [|€ s®a
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which is (i).

As (Afzb@a (5A$)7it)(J¢$J¢b®a1)(A$b®a (5Aa)7it) = JwU?(Q?)Jwb@)al,
v N v N

we get (ii). Result (iii) is just a corollary of (ii) and 4.3(iv). O

6.5. Corollary

Let & be a measured quantum groupoid, and (b,a) an action of & on a

von Neumann algebra A; let ¥ be a d-invariant weight on A, bearing the

density condition, as defined in 2.3, and 1), the weight constructed on

Apke L(H) by transporting the bidual weight (2.4) of ¢. Using 6.2, we can
N

use 6.4 and define the weight s on Apxq L(H) Then, we have: Yo = Yy
L N L

Proof. We have, in general, gﬁ = A’L)Z (2.4). So, using 3.2(ii) and 6.4, we
get the result. O

6.6. Corollary

Let 8 = (N, M, «, 3,1, T,T",v) be a measured quantum groupoid, and let
b be a normal faithful non degenerate anti-homomorphism from N into a
von Neumann algebra A; let 11 (resp. 12) be a normal faithful semi-finite
weight on A satisfying the (b,~) property; then:

(i) the cocycle (D11 : Dibg); belongs to ANB(N)';

(ii) we have: (D15 Dipag)e = (D1 = Dipo)t b%a 1.

Proof. For any x € A, we have:

o (x) = (D1 : Dip)yoy?(x)(Diy = Do)y

and, therefore:

ot 003 (x) = (D1 : Dipa)x(Dipy = Do)y .

In particular, we get, for any n € N:

b(n) = (D1 : Do)ib(n) (D = Dia)f

from which we get (i). Let ($), 7, J,P) be a standard representation of the
von Neumann algebra A; then A° is represented on $) by JAJ; for any
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normal semi-finite faithful weight ¢ on A, we have dy A}/ 2; moreover,

we have then: wr
di it o . o d¢3 it _ dyn it d¢? it d@Z’g —it d¢§ it
_ diy it dipa —it
~ gy g
= (D1 : Dipo)s

and, therefore (Dvy{ : Dyg); = Alft(D¢1 : D¢2)tA§Z2. By similar argu-
ments, we have on §) Q. H:

i .. dy? .

D - D — =4 \it 1 \it
diyr . . dv )
= (g V(DR D))

As (D9 : Dy3); belongs to JAJ ,®, 1 and is therefore equal to:
N
A;;t(del : D¢2)tA:Z2 b%a 1y
we obtain, using 6.4(ii), that (D1 : Dyag), is equal to:
(Aitl b@V)a (5A$)—zt)(qulzt(le : D?ﬁg)tAf]; b(]%a lH)(A;;t b(]X/)a (5Aa)1t)

from which we get the result. O

6.7. Proposition

Let & = (N,M,«,3,T,T,T",v) be a measured quantum_groupoid; it is
possible to define one parameter groups of unitaries Ag 3R Ag and
14

(5Aa)it a®p A%, with natural values on elementary tensors, and we have:
it it 117% it it
W(A% 5%% A%)W = (6A3)" a®p A%.
VO
Proof. From ([16] 3.10 (vi)), we get that Ag is the closure of PJsé g,
where P is the managing operator of the pseudo-multiplicative unitary W,

and ¢ the modulus of &; in ([16] 3.8 (vii)), we had got that it is possible
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to define one parameter groups of unitaries P 8Ra P and P" ,® 4 pit,

v o

with natural values on elementary tensors, and that:
W(PZt B®Ol Pzt) _ (Pzt a®B Pzt)W )
v o

On the other hand, it is possible ([16], 3.8 (vi)) to define a one parameter

roup of unitaries it Ru (5“, with natural values on elementary tensors,
g B
v

and that: 4 ' ' A
6zt ﬁ®a 5175 — F((Szt) _ W*(l a@@ 5zt)W .
v No
Moreover, we know, from ([16], 3.11 (iii)), that:
W(J5a®5Jo) = (Jg a®s Jo)W”

v v

and from ([16] 3.8 (vi)) that J56~"Js = R(6") = 6.
With all these data, we get that it is possible to define A% 8Ra A% as:

A% B8R A% = (Pit B8R Pit)(JQ(Sith) 8Qa Jq>5ith>)
v v N

it it .
and (6Ag) a@jﬁ A% as:
it it
(5AZ§) oz@;@ A&;
— (Pit a®3 Pit)(,]a 8P J¢)(5it 4R 5“)((]&; a®3 J@)(Jq;(sitjq; a®3 1)
Vo v 174 Vo No
and to verify that:

W(A% g@f)a A%)W*
=W (P" 304 P")(J66" Jo 5@0 Job6" Jo)W*
v N

= (P" 4@5 PYYW (Jp0" Jop 500 Job" Ja)W*
ve N

= (P" 4@5 P")(Ja6" Ja o5 DW (1 5Q04 Job" Ja)W*
Vo Ne N

which is equal to:

(Pit a®ﬁ Pit)(cﬂp(sitjq) 01®ﬁ 1)(,]5 5(%a J@)W*(l Q®BA 5“)W(Jj{; a®fi Jq;)

v No Neo v
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and, therefore, to:

(P 0@ P*)(J60" Jo a®51) (T 5®a Jo) (0" 580 67) (T3 a®j Ja)

v Neo v
or to:
(P 0@y P1)(Ja6" Jo a® 1)(8" a®y J36™ T5) = (645)" a®y AL
o No Vo o

which finishes the proof.

6.8. Proposition

Let & = (N,M,«,3,T,T,T",v) be a measured quantum groupoid, (b,a)
a weighted action of & on a von Neumann algebra A, and ¢ a normal
semi-finite faithful weight on A, lifted from v°; then the von Neumann

algebra A pxo L(H) is a faithful right N-module in two different ways,
N

using 1 py®q B, and 1 R4, B; moreover, the weight ¢ constructed in 4.4 is
N N -

a lifted weight from v, using 1,®4 3, and, on the other hand, satisfies the
N

(1 b®aﬂA, ) property; therefore, we can define a normal semi-finite faithful
N
weight ¢ on Apxq L(H) gxo L(H), and another normal semi-finite faithful
h N N

weight (w)(s on Apxa L(H) gt L(H). As in 5.1, let us write, for any Y in
N

N
L(H®a H ;0 H),

v

O(Y) = (14@a W)*(id p¥a <v)(Y) (1420 W)
N N N

which belongs to L($ @ H g®q H). Then, we have:

ioé:(@) .

=25

Proof. By definition, the weight v is defined on A yxo L(H) gxq L(H) by
= N

N
considering on Hy, 3®, H the spatial derivative:
B

v = Ay gQq AZL
d(%)o_ ﬂﬁyo‘ )
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and, using 4.10, we therefore get, on H g®, Hy ,®@q H &4 H, that:
v v v

di _ A—l ® A ® A_l ® A_l
d(ib)o &\’ ﬁya wbya fﬁ ﬁya Zﬁ .
On the other hand, the weight (1[))5 is defined on Apxq L(H) g L(H) by
\e) N N

considering on Hy, B®°‘ H = H3®qHyp@q Hﬁ®a H the spatial derivative:
v v v v

d(ﬂ)a — A, SA~ -1 _ Afl A Afl . SA~ -1
d(g)o - ﬂﬁéfo‘ ( <I>) - =% 5%’@ P b(%a 3 5‘%@ ( q))
from which we get, using 6.7 and the definition of © that:
dy i)

= = (id g% —0)
dtye ~ 2 O) G

The weight (¢)° is defined on Jymy (A p*o L(H))Jy, which, using again
L4 LACASRLI ¥
4.10, is equal to L(H) g*q A s®q 1 1r; we see, therefore, for X € L(H)g*, A,
N N N

Q

that (id g*, O) sends X ,®q 1 5®a 1 on X y®q 1y 3®q 1g, and leaves
N N N N N
(1)? invariant. From which we deduce that:

dy o S} B d(2)

)
d(y)> — d(y)°

from which we get the result. O

7. Biduality of weights

In that chapter, following what had been done for locally compact quan-
tum groups in [51], [50], and [3], starting from an action a of a measured
quantum groupoid on a von Neumann algebra A, we define the Radon-
Nikodym derivative of a lifted weight on A with respect to this action (7.2);
this operator is an a-cocycle (7.3), which measures, in a certain sense, how
the weight 1 behaves towards the action. In particular, we prove that this
cocycle is equal to 1 if and only if the weight is invariant by the action
(7.7, 7.9).
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7.1. Theorem

Let & = (N,M,«,3,T,T,T",v) be a measured quantum groupoid, (b,a)
a weighted action of & on a von Neumann algebra A, ¥ a normal semi-
finite faithful weight on A lifted from v°; let ¥ be the dual weight on the
crossed-product Ax,®, and let 1), be the normal semi-finite faithful weight

on A pxq L(H) obtained from the bidual weight Y and the isomorphism
N
between Apxq L(H) and the double crossed-product; let v be normal semi-
o L

finite faithful weight on A yxq L(H) constructed in 4.4. We have then:
N

(D D)y = ALAG 0 AL)

Moreover, the unitaries Ag(A;it N A%) belong to A pxo (M N B(N)).
v N

_ — . d
Proof. We have (D, : D)y = (fﬁ:ﬁi)”(dﬁ

first result, by 2.4 and 4.8. So, we get that the unitaries Ag(A;it b Ra A%)
v

)=, from which we get the

belong to A p*o L(H); let’s take € M'; using 3.8, we have Uf}“(l R
N N

z) = 1p®q AZ%x A% and, using 4.8, we get that atg(l p®a ) = 1,4
N @ @ N N

dye ) \dpe
and, therefore, belongs to A p*, M.
N

I Deit, B\ .
Ag%Ag; therefore, we get that (& “)”(—w)_“ commutes with 1,®q z,
N

Let n € N; we have:
01 (110 () = 180 AZEB0) AL = 1400 71(8(n) = 1,20 B(0",(n))
N N N N
and, on the other hand:
71 (L2 B(n) = 07" (a(b(n) = a(o? (b(n)
=a(b(cZy(n)) =1 +@a B(a?,(n))

which proves that both ¢ and i, are lifted weights from the weight v,
and, therefore, that (D, : D1); belongs to A px, B(N)', which finishes
- N

the proof. ([l
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7.2. Definition

Let & = (N, M, o, 3,T,T,T",v) be a measured quantum groupoid, (b, a)
a weighted action of & on a von Neumann algebra A, 1 a normal semi-
finite faithful weight on A lifted from v°; we shall call the unitaries (D :
D), € Ab;kva (M NB(N)") the Radon-Nikodym derivative of the weight

with respect to the action (b, a), and denote it, for simplification, (D oa:
D1);, following the notations of ([3], 10.2).

7.3. Theorem

Let & = (N,M,«,3,T,T,T",v) be a measured quantum groupoid, (b,a)
a weighted action of & on a von Neumann algebra A, 1 a mormal semi-
finite faithful weight on A lifted from v°; the Radon-Nikodym derivative
(DY o a: D)y introduced in 7.2 is a a-cocycle, i.e., we have:

(idyxal) ((Dypoa : D);) = (apraid)((Dipoa : Dip)y)((Dipoa : D)) pQal) -
N N N

Proof. For all t € R, (ap*qid)((D¢oa: D)) belongs to Apxq M gxq M,
N N N
and the operator a((Dy o a : D)) = O Ha pxq id)((Dy o a : D))
N

belongs to A p*q M s*a M (where © had been defined in 6.8).
N

N
We have, using successively 2.4, 6.5 and 5.2(iii):

On the other hand, using successively 4.5(ii) and 6.8:

O Y((DYoa: Dy)y) ﬁ%a 1) = 07 ((Diy : DY)s 5@a 1)
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and, therefore, we get that:

O~ (@sxa id)((D o a: DY))(DY o a: DY), 5 1)
=a((Dyoa: Dy))O~ (DY oa: DY)y 5%a 1)
is equal, using 6.6(ii), to:

(D(%a) : D(%a) © ©)¢(D(¢a) 0 © : D(¥)

s

)t = (D@(5 . D@é)t
= (Dtfa : DY)s 40 1
N

= (Dwoa : Dw)tﬁ(g)a 1
N
from which we get that:
(@ o id)(Dyoa: Dy))((DY o a: DY)y p%a 1)
= O((Dyoa: DY) ;@4 1)
N
= (id b}k\fa D)((Dyoa: D))

which is the result.

7.4. Example

Let G be a locally compact quantum group, and a an action of G on a

von Neumann algebra A; then this result had been obtained in ([51], 4.8
and [50], 3.7 and [3], 10.3).

7.5. Example

Let G be a measured groupoid; let us use all the notations introduced
in 5.10. Let (a)4eg be an action of G on a von Neumann algebra A =
fé?o) A*dy(x), and ¢ = fg?m Y*dv(z) a normal semi-finite faithful weight
on A. Then, the Radon-Nikodym derivative of ¢ with respect to the action
a, is, using ([49], 2.6), given by:

D
(Dyoa: D), = /g (DY) : Dy o a1 )du(g)
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which is acting on fga Hyrigdp(g) = Hy p@rg L2(G, ).
v

7.6. Definition

Let (b,a) an action of a measured quantum groupoid & on a von Neu-
mann algebra A. A normal semi-finite faithful weight ¢ on A will be said
invariant by a if, for all n € D(H,v) N D(Hg,v°) and x € Ny, we have:

V(i pta wy)a(z"2)] = [|Ay(2) « O nl?.
We shall always suppose that such weights bear the density property,
defined in 2.3, as for d-invariant weights.
7.7. Theorem

Let (b, a) an action of a measured groupoid & on a von Neumann algebra
A, ¥ a normal semi-finite faithful weight on A, invariant by a in the
sense of 7.6. Then, let (e;)icr be an (o, v)-orthogonal basis of H, x € Ny,
ne€ D(oH,v)ND(Hg,v°):

(i) for any & € D(,H,v), (id b;r;a wye)a(x) belongs to MNy;

(71) the sum Y ; Ay ((idpxq wye;)a(x) s@q €; is strongly converging; its limit
N v

does not depend upon the choice of the («,v)-othogonal basis of H, and
allow us to define an isometry lez from Hy (®@g H to Hy ,®q H such that:
Vo 14

Vi (Ay () a%ﬁ n) = Z Ay ((id ba Wiye)0(2) @ €3
(iii) we have:
Ay((id pxa wye)a(z)) = (id + wi,e) (Vi) Ay () 5
(iv) for anyy € A, z € M', n € N, we have:
a(y)Vy, = Vily «S3 1)
(168 2)Vy = Vi (1 a8p 2)

(a(n) p®a 1)V, = Vi (1 .®p a(n))
N Neo
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(16®a B(n)Vy, = Vi (b(n) «®p 1)
N No

(1,®a B(n))Vy, = V(1 4@ B(n));
N Neo

(v) the operator Vd/} is a unitary; moreover, it is a copresentation of & on
o(Hyp)p which implements a;
(vi) we have:

/ it —it\ __ it —it !
Vi(&Y a®p A7) = (A5 4@0 ATV

Moreover, the weight v is lifted from v°; more precisely, there exists a
normal faithful semi-finite operator-valued weight T from A onto b(N)
such that 1 = v°ob™ ' o, and, for all x € Ng N Ny, we have:

(T pra id)a(z*z) = 1@, B0 b 1T (z*z) = a(T(z*z))
N N

(Y pxq id)a(z*z) = Bo b 1T (z*x);

(vii) we have:
a(o)' (y) = (o} vra )a(y);
(viii) the standard implementation Uy, is equal to Vd’) ;
(iz) the dual weight satisfies A% = Aflf pRa AZH
P N @

(z) the Radon-Nikodym derivative (D1 o a: D) is equal to 1.
Proof. Result (i) is identical to ([16], 8.3(i)), and (ii) is similar to ([16],
8.3(ii) and 8.4(i)); the proof of (iii) is similar to the proof of ([16], 8.4(ii)
and (iii)), and the proof of (iv) is similar (and somehow simpler) to the
proof of ([16], 8.4(iv) and (v)). Now result (v) is obtained in a similar way
to ([16], 8.5 and 8.6); by similar calculations to ([16], 8.7 and 8.8(i)), we
obtain that, for all ¢ € R, we have Uzp(b(n)) = b(c¥,(n)), which gives the
existence of a normal faithful semi-finite operator-valued weight ¥ from

A onto b(N) such that 1) = v°0b~! o T. For any = € My, N Ng, the vector
Ay (x) belongs to D(oH,v), and we have, for any n € H:

1Ay (2) a®p N> = (Bo b~ T(z*z)nln) .
So, using the density property and 7.6, we get, for all x € 9, N Ng, that:
(Y pxq id)a(z*z) = Bo b ¥(z*z)
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and, therefore, that:

(T pra id)a(z*z) = 1,@4 Bob ' F(z*2) = a(T(z*x)
N N

we finish the proof of (vi) in a similar way to ([16], 8.8(ii)). Then (vii) is a
straightforward corollary of (vi) and (v), and (viii) and (ix) are obtained in

a similar way to 3.2(i) and (ii). As A; = s (]16] 13.6) and App@a ATt =
N

Y dye
% by 4.4(ii), we infer from (ix) that 1)q = 1, which, by 7.2, finishes the
proof. O

7.8. Corollary

Let (b,a) be an action of a measured quantum groupoid & on a von Neu-
mann algebra A; let 1, s be two invariant normal faithful semi-finite
weights on A, as defined in 7.6, and let us suppose that both 11 and 1o bear
the density property, as defined in 2.3. Then, for allt € R, (D : Do)
belongs to A®.

Proof. The proof is similar to ([16], 8.11). O

7.9. Theorem

Let (b,a) be a weighted action of a measured quantum groupoid & on a
von Neumann algebra A, and 1 a normal semi-finite faithful weight on A,
lifted from v°. If the Radon-Nikodym derivative (D oa : D) is equal to
1, then the weight 1 is invariant by a in the sense of 7.6.

Proof. Let £ € D(oH,v)ND(Hg,v°)ND( élﬂ) such that Aél/gf belongs
to D(oH,v); let us remark first that if y belongs to 9Nz N ‘T% NN N ‘J’t},

and is analytic with respect to a? , and such that o.(z) belongs to 915 N
‘J% N NN, for all z € C, then Ag(2) satisfies all those conditions, and
this gives that the set of such elements ¢ is dense in H.

Let n be in D(oH,v) N D( 51/2) such that Ag/zn belongs to D(,H,v),
and z € 9, analytic with respect to 9, such that o_;/;(z*) belongs to
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My. Then, we have, using 4.10(i) applied to v°:

(¥ pra id)a(a"2)€ 0@ 505 nl€ 0 T5AZ1 ) =
v No Neo

(W o id)a(z”2) Ape (077 (€, m)) [ Ape (077 (€, m)) =
V2O (&, m)" (¥ vxa id)a(z2)0™7 (€, )
which is equal, using 4.8 and 4.9, to:

P(1®a 047 (& n)) a(z"2)(1 v®a 077 (€,))) -
N N

By hypothesis, as s = ¢ by 7.2, we get, using 2.3 that Ug(a(x)) =

af’“(a(x)) = a(a;’b(w)). Moreover, we can write, thanks to the hypothesis
and to 4.10 applied to v°:

v o -1/2 aw i A—1/2 1/2
Ty By (07(6,m)) = J5€ 5©a Ag 0 = Ape (077 (A5 70, AFTE))

from which we get that [a(x)(1,®q 0“7 (£,7n))]" belongs to D(U%/z), and,
N
therefore, that:
. " —1 _
(@ p*a id)a(z"2)€ a®p J5A5 Pnl¢ 0z T3 )

is equal to:

402, ([a) (10 0 (€ )] )P
= 8y (14 07 (A5 "0, AL a0 eI

which, thanks again to the hypothesis and to 4.11, is equal to:

1/2

186(0% o (@ pRaT5e 58 Ag ]l

1/2

= [ 7sA (@) 180 J5€ p@a A5 nll

—1/2
= Ay (@) «®5 € a®5 J5 A7 "1l
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So, finally, we get the equality:
. X —-1/2 —-1/2
(0 v id)a(e"2)¢ a3 TAG PnlE a2 J5A5H 1)

—-1/2
= [Ay(2) 5 € a®p T3 A5 Il

which, by continuity, remains true for any x € 9 and £ € D(H,v) N
D(Hg,v°); from which we infer that:

(0 id)ala"@)o((TpAg . JpA5 Pn)a.e)ele) =

(@) 5 (T3 A5, TgAT 1) 00 ) €Ay (@) o5 €)

from which, by density of the elements of the form
~1/2 -1/2
(305 P, J5AS P0) 6o
in NT, we get, for any n € N*:
(¢ p*a id)a(z"z)a(n)ElE) = (Ay(2) «@p A(n)E|Ay (2) a®p €)

from which we get the result, by density of D(,H,v) N D(Hg,v°). O

7.10. Proposition

Let & be a measured quantum groupoid, (b,a) a weighted action of & on a
von Neumann algebra A, 11 and vy two normal semi-finite faithful weights
on A, lifted from v°, and (D1 oa: D)y, (Dipaoa: Dig), their Radon-
Nikodym derivatives with respect to the action (b,a), as defined in 7.2.
Then, the Radon-Nikodym derivative (D11 : Dipo)y belongs to ANb(N),
and we have, for allt € R:

(Dypgoa: Dipo)y = a((Dvp2 : Di1)e)(Dyproa: Dipy)((Dya : Dipr); b 1).

Proof. As 11 and 1y are lifted weights from v, we get that (D : Dig)y
belongs to A Nb(N)" by ([35], 4.22(iii)); moreover, we have:

(Dtpga : Do)y = (Dthaa : D1a)¢(Dt1a : Dip1)e(Dipy : Dipo)y
from which we get the result, using 2.3, 7.2 and 4.5(ii). O
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7.11. Corollary

Let & be a measured quantum groupoid, (b,a) a weighted action of & on
a von Neumann algebra A; then, are equivalent:

(i) there ezists a normal semi-finite faithful weight on A, which is invariant
and bears the density condition;

(i) there exists a normal semi-finite faithful weight v on A, lifted from v°,

and a 0¥ -cocycle ug on ANb(N)' such that (Dipoa : D)y = a(u}) (ugp®al);
N

(iii) for any mormal semi-finite faithful weight b on A, lifted from v°,
there exists a of -cocycle ug on AN b(N) such that (D o a : D)y =
a(uy) (u b%a 1).

Proof. Let suppose (i), and let ¢ be an invariant weight on A, bearing the
density condition; then, by 7.7(vi), the weight is lifted, and, if ¢ is any
another lifted weight on A, u; = (D : DY), is a of-cocycle in AN b(N)'
by ([35], 4.22(iii)); moreover, using 7.10, we get (iii).

Conversely, if we suppose (ii), there exists a normal semi-finite faithful
weight ¢ on A such that u; = (D : D); as 4 is lifted, and u; belongs
to ANb(N)', we know, using ([35], 4.22(iii)), that ¢ is lifted, too. Using
now 7.10, we get that (D oa: Dy); = 1, which, thanks to 7.9, gives the
result. O
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