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The unitary implementation of a measured
quantum groupoid action

Michel Enock

Abstract

Mimicking the von Neumann version of Kustermans and Vaes’ locally compact
quantum groups, Franck Lesieur had introduced a notion of measured quantum
groupoid, in the setting of von Neumann algebras. In a former article, the author
had introduced the notions of actions, crossed-product, dual actions of a measured
quantum groupoid; a biduality theorem for actions has been proved. This article
continues that program: we prove the existence of a standard implementation for
an action, and a biduality theorem for weights. We generalize this way results which
were proved, for locally compact quantum groups by S. Vaes, and for measured
groupoids by T. Yamanouchi.

L’implémentation unitaire d’une action de groupoïde quantique
mesuré
Résumé

Frank Lesieur a introduit une notion de groupoïde quantique mesuré, dans le
cadre des algèbres de von Neumann, en s’inspirant des groupes quantiques locale-
ment compacts de Kustermans et Vaes (dans la version de cette construction faite
dans le cadre des algèbres de von Neumann). Dans un article précédent, l’auteur
a introduit les notions d’action, de produit croisé, d’action duale d’un groupoïde
quantique mesuré ; un théorème de bidulaité des actions a éte démontré. Cet article
continue ce programme : nous démontrons l’existence d’une implémentation stan-
dard d’une action, et un théorème de bidulaité pour les poids. Sont ainsi généralisés
des résultats qui avaient été démontrés par S. Vaes pour les groupes quantiques
localement compacts, et par T. Yamanouchi pour les groupoïdes mesurés.

1. Introduction

In two articles ([39], [40]), J.-M. Vallin has introduced two notions (pseudo-
multiplicative unitary, Hopf-bimodule), in order to generalize, up to the

Keywords: Measured quantum groupoids, actions, biduality theorems.
Math. classification: 46L55, 46L89.
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groupoid case, the classical notions of multiplicative unitary [1] and of
Hopf-von Neumann algebras [21] which were introduced to describe and
explain duality of groups, and leaded to appropriate notions of quantum
groups ([21], [44], [45], [1], [28], [46], [24], [25], [27]).
In another article [22], J.-M. Vallin and the author have constructed, from
a depth 2 inclusion of von Neumann algebras M0 ⊂M1, with an operator-
valued weight T1 verifying a regularity condition, a pseudo-multiplicative
unitary, which leaded to two structures of Hopf bimodules, dual to each
other. Moreover, we have then constructed an action of one of these struc-
tures on the algebra M1 such that M0 is the fixed point subalgebra, the
algebra M2 given by the basic construction being then isomorphic to the
crossed-product. We construct on M2 an action of the other structure,
which can be considered as the dual action.
If the inclusion M0 ⊂M1 is irreducible, we recovered quantum groups, as
proved and studied in former papers ([19], [13]).
Therefore, this construction leads to a notion of "quantum groupoid", and
a construction of a duality within "quantum groupoids".

In a finite-dimensional setting, this construction can be mostly sim-
plified, and is studied in [29], [7], [6], [34],[41], [42], and examples are
described. In [30], the link between these "finite quantum groupoids" and
depth 2 inclusions of II1 factors is given.

F. Lesieur, in [26], starting from a Hopf-bimodule, as introduced in
[39], when there exist a left-invariant operator-valued weight, and a right-
invariant operator-valued weight, mimicking in that wider setting the tech-
nics of Kustermans and Vaes ([24], [25]), obtained a pseudo-multiplicative
unitary, which, as in quantum group theory, "contains" all the information
about the object (the von Neumann algebra, the coproduct) and allows
to construct important data (an antipod, a co-inverse, etc.) Lesieur gave
the name of "measured quantum groupoids" to these objects. A new set of
axioms for these had been given in an appendix of [16]. In [14] had been
shown that, with suitable conditions, the objects constructed from [22] are
"measured quantum groupoids" in the sense of Lesieur.

In [16] have been developped the notions of action (already introduced
in [22]), crossed-product, etc, following what had been done for locally
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compact quantum groups in ([12], [20], [36]); a biduality theorem for ac-
tions had been obtained in ([16], 11.6). Several points were left apart in
[16], namely the generalization of Vaes’ theorem ([36], 4.4) on the stan-
dard implementation of an action of a locally compact quantum group,
which was the head light of [36], and a biduality theorem for weights, as
obtained in [49], [51] (in fact, we were much more inspired by the shorter
proof given in an appendix of [3]).
We solve here these two problems when there exists a normal semi-finite
faithful operator-valued weight from the von Neumann algebra on which
the measured quantum groupoid is acting, onto the copy of the basis of
this measured quantum groupoid which is put inside this algebra. In fact,
these results appear much more as a biduality theorem of operator-valued
weights rather than a biduality theorem on weights, which seems quite
natural in the spirit of measured quantum groupoids, where, for instance,
left-invariant weight on a locally compact quantum group is replaced by
a left-invariant operator-valued weight. The strategy for the proofs had
been mostly inspired by [36] and [3].

This article is organized as follows:
In chapter 2, we recall very quickly all the notations and results needed in
that article; we have tried to make these preliminaries as short as possible,
and we emphazise that this article should be understood as the continua-
tion of [16].
In chapter 3, we follow ([36], 4.1 to 4.4), and prove, for any dual action,
the result on the standard implementation of an action.
Chapter 4 is rather technical; let G = (N,M,α, β,Γ, T, T ′, ν) be a mea-
sured quantum groupoid, and let b be an injective ∗-anti-homomorphism
from N into a von Neumann algebra A; let us suppose that there exists
a normal semi-finite faithful operator-valued weight T from A onto b(N),
and let us write ψ = νo ◦ b−1 ◦ T. Then, we can define on A b∗α

N
L(H) a

weight ψ, which will generalize the tensor product of ψ and Tr∆̂−1 (when
G is a locally compact quantum group, and therefore N = C).
In chapter 5, using this auxilliary weight introduced in chapter 4, and
the particular case of the dual actions studied in chapter 3, we calculate
the standard implementation of an action, whenever there exists a normal
semi-finite faithful operator-valued weight from A onto b(N). This condi-
tion is fulfilled trivially when the measured quantum groupoid is a locally
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compact quantum group, or is a measured groupoid; therefore, we recover
in both cases the results already obtained.
Chapter 6 is another technical chapter; we define conditions on a weight
ψ defined on A which allow us to construct on A b∗α

N
L(H) a weight ψδ

which generalize the tensor product of ψ and Tr(δ∆̂)−1(when G is a locally
compact quantum group, and therefore N = C).
In chapter 7 we use both auxilliary weights constructions made in chapters
4 and 6; then, when there exists a normal semi-finite faithful operator-
valued weight T from A onto b(N) such that ψ = νo ◦ b−1 ◦ T, we can
define a Radon-Nikodym derivative of the weight ψ with respect to the
action, which will be a cocycle for this action. This condition is fulfilled
trivially when the measured quantum groupoid is a locally compact quan-
tum group, or is a measured groupoid, and, therefore, we recover in both
cases the results already obtained.

2. Definitions and notations

This article is the continuation of [16]; preliminaries are to be found in
[16], and we just recall herafter the following definitions and notations:

2.1. Spatial theory; relative tensor products of Hilbert spaces
and fiber products of von Neumann algebras ([8], [32],
[35], [22])

Let N a von Neumann algebra, ψ a normal semi-finite faithful weight on
N ; we shall denote by Hψ, Nψ, Sψ, Jψ, ∆ψ... the canonical objects of
the Tomita-Takesaki theory associated to the weight ψ; let α be a non
degenerate faithful representation of N on a Hilbert space H; the set of
ψ-bounded elements of the left-module αH is:

D(αH, ψ) = {ξ ∈ H;∃C <∞, ‖α(y)ξ‖ ≤ C‖Λψ(y)‖,∀y ∈ Nψ} .

Then, for any ξ in D(αH, ψ), there exists a bounded operator Rα,ψ(ξ)
from Hψ to H, defined, for all y in Nψ by:

Rα,ψ(ξ)Λψ(y) = α(y)ξ
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which intertwines the actions of N .
If ξ, η are bounded vectors, the operator product

〈ξ, η〉α,ψ = Rα,ψ(η)∗Rα,ψ(ξ)

belongs to πψ(N)′, which, thanks to Tomita-Takesaki theory, will be iden-
tified to the opposite von Neumann algebra No.
If now β is a non degenerate faithful antirepresentation of N on a Hilbert
space K, the relative tensor product K β⊗α

ψ

H is the completion of the

algebraic tensor product K �D(αH, ψ) by the scalar product defined, if
ξ1, ξ2 are in K, η1, η2 are in D(αH, ψ), by the following formula:

(ξ1 � η1|ξ2 � η2) = (β(〈η1, η2〉α,ψ)ξ1|ξ2) .

If ξ ∈ K, η ∈ D(αH, ψ), we shall denote ξ β⊗α
ψ

η the image of ξ � η into

Kβ⊗α
ψ

H, and, writing ρβ,αη (ξ) = ξ β⊗α
ψ

η, we get a bounded linear operator

from K into K β⊗α
ν
H, which is equal to 1K ⊗ψ Rα,ψ(η).

Changing the weight ψ will give a canonical isomorphic Hilbert space, but
the isomorphism will not exchange elementary tensors !

We shall denote σψ the relative flip, which is a unitary sending Kβ⊗α
ψ

H

onto H α⊗β
ψo
K, defined, for any ξ in D(Kβ, ψo), η in D(αH, ψ), by:

σψ(ξ β⊗α
ψ

η) = η α⊗β
ψo

ξ .

In x ∈ β(N)′, y ∈ α(N)′, it is possible to define an operator x β⊗α
ψ

y on

K β⊗α
ψ

H, with natural values on the elementary tensors. As this operator

does not depend upon the weight ψ, it will be denoted x β⊗α
N

y. We can

define a relative flip ςN at the level of operators such that ςN (x β⊗α
N

y) =

y α⊗β
No

x. If P is a von Neumann algebra on H, with α(N) ⊂ P , and Q

a von Neumann algebra on K, with β(N) ⊂ Q, then we define the fiber
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product Q β∗α
N

P as {x β⊗α
N

y, x ∈ Q′, y ∈ P ′}′, and we get that

ςN (Q β∗α
N

P ) = P α∗β
No

Q.

Moreover, this von Neumann algebra can be defined independantly of
the Hilbert spaces on which P and Q are represented; if (i = 1, 2), αi is
a faithful non degenerate homomorphism from N into Pi, βi is a faithful
non degenerate antihomomorphism from N into Qi, and Φ (resp. Ψ) an
homomorphism from P1 to P2 (resp. from Q1 to Q2) such that Φ◦α1 = α2
(resp. Ψ◦β1 = β2), then, it is possible to define an homomorphism Ψβ1∗α1

N

Φ

from Q1 β1∗α1
N

P1 into Q2 β2∗α2
N

P2.

The operators θα,ψ(ξ, η) = Rα,ψ(ξ)Rα,ψ(η)∗, for all ξ, η in D(αH, ψ),
generates a weakly dense ideal in α(N)′. Moreover, there exists a family
(ei)i∈I of vectors in D(αH, ψ) such that the operators θα,ψ(ei, ei) are 2
by 2 orthogonal projections (θα,ψ(ei, ei) being then the projection on the
closure of α(N)ei). Such a family is called an orthogonal (α, ψ)-basis of
H.

2.2. Measured quantum groupoids ([26], [16])
A measured quantum groupoid is an octuplet G = (N,M,α, β,Γ, T, T ′, ν)
such that ([16], 3.8):
(i) (N,M,α, β,Γ) is a Hopf-bimodule (as defined in [16], 3.1),
(ii) T is a left-invariant normal, semi-finite, faithful operator valued weight
T from M to α(N),
(iii) T ′ is a right-invariant normal, semi-finite, faithful operator-valued
weight T ′ from M to β(N),
(iv) ν is normal semi-finite faitfull weight on N , which is relatively invari-
ant with respect to T and T ′.
We shall write Φ = ν ◦α−1 ◦ T , and H = HΦ, J = JΦ, and, for all n ∈ N ,
β̂(n) = Jα(n∗)J , α̂(n) = Jβ(n∗)J . The weight Φ will be called the left-
invariant weight on M .
Then, G can be equipped with a pseudo-multiplicative unitary W from
H β⊗α

ν
H onto H α⊗β̂

νo
H ([16], 3.6), a co-inverse R, a scaling group τt, an

antipod S, a modulus δ, a scaling operator λ, a managing operator P , and
a canonical one-parameter group γt of automorphisms on the basis N ([16],
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3.8). Instead of G, we shall mostly use (N,M,α, β,Γ, T,RTR, ν) which is
another measured quantum groupoid, denoted G, which is equipped with
the same data (W , R, . . . ) as G.
A dual measured quantum group Ĝ, which is denoted

(N, M̂, α, β̂, Γ̂, T̂ , R̂T̂ R̂, ν),

can be constructed, and we have ̂̂G = G.
Canonically associated to G, can be defined also the opposite measured
quantum groupoid is Go = (No,M, β, α, ςNΓ, RTR, T, νo) and the commu-
tant measured quantum groupoid Gc = (No,M ′, β̂, α̂,Γc, T c, RcT cRc, νo);
we have (Go)o = (Gc)c = G, Ĝo = (Ĝ)c, Ĝc = (Ĝ)o, and Goc = Gco is
canonically isomorphic to G ([16], 3.12).
The pseudo-multiplicative unitary of Ĝ (resp. Go, Gc) will be denoted Ŵ
(resp. W o, W c). The left-invariant weight on Ĝ (resp. Go, Gc) will be de-
noted Φ̂ (resp. Φo, Φc).
Let aHb be a N−N -bimodule, i.e. an Hilbert space H equipped with a nor-
mal faithful non degenerate representation a of N on H and a normal faith-
ful non degenerate anti-representation b on H, such that b(N) ⊂ a(N)′. A
corepresentation of G on aHb is a unitary V from Ha⊗β

νo
HΦ onto Hb⊗α

ν
HΦ,

satisfying, for all n ∈ N :

V (b(n) a⊗β
No

1) = (1 b⊗α
N

β(n))V

V (1 a⊗β
No

α(x)) = (a(n) b⊗α
N

1)V

such that, for any ξ ∈ D(aH, ν) and η ∈ D(Hb, ν
o), the operator (ωξ,η ∗

id)(V ) belongs to M (then, it is possible to define (id ∗ θ)(V ), for any θ

in Mα,β
∗ which is the linear set generated by the ωξ, with ξ ∈ D(αH, ν) ∩

D(Hβ, ν
o)), and such that the application θ → (id ∗ θ)(V ) from Mα,β

∗ into
L(H) is multiplicative ([16] 5.1, 5.5).

2.3. Action of a measured quantum groupoid ([16])

An action ([16], 6.1) of G on a von Neumann algebra A is a couple (b, a),
where:
(i) b is an injective ∗-antihomomorphism from N into A;
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(ii) a is an injective ∗-homomorphism from A into A b∗α
N
M ;

(iii) b and a are such that, for all n in N :
a(b(n)) = 1 b⊗α

N
β(n)

(which allow us to define a b∗α
N
id from A b∗α

N
M into A b∗α

N
M β∗α

N

M) and

such that:
(a b∗α

N
id)a = (id b∗α

N
Γ)a .

The set of invariants is defined as the sub von Neumann algebra:
Aa = {x ∈ A ∩ b(N)′, a(x) = x b⊗α

N
1} .

If the von Neumann algebra acts on a Hilbert space H, and if there exists
a representation a of N on H such that b(N) ⊂ A ⊂ a(N)′, a corepresenta-
tion V of G on the bimodule aHb will be called an implementation of a if we
have a(x) = V (xa⊗b

No
1)V ∗, for all x ∈ A ([16], 6.6); we shall look at the fol-

lowing more precise situation: let ψ is a normal semi-finite faithful weight
on A, and V an implementation of a on a(Hψ)b (with a(n) = Jψb(n∗)Jψ),
such that:

V ∗ = (Jψ α⊗β
νo

JΦ̂)V (Jψ b⊗α
ν
JΦ̂) .

Such an implementation had been constructed ([16] 8.8) in the particular
case when the weight ψ is called δ-invariant, which means that, for all
η ∈ D(αHΦ, ν) ∩ D(δ1/2), such that δ1/2η belongs to D((HΦ)β, νo), and
for all x ∈ Nψ, we have:

ψ((id b∗α
N
ωη)a(x∗x)) = ‖Λψ(x) a⊗β

νo
δ1/2η‖2

and bears the density property, which means that the subset
D((Hψ)b, νo) ∩D(aHψ, ν)

is dense in Hψ. This standard implementation is then given by the formula
([16], 8.4):

Vψ(Λψ(x) a⊗β
νo

δ1/2η) =
∑
i

Λψ((id b∗α
N
ωη,ei)a(x)) b⊗α

ν
ei

for all x ∈ Nψ, η ∈ D(αH, ν) ∩ D(δ1/2) such that δ1/2η belongs to
D(Hβ, ν

o), (ei)i∈I any orthonormal (α, ν)-basis of H. Moreover ([16], 8.9),
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it is possible to define one parameter groups of unitaries ∆it
ψ a⊗β

No

δ−it∆−it
Φ̂

and ∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
, with natural values on elementary tensors, and we

have:
Vψ(∆it

ψ a⊗β
No

δ−it∆−it
Φ̂

) = (∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
)Vψ

and, therefore, for any x in A, t in R, we have:

a(σψt (x)) = (∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
)a(x)(∆−itψ b⊗α

N
δit∆it

Φ̂) .

2.4. Crossed-product ([16])
The crossed-product of A by G via the action a is the von Neumann
algebra generated by a(A) and 1 b⊗α

N
M̂ ′ ([16], 9.1) and is denoted Aoa G;

then there exists ([16], 9.3) an action (1 b⊗α
N

α̂, ã) of (Ĝ)c on Aoa G.

The biduality theorem ([16], 11.6) says that the bicrossed-product (Aoa

G) oã Ĝc is canonically isomorphic to A b∗α
N
L(H); more precisely, this

isomorphism is given by:

Θ(a b∗α
N
id)(A b∗α

N
L(H)) = (Aoa G) oã Ĝc

where Θ is the spatial isomorphism between L(H b⊗α
ν

H β⊗α
ν

H) and

L(H b⊗α
ν

H α̂⊗β
νo

H) implemented by 1H b⊗α
ν

σνW
oσν ; the biduality theo-

rem says also that this isomorphism sends the action (1 b⊗α
N

β̂, a) of G on

A b∗α
N
L(H), defined, for any X ∈ A b∗α

N
L(H), by:

a(X) = (1 b⊗α
N

σνoWσνo)(id b∗α
N
ςN )(a b∗α

N
id)(X)(1 b⊗α

N
σνoWσνo)∗

on the bidual action (of Gco) on (Aoa G) oã Ĝo.
There exists a normal faithful semi-finite operator-valued weight Tã from
A oa G onto a(A); therefore, starting with a normal semi-finite weight
ψ on A, we can construct a dual weight ψ̃ on A oa G by the formula
ψ̃ = ψ ◦ a−1 ◦ Tã ([16] 13.2). These dual weights are exactly the δ̂−1-
invariant weights on Aoa G bearing the density property ([16] 13.3).
Moreover ([16] 13.3), the linear set generated by all the elements (1 b⊗α

N
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a)a(x), for all x ∈ Nψ, a ∈ NΦ̂c ∩NT̂ c , is a core for Λψ̃, and it is possible
to identify the GNS representation of A oa G associated to the weight ψ̃
with the natural representation on Hψ b⊗α

ν
HΦ by writing:

Λψ(x) b⊗α
ν

ΛΦ̂c(a) = Λψ̃[(1 b⊗α
N

a)a(x)]

which leads to the identification of Hψ̃ with Hψ b⊗α
ν

H. Moreover, using
that identification, the linear set generated by the elements of the form
a(y∗)(Λψ(x) b⊗α

ν
ΛΦ̂c(a)), for x, y in Nψ, and a in NΦ̂c ∩NT̂ c ∩N∗

Φ̂c
∩N∗

T̂ c

is a core for Sψ̃, and we have:

Sψ̃a(y∗)(Λψ(x) b⊗α
ν

ΛΦ̂c(a)) = a(x∗)(Λψ(y) b⊗α
ν

ΛΦ̂c(a
∗)) .

Then, the unitary Ua
ψ = Jψ̃(Jψ a⊗β

No

JΦ̂) from Hψ a⊗β
νo

HΦ onto Hψ b⊗α
ν
HΦ

satisfies:
Ua
ψ(Jψ b⊗α

N
JΦ̂) = (Jψ b⊗α

N
JΦ̂)(Ua

ψ)∗

and we have ([16] 13.4):
(i) for all y ∈ A:

a(y) = Ua
ψ(y a⊗β

No

1)(Ua
ψ)∗ ,

(ii) for all b ∈M :
(1 b⊗α

N
JΦbJΦ)Ua

ψ = Ua
ψ(1 a⊗β

No

JΦbJΦ) ,

(iii) for all n ∈ N :
Ua
ψ(b(n) a⊗β

No

1) = (1 b⊗α
N

β(n))Ua
ψ

Ua
ψ(1 a⊗β

No

α(n)) = (a(n) b⊗α
N

1)Ua
ψ .

Therefore, we see that this unitary Ua
ψ "implements" a, but we do not know

whether it is a corepresentation. If it is, we shall say that it is a standard
implementation of a.
We can define the bidual weight ˜̃ψ on (A oa G) oã Ĝo, and the weight
˜̃ψ ◦Θ ◦ (a b∗α

N
id) on A b∗α

N
L(H), that we shall denote ψa for simplification

(or ψ if there is no ambiguity about the action). Then we get ([16], 13.6)
that the spatial derivative dψ

dψo is equal to the modulus operator ∆ψ̃. There
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exists a normal semi-finite faithful operator-valued weight Ta from A b∗α
N

L(H) onto Aoa G such that ψa = ψ̃ ◦ Ta.
Using twice ([35] 4.22(ii)), we obtain, for any x ∈ A and t ∈ R, that
σψa
t (a(x)) = a(σψt (x)); and if ψ1 and ψ2 are two normal semi-finite faithful

weights on A, we get:
(Dψ1a : Dψ2a)t = (Dψ̃1 : Dψ̃2)t = a((Dψ1 : Dψ2)t) .

2.5. Examples of measured quantum groupoids
Examples of measured quantum groupoids are the following:
(i) Locally compact quantum groups, as defined and studied by J. Kuster-
mans and S. Vaes ([24], [25], [36]); these are, trivially, the measured quan-
tum groupoids with the basis N = C.
(ii) Measured groupoids, equipped with a left Haar system and a quasi-
invariant measure on the set of units, as studied mostly by T. Yamanouchi
([47], [48], [49], [51]); it was proved in [17] that these measured quantum
groupoids are exactly those whose underlying von Neumann algebra is
abelian.
(iii) The finite dimensional case had been studied by D. Nikshych and
L. Vainermann ([29], [30], [31]), J.-M. Vallin ([41], [42]) and M.-C. David
([10]); in that case, non trivial examples are given, for instance Temperley-
Lieb algebras ([31], [10]), which had appeared in subfactor theory ([23]).
(iv) Continuous fields of (C∗-version of) locally compact quantum groups,
as studied by E. Blanchard in ([4], [5]); it was proved in [17] that these
measured quantum groupoids are exactly those whose basis is central in
the underlying von Neumann algebras of both the measured quantum
groupoid and its dual.
(v) In [11], K. De Commer proved that, in the case of a monoidal equiv-
alence between two locally compact quantum groups (which means that
these two locally compact quantum group have commuting ergodic and
integrable actions on the same von Neumann algebra), it is possible to
construct a measurable quantum groupoid of basis C2 which contains all
the data. Moreover, this construction was useful to prove new results on
locally compact quantum groups, namely on the deformation of a locally
compact quantum group by a unitary 2-cocycle; he proved that these mea-
sured quantum groupoids are exactly those whose basis C2 is central in
the underlying von Neumann algebra of the measured quantum groupoid,
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but not in the underlying von Neumann algebra of the dual measured
quantum groupoid.
(vi) Starting from a depth 2 inclusion M0 ⊂M1 of von Neumann algebras,
equipped with an operator-valued weight T1 from M1 onto M0, satisfying
appropriate conditions, such that there exists a normal semi-finite faith-
ful weight χ on the first relative commutant M ′0 ∩M1, invariant under
the modular automorphism group σT1

t , it has been proved ([22], [14]) that
it is possible to put on the second relative commutant M ′0 ∩M2 (where
M0 ⊂ M1 ⊂ M2 ⊂ M3 ⊂ · · · is Jones’ tower associated to the inclu-
sion M0 ⊂ M1) a canonical structure of a measured quantum groupoid;
moreover, its dual is given then by the same construction associated to
the inclusion M1 ⊂ M2, and this dual measured quantum groupoid acts
canonically on the von Neumann algebra M1, in such a way that M0 is
equal to the subalgebra of invariants, and the inclusion M1 ⊂ M2 is iso-
morphic to the inclusion of M1 into its crossed-product. This gives a "geo-
metrical" construction of measured quantum groupoids; in another article
in preparation ([18]), in which is used the biduality theorem for weights
proved in 7.3, had been proved that any measured quantum groupoid has
an outer action on some von Neumann algebra, and can be, therefore,
obtained by this "geometrical construction". The same result for locally
compact quantum groups relies upon [37] and the corresponding result for
measured quantum groupoids had been pointed out in [16].
(vii) In [38] and [2] was given a specific procedure for constructing locally
compact quantum groups, starting from a locally compact group G, whose
almost all elements belong to the product G1G2 (where G1 and G2 are
closed subgroups of G whose intersection is reduced to the unit element
of G); such (G1, G2) is called a "matched pair" of locally compact groups
(more precisely, in [38], the set G1G2 is required to be open, and it is
not the case in [2]).Then, G1 acts naturally on L∞(G2) (and vice versa),
and the two crossed-products obtained bear the structure of two locally
compact quantum groups in duality. In [43], J.-M. Vallin generalizes this
constructions up to groupoids, and, then, obtains examples of measured
quantum groupoids; more specific examples are then given by the action
of a matched pair of groups on a locally compact space, and also more
exotic examples.
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3. The standard implementation of an action: the case of a
dual action

In this chapter, following [36], we prove that the unitary Ua
ψ introduced in

2.4 is a standard implementation of a, for all normal semi-finite faithful
weight ψ on A, whenever a is a dual action (3.4). For this purpose, we
prove first that, if for some weight ψ1, the unitary Ua

ψ1
is a standard

implementation, then, for any weight ψ, Ua
ψ is a standard implementation

(3.1). Second (3.2), we prove, for a δ-invariant weight ψ, that Ua
ψ is equal

to the implementation Vψ constructed in ([16] 8.8) and recalled in 2.3.
Thanks to ([16] 13.3), recalled in 2.4, we then get the result.

3.1. Proposition

Let G be a measured quantum groupoid, and (b, a) an action of G on a
von Neumann algebra A; let ψ1 and ψ2 be two normal faithful semi-finite
weights on A and Ua

ψ1
and Ua

ψ2
the two unitaries constructed in 2.4; let

u be the unitary from Hψ1 onto Hψ2 intertwining the representations πψ1
and πψ2; then:
(i) The unitary u b⊗α

N
1 intertwines the representations of A oa G on

Hψ1 b⊗α
ν
HΦ and on Hψ2 b⊗α

ν
HΦ; moreover, we have:

(u b⊗α
N

1)Ua
ψ1 = Ua

ψ2(u a1⊗β
No

1)

where a1(n) = Jψ1πψ1(b(n∗))Jψ1, for all n ∈ N .
(ii) If Ua

ψ1
is a corepresentation of G on Hψ1, then Ua

ψ2
is a corepresenta-

tion of G on Hψ2.
(iii) If Ua

ψ1
is a standard implementation of a, then Ua

ψ2
is a standard

implementation of a.

Proof. Let us write J2,1 the relative modular conjugation, which is an
antilinear surjective isometry from Hψ1 onto Hψ2 . Then we have u =
J2,1Jψ1 = Jψ2J2,1, by ([33] 3.16). Moreover, let us define, for x ∈ A, and
t ∈ R, σ2,1

t (x) = [Dψ2 : Dψ1]tσψ1
t (x); then, by ([33], 3.15), for x ∈ Nψ1 ,

y ∈ D(σ2,1
−i/2), xy∗ belongs to Nψ2 and:

Λψ2(xy∗) = J2,1πψ1(σ2,1
−i/2(y))Jψ1Λψ1(x) .
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Therefore, if a ∈ NΦ̂c , (1b⊗α
N
a)a(xy∗) belongs to Nψ̃2

, and, we have, where

Vi (i = (1, 2)) denotes the unitary from Hψi b⊗α
ν

HΦ onto Hψ̃i
defined in

2.4:

Λψ̃2
[(1 b⊗α

N
a)a(xy∗)] = V2(Λψ2(xy∗) b⊗α

ν
ΛΦ̂c(a))

= V2J2,1πψ1(σ2,1
−i/2(y))Jψ1Λψ1(x) b⊗α

ν
ΛΦ̂c(a))

which is equal to:

V2(J2,1πψ1(σ2,1
−i/2(y))Jψ1 b⊗α

N
1)V ∗1 Λψ̃1

[(1 b⊗α
N

a)a(x)]

and, as the linear set generated by the elements of the form (1 b⊗α
N

a)a(x)

is a core for Λψ̃1
, we get, for any z ∈ Nψ̃1

, that za(y∗) belongs to Nψ̃2
,

and that:

Λψ̃2
(za(y∗)) = V2(J2,1πψ1(σ2,1

−i/2(y))Jψ1 b⊗α
N

1)V ∗1 Λψ̃1
(z) .

Let us denote by ˜J2,1 the relative modular conjugation constructed from
the weights ψ̃1 and ψ̃2, and σ̃2,1

t the one-parameter group of isometries
of A oa G constructed from these two weights by the formula, for any
X ∈ Aoa G:

σ̃2,1
t (X) = [Dψ̃2 : Dψ̃1]tσψ̃1

t (X) .
Using ([33], 3.15) applied to these two weights, we get that a(y) belongs
to D(σ̃2,1

−i/2) and that:

˜J2,1πψ̃1
(σ̃2,1
−i/2(a(y)))Jψ̃1

= V2(J2,1πψ1(σ2,1
−i/2(y))Jψ1 b⊗α

N
1)V ∗1 .

We easily get that σ̃2,1
t (a(y)) = a(σ2,1

t (y)) and, therefore, we have:

πψ̃1
(a(σ2,1

−i/2(y)) = ˜J2,1
∗
V2(J2,1πψ1(σ2,1

−i/2(y))Jψ1 b⊗α
N

1)V ∗1 Jψ̃1
.

As we have, using 2.4:

(Jψ1 b⊗α
N

JΦ̂)V ∗1 Jψ̃1
= Ua

ψ1V
∗

1

we get:

πψ̃1
(a(σ2,1

−i/2(y)) = ˜J2,1
∗
V2(J2,1 a1⊗β

No

JΦ̂)(πψ1(σ2,1
−i/2(y)) a1⊗β

No

1)Ua
ψ1V

∗
1
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and, therefore, using 2.4:

˜J2,1
∗
V2(J2,1 a1⊗β

No

JΦ̂)(πψ1(σ2,1
−i/2(y)) a1⊗β

No

1) = πψ̃1
(a(σ2,1

−i/2(y))V1(Ua
ψ1)∗

= V1a(σ2,1
−i/2(y))(Ua

ψ1)∗

which, using 2.4, is equal to:

V1U
a
ψ1(πψ1(σ2,1

−i/2(y)) a1⊗β
No

1) .

By density, we get:

Ua
ψ1 = V ∗1

˜J2,1
∗
V2(J2,1 a1⊗β

No

JΦ̂)

and, therefore, using 2.4 again:

1Hψ1 b⊗α
N

1HΦ = V ∗1 ˜J2,1
∗
V2(J2,1 a1⊗β

No

JΦ̂)(Jψ1 b⊗α
N

JΦ̂)V ∗1 Jψ̃1
V1

= V ∗1
˜J2,1
∗
V2(u b⊗α

N
1)V ∗1 Jψ̃1

V1

which implies that:

1Hψ̃1
b⊗α
N

1HΦ = ˜J2,1
∗
V2(u b⊗α

N
1)V ∗1 Jψ̃1

and:

V2(u b⊗α
N

1)V ∗1 = ˜J2,1Jψ̃1
.

But ˜J2,1Jψ̃1
= Jψ̃2

˜J2,1 is the unitary from Hψ̃1
onto Hψ̃2

which intertwines
πψ̃1

and πψ̃2
; from which we get the first result.
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This formula gives also, where a2(n) = Jψ2πψ2(b(n∗))Jψ2 , for all n ∈ N :

Ua
ψ2 = V ∗2 Jψ̃2

V2(Jψ2 a2⊗β
No

JΦ̂)

= (u b⊗α
N

1)V ∗1 Jψ̃1
˜J2,1
∗
Jψ̃2

V2(Jψ2 a2⊗β
No

JΦ̂)

= (u b⊗α
N

1)V ∗1 ˜J2,1
∗
V2(Jψ2 a2⊗β

No

JΦ̂)

= (u b⊗α
N

1)Ua
ψ1(Jψ1 b⊗α

N
JΦ̂)V ∗1 Jψ̃1

˜J2,1
∗
V2(Jψ2 a2⊗β

No

JΦ̂)

= (u b⊗α
N

1)Ua
ψ1(Jψ1 b⊗α

N
JΦ̂)V ∗1 V1(u∗ b⊗α

N
1)V ∗2 V2(Jψ2 a2⊗β

No

JΦ̂)

= (u b⊗α
N

1)Ua
ψ1(Jψ1 b⊗α

N
JΦ̂)(u∗ b⊗α

N
1)(Jψ2 a2⊗β

No

JΦ̂)

= (u b⊗α
N

1)Ua
ψ1(u∗ a2⊗β

No

1)

from which we finish the proof of (i). Using the intertwining properties of
u, (i) and ([16] 5.2), we then get (ii). Using then (ii) and the properties of
Ua
ψ ([16] 13.4) recalled in 2.4, we get (iii). �

3.2. Proposition
Let G be a measured quantum groupoid, and (b, a) an action of G on a
von Neumann algebra A; let ψ be a δ-invariant weight on A, bearing the
density condition, as defined in 2.3; then:
(i) The unitary Ua

ψ constructed in 2.4 is equal to the implementation Vψ
of a constructed in 2.3.
(ii) The dual weight satisfies ∆it

ψ̃
= ∆it

ψ b⊗α
N

(δ∆Φ̂)−it, where this last one-
parameter group of unitaries had been defined in 2.3.

Proof. Let ξ ∈ D(αHΦ, ν), x, y in Nψ ∩N∗ψ, a ∈ NT̂ c ∩N∗
T̂ c
∩NΦ̂c ∩N∗

Φ̂c
,

such that ΛΦ̂c(a
∗) belongs to the set Êτ̂ introduced in ([16]4.4). We have,

using 2.4:

(ρb,αξ )∗Sψ̃a(x∗)(Λψ(y) b⊗α
ν

ΛΦ̂c(a)) = (ρb,αξ )∗a(y∗)(Λψ(x) b⊗α
ν

ΛΦ̂c(a
∗))

and, as ΛΦ̂c(a
∗) belongs to D(αHΦ, ν), thanks to ([16]4.4) it is equal to:

(id b∗α
N
ωΛ

Φ̂c
(a∗),ξ)a(y∗)Λψ(x) = Λψ((id b∗α

N
ωΛ

Φ̂c
(a∗),ξ)a(y∗)x) .
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Let us suppose now that x is analytic with respect to ψ; as δ1/2ΛΦ̂c(a
∗)

belongs to D((HΦ)β, νo), thanks again to ([16]4.4), we get, using ([16]
8.4.(iii)), that it is equal to:

JΨσ
ψ
−i/2(x∗)JψΛψ[(id b∗α

N
ωΛ

Φ̂c
(a∗),ξ)a(y∗)

= JΨσ
ψ
−i/2(x∗)Jψ(id ∗ ωδ1/2Λ

Φ̂c
(a∗),ξ)(Vψ)Λψ(y∗)

= (ρb,αξ )∗(JΨσ
ψ
−i/2(x∗)Jψ b⊗α

ν
1)Vψ(Λψ(y∗) a⊗β

νo
δ1/2ΛΦ̂c(a

∗))

from which we get that:

Sψ̃a(x∗)(Λψ(y) b⊗α
ν

ΛΦ̂c(a)) =

(JΨσ
ψ
−i/2(x∗)Jψ b⊗α

ν
1)Vψ(Λψ(y∗) a⊗β

νo
δ1/2ΛΦ̂c(a

∗))

and, taking a bounded net xi strongly converging to 1, such that σψ−i/2(x∗i )
is also converging to 1, and using the fact that Sψ̃ is closed, we get:

Sψ̃(Λψ(y) b⊗α
ν

ΛΦ̂c(a)) = Vψ[Jψ∆1/2
ψ Λψ(y) a⊗β

νo
JΦ̂(δ∆Φ̂)−1/2ΛΦ̂c(a)]

from which we deduce that:

Vψ(Jψ b⊗α
N

JΦ̂)(∆1/2
ψ b⊗α

N
δ∆Φ̂

−1/2) ⊂ Sψ̃

where ∆1/2
ψ b⊗α

N
(δ∆Φ̂)−1/2 is the infinitesimal generator of the one-parame-

ter group of unitaries ∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
introduced in 2.3. But, on the other

hand, for all t ∈ R, we have, using 2.4:

(∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
)Sψ̃a(x∗)(Λψ(y) b⊗α

ν
ΛΦ̂c(a)) =

= (∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
)a(y∗)(Λψ(x) b⊗α

ν
ΛΦ̂c(a

∗))

which, using 2.3, is equal to:

a(σψt (y∗))(Λψ(σψt (x)) b⊗α
ν
SΦ̂cδ

−it∆−it
Φ̂

ΛΦ̂c(a)) =

a(σψt (y∗))(Λψ(σψt (x)) b⊗α
ν
SΦ̂cδ

−it∆−it
Φ̂

ΛΦ̂c(a))
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which is equal, using again 2.4, to:

Sψ̃a(σψt (x∗))(Λψ(σψt (y)) b⊗α
ν
δ−it∆−it

Φ̂
ΛΦ̂c(a)) .

Taking again a family xi converging to 1, and using the closedness of Sψ̃,
we get that:

(∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
)Sψ̃(Λψ(y) b⊗α

ν
ΛΦ̂c(a)) =

Sψ̃(Λψ(σψt (y)) b⊗α
ν
δ−it∆−it

Φ̂
ΛΦ̂c(a)) =

Sψ̃(∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
)(Λψ(y) b⊗α

ν
ΛΦ̂c(a))

from which, using 2.4, we deduce that
(∆it

ψ b⊗α
N

δ−it∆−it
Φ̂

)Sψ̃ = Sψ̃(∆it
ψ b⊗α

N
δ−it∆−it

Φ̂
)

and, therefore, we have:

Vψ(Jψ b⊗α
N

JΦ̂)(∆1/2
ψ b⊗α

N
δ∆Φ̂

−1/2) = Sψ̃

and, by polar decomposition, we have:
Jψ̃ = Vψ(Jψ b⊗α

N
JΦ̂)

which, by definition of Ua
ψ, leads to (i).

We also get:
∆1/2
ψ̃

= ∆1/2
ψ b⊗α

N
δ∆Φ̂

−1/2

which leads to (ii). �

3.3. Corollary
Let G be a measured quantum groupoid, and (b, a) an action of G on a von
Neumann algebra A; let us suppose that there exists on A a δ-invariant
weight on A, bearing the density condition, as defined in 2.3; then, for any
normal semi-finite faithful weight ψ on A, the unitary Ua

ψ constructed in
2.4 is a standard implementation of a as defined in 2.4.

Proof. If ψ is a δ-invariant weight on A, bearing the density condition,
as defined in 2.3, we have the result using 3.2; for another weight, using
3.1(iii), we get the result. �
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3.4. Corollary
Let G be a measured quantum groupoid, and (b, a) an action of G on a
von Neumann algebra A; let us suppose that A is isomorphic to a crossed-
product Bob Ĝo where b is an action of Ĝo on a von Neumann algebra B,
and that this isomorphism sends a on b̃. Then, for any normal semi-finite
faithful weight ψ on A, the unitary Ua

ψ constructed in 2.4 is a standard
implementation of a as defined in 2.4.

Proof. We have recalled in 2.4 that any dual weight on B ob Ĝo is a δ-
invariant weight on BobĜ

o, bearing the density condition; therefore, using
3.3, we get the result. �

3.5. Corollary
Let G be a measured quantum groupoid, and (b, a) an action of G on a
von Neumann algebra A; let us consider the action (1 b⊗α

N
β̂, a) of G on

A b∗α
N
L(H), introduced in 2.4; then, for any normal semi-finite faithful

weight ψ on A b∗α
N
L(H), the unitary Ua

ψ is a standard implementation of
the action a.

Proof. This is just a corollary of 3.4 and of the biduality theorem, recalled
in 2.4. �

3.6. Corollary
Let G be a measured quantum groupoid, and (b, a) an action of G on a
von Neumann algebra A; let ψ be a δ-invariant weight on A, bearing the
density condition, as defined in 2.3; then, for any x ∈ M̂ ′, t ∈ R, we have:

σψ̃t (1 b⊗α
N

x) = 1 b⊗α
N

∆it
Φx∆−itΦ .

Proof. Using 3.2(ii), we get that:

σψ̃t (1 b⊗α
N

x) = 1 b⊗α
N

(δ∆Φ̂)−itx(δ∆Φ̂)it .

But, using ([16]3.11(ii)), we know that (δ∆Φ̂)it = (δ̂∆Φ)−it; as δ̂ is affili-
ated to M̂ , we get the result. �
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3.7. Corollary
Let G be a measured quantum groupoid, and (b, a) an action of G on a
von Neumann algebra A; let ψ be a normal semi-finite faithful weight on
A; then, for any x in M ′, t ∈ R, we have:

σ
˜̃ψ
t (1 b⊗α

N
1 α̂⊗β

No

x) = 1 b⊗α
N

1 α̂⊗β
No

∆−it
Φ̂
x∆it

Φ̂ .

Proof. Let’s apply 3.6 to the dual action (1 b⊗α
N

α̂, ã) of Gc on Aoa G, and

the dual weight ψ̃, and we get the result. �

3.8. Corollary
Let G be a measured quantum groupoid, and (b, a) an action of G on a von
Neumann algebra A; let ψ be a normal semi-finite faithful weight on A;
let (1 b⊗α

N
β̂, a) be the action of G on A b∗α

N
L(H) obtained by transporting

on A b∗α
N
L(H) the bidual action and ψa be the normal semi-finite faithful

weight on A b∗α
N
L(H) obtained by transporting the bidual weight. Then,

for any x in M ′, t ∈ R, we have:

σ
ψa
t (1 b⊗α

N
x) = 1 b⊗α

N
∆−it

Φ̂
x∆it

Φ̂ .

Proof. The canonical isomorphism between Ab∗α
N
L(H) and (AoaG)oã Ĝc

sends, for all x ∈M ′, 1 b⊗α
N

x on 1 b⊗α
N

1 α̂⊗β
No

x (cf. [16] 11.2). So, the result

is a straightforward consequence of 3.7. �

4. An auxilliary weight ψ.

If b is a normal faithful non degenerate anti-homomorphism from N into
a von Neumann algebra A, such that there exists a normal faithful semi-
finite operator-valued weight T from A on b(N), we associate to the weight
ψ = νo ◦ b−1 ◦T a weight ψ on A b∗α

N
L(H) (4.4); we calculate its modular

automorphism group (4.8), and the GNS representation of A b∗α
N
L(H)

given by this weight (4.10).
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4.1. Definitions
Let b be an injective ∗-antihomorphism from a von Neumann algebra N
into a von Neumann algebra A; we shall then say that (N, b,A) (or simply
A) is a faithful right von Neumann N -module. If there exists a normal
semi-finite faithful operator-valued weight T from A onto b(N), we shall
say that this faithful right N -module is weighted.
Let then ψ be a normal faithful semi-finite weight on A; if, for all t in
R, n in N , we have σψt (b(n)) = b(σν−t(n)), then there exists a normal
semi-finite faithful operator-valued weight T from A onto b(N) such that
ψ = νo ◦ b−1 ◦ T; such a weight ψ on A will be said lifted from νo by T
(or, simply, a lifted weight).
If ψ is a normal semi-finite faithful weight on A, lifted from νo by T, then
the weight ψ bears the density property introduced in ([16], 8.1), recalled
in 2.3. Namely, using ([16], 2.2.1), one gets that D(aHψ, ν)∩D((Hψ)b, νo)
contains all the vectors of the form Λψ(x), where x ∈ NT∩N∗T∩Nψ∩N∗ψ is
analytical with respect to ψ, and such that, for any z ∈ C, σz(x) belongs
to NT∩N∗T∩Nψ∩N∗ψ; therefore D(aHψ, ν)∩D((Hψ)b, νo) is dense in Hψ,
which is the density property.
If (b, a) is an action of a measured quantum goupoid

G = (N,M,α, β,Γ, T, T ′, ν)
on a von Neumann algebra A, we shall say that this action is weighted if
the faithful right N -module (N, b,A) is weighted.

4.2. Lemma
Let (N, b,A) be a faithful weighted right von Neumann N -module, and let T
be a normal semi-finite faithful operator-valued weight from A onto b(N);
let α be a nomal faithful representation of N on a Hilbert space H and
ν a normal semi-finite faithful weight on N ; then, it is possible to define
a canonical normal semi-finite faithful operator-valued weight (T b∗α

N
id)

from A b∗α
N
L(H) onto 1 b⊗α

N
α(N)′ (which is equal to b(N) b∗α

N
L(H), by

([16], 2.4)), such that, if ψ denotes the weight on A lifted from νo by T, we
get, for any X ∈ (A b∗α

N
L(H))+, that (T b∗α

N
id)(X) = 1 b⊗α

N
(ψ b∗α

ν
id)(X),

where T b∗α
N
id and ψ b∗α

ν
id are slice maps introduced in [14] and recalled

in ([16], 2.5).
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Proof. Let us represent A on a Hilbert space H; using Haagerup’s theorem
([35], 4.24), there exists a canonical normal semi-finite faithful operator
valued weight T−1 from b(N)′ onto A′; considering the representation of
b(N)′ on H b⊗α

ν
H, and using again Haagerup’s theorem, we obtain an-

other normal semi-finite faithful operator-valued weight (T−1)−1 from the
commutant of A′ on H b⊗α

ν
H (which is A b∗α

N
L(H)) onto the commutant

of b(N)′ on H b⊗α
ν
H (which is b(N) b∗α

N
L(H)). As both T and (T−1)−1 are

obtained by taking the commutants, within two different representations,
of the same operator-valued weight T−1, a closer look at this construction
leads ([19], 10.2) to the fact that (T−1)−1 = (T b∗α

N
id). The link between

(T b∗α
N
id) and (ψ b∗α

ν
id) is recalled in ([16] 2.5). �

4.3. Proposition
Let (N, b,A) be a von Neumann faithful right N -module, and let α be a
normal faithful non degenerate representation of N on a Hilbert space H
and ν a normal semi-finite faithful weight on N ; then:
(i) Let’s represent A on a Hilbert space K; the linear set generated by all
operators on K β⊗α

ν
H, of the form ρβ,αξ1

a(ρβ,αξ2
)∗, with a in A and ξ1, ξ2 in

D(αH, ν), is a ∗-algebra, which is weakly dense in A b∗α
N
L(H).

(ii) Let ψ be a normal faithful semi-finite weight on A, and let’s represent
A on Hψ; then, for any a in Nψ and ξ in D(αH, ν), Λψ(a) b⊗α

ν
ξ belongs

to D(Hψ b⊗α
ν
H, ψo) (where we deal with the representation x 7→ x b⊗α

N
1 of

Ao = JψAJψ), and we have θψo(Λψ(a)b⊗α
ν
ξ,Λψ(a)b⊗α

ν
ξ) = ρb,αξ aa∗(ρb,αξ )∗.

(iii) For all n ∈ N , let us define a(n) = Jψb(n∗)Jψ; let
G = (N,M,α, β,Γ, T, T ′, ν)

be a measured quantum groupoid; then, the representation of A b∗α
N
L(H)

on H β⊗a
ν

Hψ b⊗α
ν

H defined by x 7→ 1 β⊗a
N

x is standard, when we equip

the Hilbert space with the antilinear involutive isometry J defined, for any
ξ, η in D(αH, ν), ζ in Hψ, by:

J(JΦ̂η β⊗a
ν

ζ b⊗α
ν
ξ) = JΦ̂ξ β⊗a

ν
Jψζ b⊗α

ν
η
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and with the closed cone P generated by all elements of the form JΦ̂ξ β⊗a
ν

ζ ′ b⊗α
ν
ξ, when ξ is in D(αH, ν), and ζ ′ in the cone Pψ given by the Tomita-

Takesaki theory associated to the weight ψ.
(iv) Let ϕ be a normal semi-finite faithful weight on A b∗α

N
L(H); then

Λψ(a) b⊗α
ν
ξ belongs to D(( dϕdψo )1/2) if and only if ρb,αξ aa∗(ρb,αξ )∗ belongs to

M+
ϕ , and then:

ϕ(ρb,αξ aa∗(ρb,αξ )∗) = ‖( dϕ
dψo

)1/2(Λψ(a) b⊗α
ν
ξ)‖2 .

Moreover, if Λψ(a) b⊗α
N

ξ belongs to D(( dϕdψo )1/2), the vector

( dϕ
dψo

)1/2(Λψ(a) b⊗α
N

ξ)

belongs to D(Hψ b⊗α
ν

H,ϕ), and the canonical isomorphism between Hϕ

and Hβ⊗a
ν
Hψb⊗α

ν
H sends Rϕ(( dϕdψo )1/2(Λψ(a)b⊗α

ν
ξ))∗(ζ b⊗α

ν
η) on JΦ̂ξβ⊗a

ν
JψaJψζ b⊗α

ν
η.

Proof. Using 2.1, we get, for a1, a2 in A, and ξ1, ξ2, ξ3, ξ4 in D(αH, ν),
that:

ρβ,αξ1
a1(ρβ,αξ2

)∗ρβ,αξ3
a2(ρβ,αξ4

)∗ = ρβ,αξ1
a1b(〈ξ3, ξ2〉α,ν)a2(ρβ,αξ4

)∗

from which we see that this linear set is indeed an algebra; moreover, it
is clear that it is invariant under taking the adjoint. Let’s take c ∈ A′; we
have:

ρβ,αξ1
a(ρβ,γξ2

)∗(c β⊗α
N

1) = ρβ,αξ1
ac(ρβ,αξ2

)∗

= ρβ,αξ1
ca(ρβ,αξ2

)∗

= (c β⊗α
N

1)ρβ,αξ1
a(ρβ,αξ2

)∗

from which we get that ρβ,αξ1
a(ρβ,αξ2

)∗ belongs to A β∗α
N

L(H). Let now

X ∈ A β∗α
N

L(H), and let (ei)i∈I be a (α, ν)-orthogonal basis of H; we get
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that (id β∗α
ν
ωei,ej )(X) belongs to A, and we have, when we take the weak

limits over the finite subsets J , J ′ of I:

X = limJ,J ′
∑

i∈J,j∈J ′
(1 β⊗α

N

θα,ν(ei, ei))X(1 β⊗α
N

θα,ν(ej , ej))

= limJ,J ′
∑

i∈J,j∈J ′
ρβ,αei (id β∗α

ν
ωei,ej )(X)(ρβ,αej )∗

which proves (i).
Let a ∈ Nψ, ξ ∈ D(αH, ν); then, for all x ∈ Nψ, we have:

JψxJψΛψ(a) b⊗α
ν
ξ = aJψΛψ(x) b⊗α

ν
ξ

= ρb,αξ aJψΛψ(x)

Therefore, Λψ(a) b⊗α
ν
ξ belongs to D(Hψ b⊗α

ν
H, ψo), and Rψ

o(Λψ(a) b⊗α
ν

ξ) = ρb,αξ a. So, we get that θψo(Λψ(a) b⊗α
ν
ξ,Λψ(a) b⊗α

ν
ξ) = ρb,αξ aa∗(ρb,αξ )∗,

which is (ii).
By [32](3.1), we know that A b∗α

N
L(H) has a standard representation x 7→

x⊗ψ1 on the Hilbert space (Hψ b⊗α
ν
H)⊗ψ (Hψ b⊗α

ν
H). Using then (ii) and

[32](0.3.1), we get that this Hilbert space is isomorphic to Hβ⊗a
ν
Hψb⊗α

ν
H,

and that this isomorphism sends, for b ∈ Nψ, η ∈ D(αH, ν):
a) the vector (Λψ(a)b⊗α

ν
ξ)⊗ψ (Λψ(b) b⊗α

ν
η) on JΦ̂ηβ⊗a

ν
JψbJψΛψ(a)b⊗α

ν
ξ,

b) the standard representation x 7→ x ⊗ψ 1 on the representation x 7→
1 β⊗a

N

x,

c) the antilinear involutive isometry which sends

(Λψ(a) b⊗α
ν
ξ)⊗ψ (Λψ(b) b⊗α

ν
η) to (Λψ(b) b⊗α

ν
η)⊗ψ (Λψ(a) b⊗α

ν
ξ)

on J ,
d) the cone generated by all elements of the form (Λψ(a) b⊗α

ν
ξ) ⊗ψ

(Λψ(a) b⊗α
ν
ξ) on P, which gives (iii).

Using (ii), we get that:

ϕ(ρb,αξ aa∗(ρb,αξ )∗) = ϕ(θψo(Λψ(a) b⊗α
ν
ξ,Λψ(a) b⊗α

ν
ξ))
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and, by definition of the spatial derivative, we know that, if Λψ(a) b⊗α
N

ξ

belongs to D(( dϕdψo )1/2), we have:

ϕ(ρb,αξ aa∗(ρb,αξ )∗) = ϕ(θψo(Λψ(a) b⊗α
ν
ξ,Λψ(a) b⊗α

ν
ξ)

= ‖( dϕ
dψo

)1/2(Λψ(a) b⊗α
ν
ξ)‖2

and, if Λψ(a) b⊗α
ν
ξ does not belong to D(( dϕdψo )1/2), we know that

ϕ(ρb,αξ aa∗(ρb,αξ )∗) = +∞.

So, we have the first part of (iv). Then, the second part of (iv) is given by
[32](3.2) and (iii). �

4.4. Proposition
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let
(N, b,A) be a faithful weighted right von Neumann N -module, and let ψ
be a normal semi-finite faithful weight on A lifted from νo in the sense of
4.1. Then:
(i) It possible to define a one-parameter group of unitaries on ∆it

ψ b⊗α
ν

∆−it
Φ̂

on Hψ b⊗α
ν
H, with natural values on elementary tensors. This one-

parameter group of unitaries implements on Ab∗α
N
L(H) the one-parameter

group of automorphisms σψt b∗α
N
Ad∆−it

Φ̂
.

(ii) There exists a normal semi-finite faithful weight ψ on A b∗α
N
L(H)

such that the spatial derivative dψ

dψo is equal to the generator ∆ψ b⊗α
ν

∆−1
Φ̂

of the one-parameter group of unitaries constructed in (i); the modular au-
tomorphism group σψt is equal to the automorphism group σψt b∗α

N
Ad∆−it

Φ̂
constructed in (i).
(iii) For any a in Nψ ∩ N∗ψ, and ξ ∈ D(αH, ν) ∩ D(∆−1/2

Φ̂
), such that

∆−1/2
Φ̂

ξ belongs to D(αH, ν), we have:

ψ(ρb,αξ aa∗(ρb,αξ )∗) = ‖∆1/2
ψ Λψ(a) b⊗α

ν
∆−1/2

Φ̂
ξ‖2 .
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Proof. If ξ ∈ D(αH, ν), we get, for all t ∈ R and n ∈ Nν :

α(n)∆−it
Φ̂
ξ = ∆−it

Φ̂
σΦ̂
t (α(n))ξ

= ∆−it
Φ̂
α(σνt (n))ξ

= ∆−it
Φ̂
Rα,ν(ξ)∆it

ν Λν(n)

from which we get that ∆−it
Φ̂
ξ belongs to D(αH, ν), and Rα,ν(∆−it

Φ̂
ξ) =

∆−it
Φ̂
Rα,ν(ξ)∆it

ν . Therefore, we have 〈∆−it
Φ̂
ξ,∆−it

Φ̂
ξ〉oα,ν = σν−t(〈ξ, ξ〉oα,ν).

Taking now η ∈ Hψ, we get:

‖∆it
ψη b⊗α

ν
∆−it

Φ̂
ξ‖2 = (b(〈∆−it

Φ̂
ξ,∆−it

Φ̂
ξ〉oα,ν)∆it

ψη|∆it
ψη)

= (b(σν−t(〈ξ, ξ〉oα,ν))∆it
ψη|∆it

ψη)

= (σψt (b(〈ξ, ξ〉oα,ν))∆it
ψη|∆it

ψη)
= (b(〈ξ, ξ〉oα,ν)η|η)
= ‖η b⊗α

ν
ξ‖2

from which we get the existence of the one-parameter group of unitaries.
It is then easy to finish the proof of (i).
As (∆it

ψ b⊗α
ν

∆−it
Φ̂

)(JψxJψ b⊗α
N

1)(∆−itψ b⊗α
ν

∆it
Φ̂

) = Jψσ
ψ
t (x)Jψ b⊗α

N
1, we

obtain ([35], 3.11) that there exists a normal faithful semi-finite weight ψ
on A b∗α

N
L(H) such that:

dψ

dψo
= ∆ψ b⊗α

ν
∆−1

Φ̂
.

Moreover, the modular automorphism group σψt is then equal to the one-
parameter automorphism group σψt b∗α

N
Ad∆−it

Φ̂
, constructed in (i), which

finishes the proof of (ii).
So, using now 4.3(iv) applied to ψ, we get that ρb,αξ aa∗(ρb,αξ )∗ belongs to
M+

ψ if and only if Λψ(a) b⊗α
ν

ξ belongs to D(∆1/2
ψ b⊗α

ν
∆−1/2

Φ̂
), and then,

we have:
ψ(ρb,αξ aa∗(ρb,αξ )∗) = ‖∆1/2

ψ Λψ(a) b⊗α
ν

∆−1/2
Φ̂

ξ‖2

from which we get (iii). �
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4.5. Corollary
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let
(N, b,A) be a faithful weighted right von Neumann N -module, ψ1 (resp.
ψ2) be a normal faithful semi-finite weight on A lifted from νo and ψ1
(resp. ψ2) be the normal semi-finite faithful weight on A b∗α

N
L(H) con-

structed in 4.4(ii); then:
(i) the cocycle (Dψ1 : Dψ2)t belongs to A ∩ b(N)′;
(ii) we have: (Dψ1 : Dψ2)t = (Dψ1 : Dψ2)t b⊗α

N
1.

Proof. As ψ1 and ψ2 are lifted weights, (i) is well known ([35], 4.22. (iii)).
Let (H, π, J,P) be a standard representation of the von Neumann algebra
A; then Ao is represented on H by JAJ ; for any normal semi-finite faithful
weight ψ on A, we have dψ

dψo = ∆1/2
ψ ; moreover, we have then:

(dψ1
dψo1

)it(Dψo1 : Dψo2)t(
dψo2
dψ2

)it = (dψ1
dψo1

)it(dψ
o
1

dψ1
)it(dψ

o
2

dψ1
)−it(dψ

o
2

dψ2
)it

= (dψ1
dψo2

)it(dψ2
dψo2

)−it

= (Dψ1 : Dψ2)t

and, therefore (Dψo1 : Dψo2)t = ∆−itψ1
(Dψ1 : Dψ2)t∆it

ψ2
. By similar argu-

ments, we have on H b⊗α
ν
H:

(Dψ1 : Dψ2)t = (
dψ1

dψo1
)it(dψ

o
1

dψ2
)it

= (
dψ1

dψo1
)it(Dψo1 : Dψo2)t(

dψ2

dψo2
)−it

As (Dψo1 : Dψo2)t belongs to JAJ b⊗α
N

1H and is therefore equal to:

∆−itψ1
(Dψ1 : Dψ2)t∆it

ψ2 b⊗α
N

1H

we obtain, using 4.4(ii), that (Dψ1 : Dψ2)t is equal to:

(∆it
ψ1 b⊗α

N
∆−it

Φ̂
)(∆−itψ1

(Dψ1 : Dψ2)t∆it
ψ2 b⊗α

N
1H)(∆−itψ2 b⊗α

N
∆it

Φ̂)

from which we get the result. �
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4.6. Remarks

Let us consider the trivial action (id, β) of G on No ([16], 6.2); it is clearly
a weighted action (with the identity of No as operator-valued weight); the
crossed product is then M̂ ′, and the dual action is equal to Γ̂c ([16], 9.4);
the operator-valued weight from M̂ ′ onto β(N) is then T̂ c, and, therefore,
the dual weight ν̃o of the weight νo on No is the Haar weight Φ̂c; by the
biduality theorem (2.3), we get that the crossed-product M̂ ′ oΓ̂c Ĝc is
isomorphic to No ∗ L(H) = α(N)′; transporting the bidual weight ˜̃νo on
M̂ ′oΓ̂c Ĝc by this isomorphism, we obtain the weight νoβ on α(N)′, which
verifies, thanks to 2.4, for all ξ ∈ D(αH, ν) ∩ D(∆−1/2

Φ̂
):

νoβ(θα,ν(ξ, ξ)) = ‖∆−1/2
Φ̂

ξ‖2

and, for all t ∈ R, x ∈ α(N)′, σ
νo
β

t (x) = ∆−it
Φ̂
x∆it

Φ̂
.

On the other hand, for any y ∈ NT̂ c ∩NΦ̂c , z ∈ NT oc ∩NΦoc , we have, by
construction of νoβ:

νoβ(y∗z∗zy) = Φ̂c(y∗T oc(z∗z)y) = ‖ΛΦ̂c(y) α̂⊗β
νo

ΛΦoc(z)‖2 .

Let now (b, a) be an action of G on a von Neumann algebra A, and ψ a
normal semi-finite faithful weight on A; by construction of ψa, we have,
for any x ∈ Nψ:

ψa(a(x∗)(1 b⊗α
N

y∗z∗zy)a(x)) = ‖Λψ(x) b⊗α
ν

ΛΦ̂c(y) α̂⊗β
νo

ΛΦoc(z)‖2

and, by applying ([16],13.3) to the weight ˜̃νo, we get, for any X ∈ Nνo
β

such that Λνo
β
(X) belongs to D(αHνo

β
, ν):

ψa(a(x∗)(1 b⊗α
N

X∗X)a(x)) = ‖Λψ(x) b⊗α
ν

Λνo
β
(X)‖2 .

4.7. Lemma

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let
(N, b,A) be a faithful weighted right von Neumann right N -module; then:
(i) if ξ, η are in D(αH, ν) ∩ D(∆−1/2

Φ̂
), such that ∆−1/2

Φ̂
ξ and ∆−1/2

Φ̂
η
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belong to D(αH, ν), 〈∆−1/2
Φ̂

ξ, η〉oα,ν belongs to D(σν−i/2) and

σν−i/2(〈∆−1/2
Φ̂

ξ, η〉oα,ν) = 〈ξ,∆−1/2
Φ̂

η〉oα,ν ;

(ii) there exists an (α, ν)-orthogonal basis of H such that, for all i ∈ I, ei
belongs to D(αH, ν) ∩ D(∆−1/2

Φ̂
) and ∆−1/2

Φ̂
ei belongs to D(αH, ν);

(iii) for any such basis, the weight νoβ defined in 4.6 satisfies, for all x ∈
α(N)′+:

νoβ(x) =
∑
i

(x∆−1/2
Φ̂

ei|∆−1/2
Φ̂

ei) .

Proof. We get, for any n ∈ Nν , analytic with respect to ν:

Rα,ν(∆−1/2
Φ̂

ξ)Λν(n) = α(n)∆−1/2
Φ̂

ξ

= ∆−1/2
Φ̂

α(σν−i/2(n))ξ

= ∆−1/2
Φ̂

Rα,ν(ξ)∆1/2
ν Λν(n)

and, using ([9], 1.5):

Λν(〈η,∆−1/2
Φ̂

ξ〉oα,ν) = Jν∆1/2
ν Λν(〈∆−1/2

Φ̂
ξ, η〉oα,ν)

= Jν∆1/2
ν Rα,ν(∆−1/2

Φ̂
ξ)∗η

= JνR
α,ν(ξ)∗∆−1/2

Φ̂
η

= JνΛν(〈ξ,∆−1/2
Φ̂

η〉α,ν)

from which we get (i).
Applying ([15]2.10) to the inclusion α(N) ⊂ M̂ and the operator-valued
weight T̂ , we get that it is possible to construct an orthogonal (α, ν)-
basis (ei)i∈I such that ei = JΦ̂ΛΦ̂(xi), with xi ∈ NΦ̂ ∩ N∗

Φ̂
∩ NT̂ ∩ N∗

T̂
;

so, ei belongs to D(∆−1/2
Φ̂

), and ∆−1/2
Φ̂

ei = JΦ̂ΛΦ̂(x∗i ) which belongs to
D(αH, ν); which is (ii).
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Using (ii) and (i), we have:

(θα,ν(ξ, ξ)∆−1/2
Φ̂

ei|∆−1/2
Φ̂

ei) = ‖Rα,ν(ξ)∗∆−1/2
Φ̂

ei‖2

= ‖Λν(〈ei,∆−1/2
Φ̂

ξ〉oα,ν)‖2

= ν((Rα,ν(∆−1/2
Φ̂

ξ)∗θα,ν(ei, ei)Rα,ν(∆−1/2
Φ̂

ξ)o)

and we get, using (i) and 4.6:

∑
i

(θα,ν(ξ, ξ)∆−1/2
Φ̂

ei|∆−1/2
Φ̂

ei) = ν(〈∆−1/2
Φ̂

ξ,∆−1/2
Φ̂

ξ〉oα,ν)

= ‖∆−1/2
Φ̂

ξ‖2

= νoβ(θα,ν(ξ, ξ))

from which we get that
∑
i ω∆−1/2

Φ̂
ei

is a normal semi-finite weight on

α(N)′, and, by unicity of the spatial derivative, we get this weight is equal
to νoβ. �

4.8. Theorem

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let
(ei)i∈I be an (α, ν)-orthogonal basis of H such that, for all i ∈ I, ei belongs
to D(αH, ν)∩D(∆−1/2

Φ̂
) and ∆−1/2

Φ̂
ei belongs to D(αH, ν); let (N, b,A) be

a faithful weighted right von Neumann right N -module, and let ψ be a
normal semi-finite faithful weight on A lifted from νo; then, we have, with
the notations of 4.4, 4.2 and 4.6:

ψ =
∑
i

ψ b∗α
ν
ω∆−1/2

Φ̂
ei

= νoβ ◦ (ψ b∗α
ν
id) .
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Proof. Let X ∈ (A b∗α
N
L(H))+; we have:

∑
i

ψ b∗α
ν
ω∆−1/2

Φ̂
ei

(X) =
∑
i

ν ◦ b−1
b∗α
ν
ω∆−1/2

Φ̂
ei

(T b∗α
N
id)(X)

= (ν ◦ b−1
b∗α
ν
νoβ)(T b∗α

N
id)(X)

= νoβ(ν ◦ b−1
b∗α
ν
id)(T b∗α

N
id)(X)

= νoβ ◦ (ψ b∗α
ν
id)(X)

which is the second equality, and proves therefore that
∑
i ψ b∗α

ν
ω∆−1/2

Φ̂
ei

defines a normal semi-finite faithful weight on A b∗α
N
L(H), which does not

depend on the choice of the (α, ν)-orthogonal basis (ei)i∈I . Let us denote
ψ0 that weight.
We get:

ψ0(ρb,αξ aa∗(ρb,αξ )∗) =
∑
i

ψ(b(〈∆−1/2
Φ̂

ei, ξ〉oα,ν)∗aa∗b(〈∆
−1/2
Φ̂

ei, ξ〉oα,ν)) .

Applying 4.7(i), if ξ belongs to D(αH, ν) ∩ D(∆−1/2
Φ̂

), and is such that

∆−1/2
Φ̂

ξ belongs to D(αH, ν), we get that b(〈∆−1/2
Φ̂

ei, ξ〉oα,ν)∗) belongs to
D(σψ−i/2) and that:

σψ−i/2(b(〈∆−1/2
Φ̂

ei, ξ〉oα,ν)∗) = b(σνi/2(〈ξ,∆−1/2
Φ̂

ei〉α,ν)o)

= b(〈∆−1/2
Φ̂

ξ, ei〉oα,ν) .
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So, with such an hypothesis on ξ, and if a belongs to Nψ ∩ N∗ψ, we get
that:

ψ0(ρb,αξ aa∗(ρb,αξ )∗)

=
∑
i

‖Jψb(〈ei,∆
−1/2
Φ̂

ξ〉oα,ν)JψΛψ(a∗)‖2

=
∑
i

‖b(〈∆−1/2
Φ̂

ξ, ei〉oα,ν)∆
1/2
ψ Λψ(a)‖2

=
∑
i

(b(〈∆−1/2
Φ̂

ξ, ei〉oα,ν〈ei,∆
−1/2
Φ̂

ξ〉oα,ν)∆
1/2
ψ Λψ(a)|∆1/2

ψ Λψ(a))

= (b(〈∆−1/2
Φ̂

ξ,∆−1/2
Φ̂

ξ〉oα,ν)∆
1/2
ψ Λψ(a)|∆1/2

ψ Λψ(a))

= ‖∆1/2
ψ Λψ(a) b⊗α

ν
∆−1/2

Φ̂
ξ‖2

Using 4.4(iii), we get that ψ(ρb,αξ aa∗(ρb,αξ )∗) = ψ0(ρb,αξ aa∗(ρb,αξ )∗), for all a
in Nψ∩N∗ψ and ξ ∈ D(αH, ν)∩D(∆−1/2

Φ̂
), and is such that ∆−1/2

Φ̂
ξ belongs

to D(αH, ν). By polarisation, we get ψ(ρb,αξ ab(ρb,αη )∗) = ψ0(ρb,αξ ab(ρb,αη )∗),
for all a, b in Nψ ∩N∗ψ and ξ, η in D(αH, ν)∩D(∆−1/2

Φ̂
), such that ∆−1/2

Φ̂
ξ

and ∆−1/2
Φ̂

η belong to D(αH, ν). The linear set generated by such elements
is an involutive algebra, whose weak closure contains, using ([16] 2.2.1) and
the semi-finiteness of ψ, all operators of the form ρb,αξ1

c(ρb,αξ2
)∗, for any ξ1,

ξ2 in D(αH, ν) and c in A; therefore, using 4.3, we get that ψ and ψ0 are
equal on a dense involutive algebra.
We easily get that ψ0 ◦ σ

ψ

t = ψ0 ◦ (σψt b∗α
N

Ad∆−it
Φ̂

) is equal to
∑
i ψ b∗α

ν

ω∆−1/2
Φ̂

∆−it
Φ̂

ei
; the family ∆−it

Φ̂
ei is another (α, ν)-orthogonal basis of H,

which bears the same properties as (ei)i∈I . As, using (i), we know that
the definition of ψ0 does not depend on the choice of the orthogonal (α, ν)-
basis, we get that ψ0 is invariant under σψt , and, therefore ψ = ψ0, which
finishes the proof. �

4.9. Example
Looking again at the particular example given in 4.6, we get, using 4.8,
that νo = νoβ.
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4.10. Theorem
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let
(ei)i∈I be an (α, ν)-orthogonal basis of H such that, for all i ∈ I, ei belongs
to D(αH, ν)∩D(∆−1/2

Φ̂
) and ∆−1/2

Φ̂
ei belongs to D(αH, ν); let (N, b,A) be

a faithful weighted right von Neumann right N -module, and let T be a
normal semi-finite faithful operator-valued weight from A onto b(N); let
us write ψ = νo ◦ b−1 ◦ T and ψ the normal semi-finite faithful weight on
A b∗α

N
L(H) constructed in 4.4; for n ∈ N , let us define a(n) = Jψb(n∗)Jψ.

Let ξ be in D(αH, ν) ∩ D(∆−1/2
Φ̂

), such that ∆−1/2
Φ̂

ξ belongs to D(αH, ν);
let η, ξ1 be in D(αH, ν), and ξ2 ∈ D(Hβ, ν

o); let z be in Nψ, ζ be in Hψ,
X be in A b∗α

N
L(H). Then:

(i) The operator ρb,αη z(ρb,αξ )∗ belongs to Nψ, and we have:

Λψ(ρb,αη z(ρb,αξ )∗) = JΦ̂∆−1/2
Φ̂

ξ β⊗a
ν

Λψ(z) b⊗α
ν
η .

Moreover, the linear set generated by the operators ρb,αη z(ρb,αξ )∗, where z
is in Nψ, η is in D(αH, ν), and ξ is in D(αH, ν) ∩ D(∆−1/2

Φ̂
), such that

∆−1/2
Φ̂

ξ belongs to D(αH, ν), is a core for Λψ.
(ii) We have: Jψ(ξ2 β⊗a

ν
ζ b⊗α

ν
ξ1) = JΦ̂ξ1 β⊗a

ν
Jψζ b⊗α

ν
JΦ̂ξ2.

(iii) We have: πψ(X) = 1 β⊗a
N

X.

(iv) It is possible to define a one parameter group of unitaries ∆−it
Φ̂ β⊗a

ν

∆it
ψb⊗α

ν
∆−it

Φ̂
on Hβ⊗a

ν
Hψb⊗α

ν
H with natural values on elementary tensors,

and ∆1/2
ψ is equal to its generator ∆−1/2

Φ̂ β⊗a
ν

∆1/2
ψ b⊗α

ν
∆−1/2

Φ̂
.

Proof. We have

(ρb,αη z(ρb,αξ )∗)∗ρb,αη z(ρb,αξ )∗ = ρb,αξ z∗b(〈η, η〉oα,ν)z(ρ
b,α
ξ )∗,

which belongs to Mψ, by 4.4(iii).
Let a in Nψ ∩N∗ψ; let us take η1 satisfying the same hypothesis as ξ. We
have, using 4.3(iv) applied to the weight ψ, and 4.4(ii):

JΦ̂η1 β⊗a
ν

JψaJψζ b⊗α
ν
η1 = Rψ(∆1/2

ψ Λψ(a) b⊗α
ν

∆−1/2
Φ̂

η1)∗(ζ b⊗α
ν
ξ1)
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and, therefore:

(Λψ(ρb,αη z(ρb,αξ )∗)|JΦ̂η1 β⊗a
ν

JψaJψζ b⊗α
ν
ξ1) =

(ρb,αη z(ρb,αξ )∗(∆1/2
ψ Λψ(a) b⊗α

ν
∆−1/2

Φ̂
η1)|ζ b⊗α

ν
ξ1)

which, using 4.7(i), and the definition of ψ, is equal to:

(ρb,αη zb(〈∆−1/2
Φ̂

η1, ξ〉oα,ν)∆
1/2
ψ Λψ(a)|ζ b⊗α

ν
ξ1) =

(zb(〈∆−1/2
Φ̂

η1, ξ〉oα,ν)∆
1/2
ψ Λψ(a) b⊗α

ν
η|ζ b⊗α

ν
ξ1) =

(zb(σν−i/2(〈η1,∆−1/2
Φ̂

ξ〉oα,ν))∆
1/2
ψ Λψ(a) b⊗α

ν
η|ζ b⊗α

ν
ξ1) =

(z∆1/2
ψ b(〈η1,∆−1/2

Φ̂
ξ〉oα,ν)Λψ(a) b⊗α

ν
η|ζ b⊗α

ν
ξ1)

Let us suppose that z belongs to D(σψi/2); we get that:

z∆1/2
ψ b(〈η1,∆−1/2

Φ̂
ξ〉oα,ν)Λψ(a) = ∆1/2

ψ σψi/2(z)b(〈η1,∆−1/2
Φ̂

ξ〉oα,ν)Λψ(a)

= JψΛψ((a∗b(〈∆−1/2
Φ̂

ξ, η1〉oα,ν)σ−i/2(z∗))

= Jψa
∗b(〈∆−1/2

Φ̂
ξ, η1〉oα,ν)JψΛψ(z)

= Jψa
∗Jψa(〈η1,∆−1/2

Φ̂
ξ〉oα,ν)Λψ(z)

= Jψa
∗Jψa(〈JΦ̂∆−1/2

Φ̂
ξ, JΦ̂η1〉β,νo)Λψ(z)

which remains true for all z ∈ Nψ; therefore, we then get that:

(Λψ(ρb,αη z(ρb,αξ )∗)|JΦ̂η1 β⊗a
ν

JψaJψζ b⊗α
ν
ξ1) =

(Jψa∗Jψa(〈JΦ̂∆−1/2
Φ̂

ξ, JΦ̂η1〉β,νo)Λψ(z) b⊗α
ν
η|ζ b⊗α

ν
ξ1) =

(a(〈JΦ̂∆−1/2
Φ̂

ξ, JΦ̂η1〉β,νo)Λψ(z) b⊗α
ν
η|JψaJψζ b⊗α

ν
ξ1) =

(JΦ̂∆−1/2
Φ̂

ξ β⊗a
ν

Λψ(z) b⊗α
ν
η|JΦ̂η1 β⊗a

ν
JψaJψζ b⊗α

ν
ξ1)

from which, by density, we get the first result of (i).
Using 4.4(ii), we get that σ

ψ

t (ρb,αη z(ρb,αξ )∗) = ρb,α∆−it
Φ̂

η
σψt (z)(ρb,α∆−it

Φ̂
ξ
)∗; so,
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the linear set generated by the operators ρb,αη z(ρb,αξ )∗, where z belongs to
Nψ ∩ N∗ψ, and ξ (resp. η) is in D(αH, ν) ∩ D(∆−1/2

Φ̂
), such that ∆−1/2

Φ̂
ξ

(resp. ∆−1/2
Φ̂

η) belongs to D(αH, ν) is a ∗-subalgebra of Nψ ∩N∗ψ, dense

in A b∗α
N
L(H) by 4.3, and globally invariant under σψt . It is possible to

put on the image of this algebra under Λψ a structure of left-Hilbert
algebra, which, in turn, leads to a faithful normal semi-finite weight ψ0 on
A b∗α

N
L(H), equal to ψ on this subalgebra, and invariant under σψt . So,

we get ψ0 = ψ, which finishes the proof of (i).
On the other hand, let’s apply 4.3(iii) to the standard representation of
A b∗α

N
L(H) given by the weight ψ, and we get (ii) and (iii).

Let now ξ ∈ D(Hβ, ν
o); we have, for all t ∈ R, n ∈ Nν :

β(n∗)∆−it
Φ̂
ξ = ∆−it

Φ̂
τt(β(n∗))ξ

= ∆−it
Φ̂
β(σνt (n∗))ξ

= ∆−it
Φ̂
Rβ,ν

o(ξ)JνΛν(σνt (n))

= ∆−it
Φ̂
Rβ,ν

o(ξ)Jν∆it
ν Λν(n)

and, therefore, ∆−it
Φ̂
ξ belongs to D(Hβ, ν

o), and

Rβ,ν
o(∆−it

Φ̂
ξ) = ∆−it

Φ̂
Rβ,ν

o(ξ)∆it
ν ,

and

〈∆−it
Φ̂
ξ,∆−it

Φ̂
ξ〉β,νo = σν−t(〈ξ, ξ〉β,νo).
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Therefore, if ξ′ belongs to D(αH, ν), η ∈ Hψ, we get:

‖∆−it
Φ̂
ξ β⊗a

ν
∆it
ψη b⊗α

ν
∆−it

Φ̂
ξ′‖2

= (b(〈∆−it
Φ̂
ξ′,∆−it

Φ̂
ξ′〉oα,ν)a(〈∆−it

Φ̂
ξ,∆−it

Φ̂
ξ〉β,νo)∆it

ψη|∆it
ψη)

= (b(σνo−t(〈ξ′, ξ′〉oα,ν))a(σν−t(〈ξ, ξ〉β,νo))∆it
ψη|∆it

ψη)

= (σψt (b(〈ξ′, ξ′〉oα,ν))Jψb(σν−t(〈ξ, ξ〉β,νo))Jψ∆it
ψη|∆it

ψη)

= (b(〈ξ′, ξ′〉oα,ν)∆−itψ Jψσ
ψ
t (b(〈ξ, ξ〉β,νo))Jψ∆it

ψη|η)
= (b(〈ξ′, ξ′〉oα,ν)Jψb(〈ξ, ξ〉β,νo)Jψη|η)
= (b(〈ξ′, ξ′〉oα,ν)a(〈ξ, ξ〉β,νo)η|η)
= ‖ξ β⊗a

ν
η b⊗α

ν
ξ′‖2

Now, from (i) and (ii), we get that the infinitesimal generator ∆−1/2
Φ̂ β⊗a

ν

∆1/2
ψ b⊗α

ν
∆−1/2

Φ̂
of this one-parameter of unitaries is included in ∆1/2

ψ ;
these operators being self-adjoint, we get (iv). �

4.11. Corollary

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, (b, a)
an action of G on a von Neumann algebra A, ψ a normal semi-finite
faithful weight on A, ψa the normal semi-finite faithful weight constructed
on A b∗α

N
L(H) by transporting the bidual weight. Then, for any x ∈ Nψ,

ξ ∈ D(αH, ν), η ∈ D(αH, ν) ∩ D(∆−1/2
Φ̂

) such that ∆−1/2
Φ̂

η belongs to
D(Hβ, ν

o), the operator (1b⊗α
N
θα,ν(ξ, η))a(x) belongs to Nψa

, and we have:

ψa(a(x∗)((1b⊗α
N
θα,ν(ξ, η)∗θα,ν(ξ, η))a(x)) = ‖Λψ(x)b⊗α

ν
JΦ̂∆−1/2

Φ̂
ηβ⊗α

ν
ξ‖2 .

Proof. Using 4.10 applied to νo, we get that

Λνo(θα,ν(ξ, η)) = JΦ̂∆−1/2
Φ̂

η β⊗α
ν

ξ,

which belongs to D(αHνo , ν); so, using 4.6 and 4.9, we get the result. �
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5. Standard implementation: using the weight ψ.

In that section, we calculate (5.5) the dual weight (̃ψ) of ψ, with respect
to the action a (5.2(ii)); this will allow us to calculate J(̃ψ) (5.5), and then,

to obtain a formula linking Ua
ψ and U

a
ψ (5.6). As Ua

ψ is a corepresentation
by 3.5, we obtain then that Ua

ψ is a corepresentation (and, therefore, a
standard implementation) whenever it is possible to construct ψ (5.8).

5.1. Proposition

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let A be
a von Neumann algebra acting on a Hilbert space H, (b, a) be an action of
G on A, (1 b⊗α

N
β̂, a) be the action of G on A b∗α

N
L(H) introduced in 2.4;

then, let us write, for any Y in L(H b⊗α
ν
H β̂⊗α

ν

H),

Θ̃(Y ) = (1 b⊗α
N

W )∗(id b∗α
N
ςN )(Y )(1 b⊗α

N
W )

which belongs to L(H b⊗α
ν
H β⊗α

ν
H); then, we have:

(i) for any X ∈ A b∗α
N
L(H), Θ̃(a(X)) = (a b∗α

N
id)(X) and:

Θ̃((A b∗α
N
L(H)) oa G) = (Aoa G) β∗α

N

L(H) ;

(ii) (1b⊗α
N
α̂, (idb∗α

N
ςN )(ãβ∗α

N

id)) is an action of Ĝc on (AoaG)β∗α
N

L(H),

and:

(Θ̃ α∗β
No

id)(̃a) = (id b∗α
N
ςNo)(ã α̂∗β

No

id)Θ̃

where (̃a) is the dual action of a (it is therefore an action of Ĝc on (A b∗α
N

L(H)) oa G).

Proof. By the definition of a, we get the first formula of (i). The second
formula of (i) was already proved in ([16] 11.4). Moreover, using (i), we
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have, for all X ∈ A b∗α
N
L(H):

(Θ̃ α̂∗β
No

id)(̃a)(a(X)) = (Θ̃ α̂∗β
No

id)(a(X) α̂⊗β
No

1)

= (a b∗α
N
id)(X) α̂⊗β

No

1

= (id b∗α
N
ςNo)(ã α̂∗β

No

id)(a b∗α
N
id)(X)

= (id b∗α
N
ςNo)(ã α̂∗β

No

id)Θ̃(a(X))

and, for all z ∈ M̂ ′, we have:

(Θ̃ α̂∗β
No

id)(̃a)(1 b⊗α
N

1 α̂⊗β
No

z) = (Θ̃ α̂∗β
No

id)(1 b⊗α
N

Γ̂c(z))

which, thanks again to ([16] 11.4), is equal to:

(1 b⊗α
N

1 β⊗α̂
N

JΦJΦ̂ β⊗α̂
N

1)(Γ̂oc α̂∗β
No

id)Γ̂c(z)(1 b⊗α
N

1 β⊗α
N

JΦ̂JΦ α̂⊗β
No

1)

and we have:

(id b∗α
N
ςNo)(ã α̂∗β

No

id)Θ̃(1 b⊗α
N

1 α̂⊗β
No

z) =

(id b∗α
N
ςNo)(Γ̂c β∗α

N

id)[(1 β⊗α̂
N

JΦJΦ̂)Γ̂oc(z)(1 β⊗α
N

JΦ̂JΦ)]

from which we deduce that:

(Θ̃ α̂∗β
No

id)(̃a)(1 b⊗α
N

1 α̂⊗β
No

z) = (id b∗α
N
ςNo)(ã α̂∗β

No

id)Θ̃(1 b⊗α
N

1 α̂⊗β
No

z)

and we get that:

(Θ̃ α∗β
No

id)(̃a) = (id b∗α
N
ςNo)(ã α̂∗β

No

id)Θ̃

from which we deduce that (1 b⊗α
N

α̂, (id b∗α
N
ςN )(ã β∗α

N

id)) is an action of

Ĝo on the von Neumann algebra (A oa G) β∗α
N

L(H), which finishes the

proof.
�
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5.2. Corollary
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let A be
a von Neumann algebra acting on a Hilbert space H, (b, a) an action of G

on A, (1 b⊗α
N

β̂, a) be the action of G on A b∗α
N
L(H) introduced in 2.4 and

Θ̃ the isomorphism introduced in 5.1 which sends (A b∗α
N
L(H)) oa G onto

(Aoa G) β∗α
N

L(H); then, we have Θ̃ ◦ T(̃a) = (Tã β∗α
N

id)Θ̃.

Proof. Using 5.1(ii), we get:

Θ̃ ◦ Tã = (id b∗α
N
id α̂∗β

N

Φ̂c)(Θ̃ α̂∗β
N

id)ã

= (id b∗α
N
id α̂∗β

N

Φ̂c)(id b∗α
N
ςNo)(ã α̂∗β

No

id)Θ̃

= ((id α̂∗β
N

Φ̂c)ã β∗α
N

id)Θ̃

= (Tã β∗α
N

id)Θ̃

which is the result. �

5.3. Theorem
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let A
be a von Neumann algebra acting on a Hilbert space H, (b, a) a weighted
action of G on A, (1b⊗α

N
β̂, a) be the action of G on Ab∗α

N
L(H) introduced in

2.4 and Θ̃ the isomorphism introduced in 5.1 which sends (Ab∗α
N
L(H))oaG

onto (Aoa G) β∗α
N

L(H); then:

(i) (N, 1 b⊗α
N

β,Aoa G) is a von Neumann faithful right N -module; let ψ

be a lifted weight on A, then ψ̃ is a lifted weight on Aoa G. Let’s denote
then ψ and (ψ̃) the weights constructed by 4.4 applied to ψ and ψ̃.

(ii) We have (ψ̃) ◦ Θ̃ = (̃ψ) and, for all t ∈ R, σ
(ψ̃)
t ◦ Θ̃ = Θ̃ ◦ σ(̃ψ)

t .
(iii) Moreover, ψa is a lifted weight on A b∗α

N
L(H), and we can define a

normal semifinite faithful weight (ψa) on A b∗α
N
L(H) β∗α

N

L(H). On the
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other hand, we can define the normal semi-finite faithful weight (ψ)a on
A b∗α

N
L(H) β̂∗α

N

L(H). Then, we have (ψa) ◦ Θ̃ = (ψ)a.

Proof. Let T be a normal faithful semi-finite operator valued weight from
A into b(N); then a ◦ T ◦ a−1 is a normal faithful semi-finite operator
valued weight from a(A) into 1 b⊗α

N
β(N), and a ◦T ◦ a−1 ◦ Tã is a normal

faithful semi-finite operator-valued weight from Aoa G into 1 b⊗α
N

β(N);

then, if we write ψ = νo ◦ b−1 ◦ T, the dual weight ψ̃ can be written as
νo ◦ (1 b⊗α

N
β)−1 ◦ (a ◦ T ◦ a−1 ◦ Tã), which finishes the proof of (i).

We have then, using the notations of 4.4, and results 5.2 and 5.1(i):

(ψ̃) ◦ Θ̃ =
∑
i

(ψ̃ β∗α
ν
ω∆−1/2

Φ̂
ei

) ◦ Θ̃

=
∑
i

(ψ ◦ a−1 ◦ Tã β∗α
ν
ω∆−1/2

Φ̂
ei

) ◦ Θ̃

=
∑
i

(ψ b∗α
ν
ω∆−1/2

Φ̂
ei

) ◦ (a b∗α
N
id)−1 ◦ (Tã β∗α

N

id) ◦ Θ̃

= ψ ◦ (a b∗α
N
id)−1 ◦ Θ̃ ◦ Tã

= ψ ◦ (a)−1 ◦ Tã

= (̃ψ)
which finishes the proof of (ii).
We have:

ψa = νo ◦ (1 b⊗α
N

β)−1 ◦ (a ◦ T ◦ a−1 ◦ Tã) ◦ Ta .

So, by composition of operator-valued weights, we get that ψa is a lifted
weight on the faithful right N -module (N,A b∗α

N
L(H), 1 b⊗α

N
β), and, ap-

plying 4.4, we can construct the normal semi-finite faithful weight (ψa) on
A b∗α

N
L(H) β∗α

N

L(H).

On the other hand, as ψ is a normal semi-finite faithful weight on A b∗α
N

L(H), and as (1 b⊗α
N

β̂, a) (2.4) is an action of G on A b∗α
N
L(H), we can

define (2.4) a weight (ψ)a on Ab∗α
N
L(H) β̂∗α

N

L(H). As Θ̃ is an isomorphism
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from A b∗α
N
L(H) β̂∗α

N

L(H) onto A b∗α
N
L(H) β∗α

N

L(H), we can define then

another normal semi-finite faithful weight (ψa)◦Θ̃ on Ab∗α
N
L(H)β̂∗α

N

L(H).

Let’s represent A on Hψ and consider the isomorphism Θ̃ from L(Hψ b⊗α
ν

H β̂⊗α
ν

H) onto L(Hψb⊗α
ν
Hβ⊗α

ν
H). The commutant of Ab∗α

N
L(H)β∗α

N

L(H)

on the Hilbert space Hψ b⊗α
ν
H β⊗α

ν
H is A′ b⊗α

N
1H β⊗α

N

1H , which is iso-

morphic to Ao. Let us consider the spatial derivative d(ψ)a◦Θ̃−1

dψo on Hψ b⊗α
ν

H β̂⊗α
ν

H. As, for x ∈ A′, Θ̃ sends x b⊗α
N

1H β̂⊗α
N

1H on x b⊗α
N

1H β⊗α
N

1H ,

we get that:

d(ψ)a ◦ Θ̃−1

dψo
= Θ̃(

d(ψ)a

dψo
)

where the spatial derivative d(ψ)a

dψo is taken on the Hilbert space Hψ b⊗α
ν

H β̂⊗α
ν

H. But, (using [33] 12.11), we get that:

d(ψ)a

dψo
=
d(̃ψ) ◦ Ta

dψo
=
d(̃ψ)
dψ̃o

where we write, for simplification, ψ̃o for the weight taken on (A b∗α
N

L(H)oaG)′, whose image by Θ̃ is, thanks to (i), equal to (AoaG)′β⊗α
N

1H .

Therefore, using (ii), we get that:

Θ̃(
d(ψ)a

dψo
) =

d(̃ψ) ◦Θ−1

dψ̃o
=
d(ψ̃)
dψ̃o

=
d(ψa)
dψo

which gives the result. �

5.4. Lemma

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, W
its pseudo-multiplicative unitary, (ei)i∈I an orthogonal (α, ν)-basis of H;

273



M. Enock

then, we have, for all a ∈ NΦ̂c ∩NT̂ c, ζ ∈ D(αH, ν) ∩D(Hβ̂, ν
o):∑

i

ΛΦ̂c(ωJΦ̂
JΦζ,JΦ̂

JΦei α̂∗β
No

id)Γ̂c(a) β⊗α
ν

ei = W ∗(ΛΦ̂c(a) α⊗β̂
νo

ζ) .

Proof. Let us first remark that JΦJΦ̂ζ and JΦJΦ̂ei belong to D(α̂H, ν),
and that ΛΦ̂c(a) belongs, thanks to ([16] 2.2), to D(αH, ν). Applying then
the definition ([16] 3.6 (i)) of the pseudo-multiplicative unitary W c of the
measured quantum group Ĝc, we get that:

ΛΦ̂c((ωJΦ̂
JΦζ,JΦ̂

JΦei α̂∗β
No

id)Γ̂c(a)) = (ωJ
Φ̂
JΦζ,JΦ̂

JΦei ∗ id)(Ŵ c∗)ΛΦ̂c(a) .

As Ŵ c∗ = (Ŵ o)∗ = σW oσ, we get:

(ωJ
Φ̂
JΦζ,JΦ̂

JΦei ∗ id)(Ŵ c∗) = (id ∗ ωJ
Φ̂
JΦζ,JΦ̂

JΦei)(W
o)

and, using [16] 3.12 (v) and 3.11(iii), we get:
(id ∗ ωJ

Φ̂
JΦζ,JΦ̂JΦ

ei)(W
o) = JΦ̂(id ∗ ωJΦζ,JΦei)(W )JΦ̂ = (id ∗ ωζ,ei)(W

∗)

from which we get the result. �

5.5. Proposition
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let A be
a von Neumann algebra, (b, a) a weighted action of G on A, (1 b⊗α

N
β̂, a) be

the action of G on A b∗α
N
L(H) introduced in 2.4 and Θ̃ the isomorphism

introduced in 5.1 which sends (Ab∗α
N
L(H))oaG onto (AoaG)β∗α

N

L(H); let

ψ be a lifted weight on A, and ψ be the normal semi-finite faithful weight on
Ab∗α

N
L(H) introduced in 4.4, and (̃ψ) its dual weight on (Ab∗α

N
L(H))oaG;

let (ψ̃) be the normal semi-finite faithful weight on (A oa G) β∗α
N

L(H)

introduced by applying 4.4 to the weight ψ̃ on Aoa G. Then:
(i) for any X ∈ N(̃ψ), Θ̃(X) belongs to N(ψ̃), and:

Λ(ψ̃)(Θ̃(X)) = (1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)Λ(̃ψ)(X) ;

(ii) we have: J(ψ̃)(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν) = (1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)J(̃ψ).
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Proof. The fact that Θ̃(X) belongs to N(ψ̃) is a straightforward corollary

of 5.2(ii). Let us take x in Nψ, ξ in D(αH, ν) ∩ D(∆−1/2
Φ̂

), such that

∆−1/2
Φ̂

ζ belongs to D(αH, ν), η in D(αH, ν), and a in NΦ̂c ∩NT̂ c . Then,
by 4.10(i), we get that ρb,αη x(ρb,αξ )∗ belongs to Nψ, and, by ([16] 13.3),
(1 b⊗α

N
a)a(ρb,αη x(ρb,αξ )∗) belongs to N(̃ψ). Moreover, we have, where (ei)i∈I

is an orthogonal (α, ν)-basis of H:

Λ(ψ̃)(Θ̃((1 b⊗α
N

a)a(ρb,αη x(ρb,αξ )∗))

= Λ(ψ̃)(Θ̃(1 b⊗α
N

a)Θ̃a(ρb,αη x(ρb,αξ )∗))

= Λ(ψ̃)(Θ̃(1 b⊗α
N

a)(a b∗α
N
id)(ρb,αη x(ρb,αξ )∗))

= Λ(ψ̃)(Θ̃(1 b⊗α
N

a)ρβ,αη a(x)(ρβ,αξ )∗)

=
∑
i

Λ(ψ̃)(ρ
β,α
ei (ρβ,αei )∗Θ̃(1 b⊗α

N
a)ρβ,αη a(x)(ρβ,αξ )∗)

Then, using 5.1, we get that Θ̃(1 b⊗α
N

a) = 1 b⊗α
N

(1β⊗α
No

JΦJΦ̂)Γ̂oc(a)(1β⊗α
No

JΦ̂JΦ), and, therefore, that:

(ρβ,αei )∗Θ̃(1 b⊗α
N

a)ρβ,αη = 1 b⊗α
N

(id β∗α̂
No

ωJ
Φ̂
JΦη,JΦ̂

JΦei)Γ̂
oc(a)

and, we get then, applying 4.10(i) to the weight ψ̃, that:

Λ(ψ̃)(Θ̃((1 b⊗α
N

a)a(ρb,αη x(ρb,αξ )∗))

=
∑
i

Λ(ψ̃)(ρ
β,α
ei (1 b⊗α

N
(id β∗α̂

No

ωJ
Φ̂
JΦη,JΦ̂

JΦei)Γ̂
oc(a))a(x)(ρβ,αξ )∗)

is equal to:∑
i

JΦ̂∆−1/2
Φ̂

ξ β⊗ã
ν

Λψ̃((1 b⊗α
N

(id β∗α̂
No

ωJ
Φ̂
JΦη,JΦ̂

JΦei)Γ̂
oc(a))a(x)) β⊗α

ν
ei

where, for all n ∈ N , we put ã(n) = Jψ̃(1 b⊗α
N

β(n∗))Jψ̃. We then get, by

2.4, that ã(n) = Ua
ψ(1 a⊗β

No

α(n))(Ua
ψ)∗ = a(n) b⊗α

N
1. And, therefore, using
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now ([16] 13.3), we get that Λ(ψ̃)(Θ̃((1 b⊗α
N

a)a(ρb,αη x(ρb,αξ )∗)) is equal to:∑
i

JΦ̂∆−1/2
Φ̂

ξ β⊗a
ν

Λψ(x) b⊗α
ν

ΛΦ̂c((id β∗α̂
No

ωJ
Φ̂
JΦη,JΦ̂

JΦei)Γ̂
oc(a)) β⊗α

ν
ei

which, thanks to 5.4 is equal to:

(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)(JΦ̂∆−1/2
Φ̂

ξ b⊗a
ν

Λψ(x) b⊗α
ν
ζ β̂⊗α

ν

ΛΦ̂c(a))

which, using 4.10(i) again, is equal to:

(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)(Λψ((ρb,αη x(ρb,αξ )∗)) β̂⊗α
ν

ΛΦ̂c(a))

and, by ([16] 13.3) again, to:

(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)Λ(̃ψ)((1 b⊗α
N

a)a(ρb,αη x(ρb,αξ )∗)) .

Using now 4.10(i), we get that, for any a in NΦ̂c ∩NT̂ c and Y in Nψ:

Λ(ψ̃)(Θ̃((1 b⊗α
N

a)a(Y )) = (1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)Λ(̃ψ)((1 b⊗α
N

a)a(Y ))

and, using now ([16] 13.3), we finish the proof of (i).
Let’s suppose now that X is analytic with respect to (̃ψ), such that

σ
(̃ψ)
−i/2(X∗) belongs to N(̃ψ). Then, using 5.2(ii) and (i), we get that Θ̃(X)

is analytic with respect to (ψ̃), and that σ
(ψ̃)
−i/2(Θ̃(X∗)) belongs to N(ψ̃).

More precisely, we then get:
J(ψ̃)(1H β⊗a

N

1Hψ b⊗α
N

W ∗σν)Λ(̃ψ)(X)

= J(ψ̃)Λ(ψ̃)(Θ̃(X))

= Λ(ψ̃)(σ
(ψ̃)
−i/2(Θ̃(X∗)))

= Λ(ψ̃)(Θ̃(σ(̃ψ)
−i/2(X∗)))

= (1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)Λ(̃ψ)(σ
(̃ψ)
−i/2(X∗)))

= (1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)J(̃ψ)Λ(̃ψ)(X)
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which, by density, gives (ii). �

5.6. Proposition
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let A be
a von Neumann algebra, (b, a) a weighted action of G on A, and (1b⊗α

N
β̂, a)

be the action of G on A b∗α
N
L(H) introduced in 2.4; let ψ be a lifted

weight on A, and ψ be the normal semi-finite faithful weight on Ab∗α
N
L(H)

introduced in 4.4. Then, the unitary Ua
ψ satisfies:

U
a
ψ = (1H β⊗a

N

1Hψ b⊗α
N

σWσ)(1H β⊗α
N

(id a∗β
No

ςN )(Ua
ψ a⊗β

No

1H))

σβ,α1 (W o∗
β⊗a
N

1Hψ b⊗α
N

1H)(σβ,α̂1 )∗

where σβ,α1 is the flip from

(H α⊗β
νo

H) β⊗a
ν

Hψ b⊗α
ν
H onto H β⊗α

ν
((Hψ b⊗α

ν
H) a⊗β

νo
H),

and σβ,α̂1 is the flip from

H β⊗α̂
ν

H β⊗a
ν

Hψ b⊗α
ν
H onto (H β⊗a

ν
Hψ b⊗α

ν
H) α̂⊗β

νo
H.

Proof. Let us recall (2.4) that (1 b⊗α
N

β̂, a) is an action of G on A b∗α
N
L(H).

Let a be the representation of N on Hψ defined, for all n ∈ N by:

a(n) = Jψπψ(1 b⊗α
N

β̂(n∗))Jψ .

Using 4.10 (iii) and (ii), we get that:

a(n) = JΦ̂β̂(n∗)JΦ̂ β⊗a
N

1Hψ b⊗α
N

1H = α̂(n) β⊗a
N

1Hψ b⊗α
N

1H

and, therefore, Ua
ψ is a unitary from (H β⊗a

ν
Hψ b⊗α

ν
H) α̂⊗β

νo
H onto H β⊗a

ν

Hψ b⊗α
ν
H β̂⊗α

ν

H given by the formula:

U
a
ψ = J(̃ψ)(Jψ α̂⊗β

νo
JΦ̂) .
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We have, using 5.5:

(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)Ua
ψσ

β,α̂
1

= J(ψ̃)(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)(Jψ α̂⊗β
νo

JΦ̂)σβ,α̂1

Let ξ1, ξ2 in D(Hβ, ν
o), ξ3 in D(αH, ν), η ∈ Hψ; then JΦ̂ξ1 belongs to

D(αH, ν), and let us define ζi ∈ D(Hβ, ν
o) and ζ ′i ∈ D(αH, ν) such that:

W ∗(JΦ̂ξ1 α⊗β̂
νo

JΦ̂ξ2) = limJ

∑
i∈J

(ζi β⊗α
ν

ζ ′i)

the limit being taken on the filter of finite subsets J ⊂ I. Let us look at
the image of the vector ξ1 β⊗α̂

ν
ξ2 β⊗a

ν
η b⊗α

ν
ξ3 under the unitary:

J(ψ̃)(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)(Jψ α̂⊗β
νo

JΦ̂)σβ,α̂1 .

This vector is first sent by σβ,α̂1 on (ξ2β⊗a
ν
ηb⊗α

ν
ξ3)α̂⊗β

νo
ξ1, then (Jψ α̂⊗β

νo
JΦ̂)

sends it on JΦ̂ξ3 β⊗a
ν
Jψη b⊗α

ν
JΦ̂ξ2 β̂⊗α

ν

JΦ̂ξ1, then (1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)

sends it on

JΦ̂ξ3β⊗a
ν
Jψηb⊗α

ν
W ∗(JΦ̂ξ1α⊗β̂

νo
JΦ̂ξ2) = limJ

∑
i∈J

(JΦ̂ξ3β⊗a
ν
Jψηb⊗α

ν
ζiβ⊗α

ν
ζ ′i)

and J(ψ̃) sends it then on:

limJ

∑
i∈J

(JΦ̂ζ
′
i β⊗a

ν
Jψ̃(Jψη b⊗α

ν
ζi) β⊗α

ν
ξ3)

= limJ

∑
i∈J

(JΦ̂ζ
′
i β⊗a

ν
Ua
ψ(η a⊗β

νo
JΦ̂ζi) β⊗α

ν
ξ3)

which is equal to:

(1H β⊗a
N

Ua
ψ b⊗α

N
1H)(1H β⊗α

N

σν b⊗α
N

1H)(σW o∗
β⊗a
N

1Hψ b⊗α
N

1H)

· (ξ1 β⊗α̂
ν

ξ2 β⊗a
ν

η b⊗α
ν
ξ3)
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from which, using again the density of finite sums of elementary tensors
in the relative Hilbert tensor product, we get that:

(1H β⊗a
N

1Hψ b⊗α
N

W ∗σν)Ua
ψσ

β,α̂
1 =

(1H β⊗a
N

Ua
ψ b⊗α

N
1H)(1H β⊗α

N

σν b⊗α
N

1H)(σW o∗
β⊗a
N

1Hψ b⊗α
N

1H) =

(1H β⊗a
N

(id a∗β
No

ςN )(Ua
ψ b⊗α

N
1H))σβ,α1 (W o∗

β⊗a
N

1Hψ b⊗α
N

1H)

from which we get the result. �

5.7. Proposition
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let A
be a von Neumann algebra, and let (b, a) be a weighted action of G on A;
let ψ be a lifted weight on A; then, the unitary Ua

ψ introduced in 2.4 is a
copresentation of G.

Proof. With the notations of 5.6, we get, using 5.6, that:

1H β⊗a
N

(id a∗β
No

ςN )(Ua
ψ b⊗α

N
1H) =

(1H β⊗a
N

1Hψ b⊗α
N

σW ∗σ)Ua
ψσ

β,α̂
1 (W o

β⊗a
N

1Hψ b⊗α
N

1H)(σβ,α1 )∗

which we shall write, for simplification, with the usual leg numbering
notation:

(Ua
ψ)2,4 = Ŵ3,4U

a
ψ(W o)4,1 .

But Ŵ is a corepresentation of Go ([16], 5.6), Ua
ψ is a corepresentation of

G by 3.5, and σW oσ is a corepresentation of Go by ([16], 5.6 and 5.3). So,
we get:

(id ∗ Γ)(Ua
ψ)2,4,5 = Ŵ3,5Ŵ3,4(Ua

ψ)1,2,3,4(Ua
ψ)1,2,3,5W

o
5,1W

o
4,1

= Ŵ3,5(Ua
ψ)2,4W

o∗
4,1(Ua

ψ)1,2,3,5W
o
5,1W

o
4,1

= (Ua
ψ)2,4W

o∗
4,1Ŵ3,5(Ua

ψ)1,2,3,5W
o
5,1W

o
4,1

= (Ua
ψ)2,4W

o∗
4,1(Ua

ψ)2,5W
o
4,1

= (Ua
ψ)2,4(Ua

ψ)2,5
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which shows that Ua
ψ is a corepresentation. A more complete proof is a

painful exercise we leave to the reader. �

5.8. Theorem

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; let A
be a von Neumann algebra, and let (b, a) be a weighted action of G on A;
then, for any normal semi-finite faithful weight ψ on A, the unitary Ua

ψ

introduced in 2.4 is a standard implementation of a, in the sense of 2.3.

Proof. As the action is weighted, there exists a normal semi-finite faithful
weight ψ on A which is lifted from νo; we get that Ua

ψ is a corepresentation
by 5.7, and is therefore a standard implementation. Using now 3.1, we
easily get that it remains true for any normal semi-finite faithful weight
on A, which is the result. �

5.9. Remark

In 5.8, we had obtained that Ua
ψ is a standard implementation of a, if

there exists a normal-semi-finite faithful operator-valued weight from A
onto b(N); this is true in particular in the following cases:
(i) G is a locally compact quantum group (N = C); this result was ob-
tained in ([36] 4.4);
(ii) if N is abelian and b(N) ⊂ Z(A); in particular, if G is a measured
groupoid; we shall discuss this particular case in 5.10. More general, if G
is a continuous field of locally compact quantum groups (2.5 (iv)), or is
De Commer’s example (2.5 (v)).
(iii) A is a type I factor; if we write A = L(H), starting from any normal
semi-finite weight on b(N)′, we get a normal faithful semi-finite operator-
valued weight from A to b(N). More generally, this remains true if A is a
sum of type I factors;
(iv) N is a sum of type I factors (in particular, if N is a finite dimensional
algebra, which is the case, in particular if G is a finite dimensional quan-
tum groupoid);
(v) N and A are semi-finite.
In 3.2, the result was proved if a is a dual action.
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5.10. Example

Let G be a measured groupoid, with G(0) as its set of units, r and s its
range and source application, (λu)u∈G(0) its Haar system, and ν a quasi-
invariant measure; let µ =

∫
G(0) λudν ; let us consider the von Neumann

algebra L∞(G, µ), which is a L∞(G(0))-bimodule, thanks to the two ho-
momorphisms rG and sG defined, for f in L∞(G(0)) by rG(f) = f ◦ r and
sG(f) = f ◦ s. We have shown in ([16], 3.1, 3.4 and 3.17) how it is possi-
ble to put a measured quantum groupoid structure on this von Neumann
bimodule.
An action (b, a) of this measured quantum groupoid on a von Neumann
algebra A verifies that b(L∞(G(0))) ⊂ Z(A), and, therefore, A can be de-
composed as A =

∫⊕
G(0) A

xdν(x) ([16], 6.1); moreover, let ψ be a normal
semi-finite faithful on A =

∫⊕
G(0) A

xdν(x). Then ψ is a lifted weight; more
precisely, there exists a measurable field ψx of normal semi-finite faith-
ful weights, such that ψ =

∫⊕
G(0) ψ

xdν(x) in the sense of ([35] 4.6), and
Hψ =

∫⊕
G(0) Hψxdν(x).

On the other hand, the action a is ([16], 6.3) an action of G in the sense of
([49], 3.1), i.e. for all g ∈ G, there exists a family of ∗-isomorphisms ag from
As(g) onto Ar(g), such that, if (g1, g2) ∈ G(2), we have ag1g2 = ag1ag2 , and
such that, for any normal positive functional ω =

∫⊕
G(0) ω

xdν(x), and any
y =
∫⊕
G(0) y

xdν(x), the function g 7→ ωr(g)(ag(ys(g))) is µ-measurable. These
∗-isomorphisms have standard implementations ug : Hψs(g) → Hψr(g) such
that ag(ys(g)) = ugy

s(g)u∗g. if (g1, g2) ∈ G(2), we have ug1g2 = ug1ug2 .
More precisely, the Hilbert space Hψ b⊗rG

ν
L2(G, µ) can be identified with∫⊕

G Hψr(g)dµ(g). We then get:

a(
∫ ⊕
G(0)

yxdν(x)) =
∫ ⊕
G

ag(ys(g))dµ(g) .

In [47] and [48] is given a construction of the crossed product of A by G;
using ([49] 2.14), we see ([16], 9.2) that this crossed-product is isomorphic
to the definition given in ([16], 9.1). Moreover, we get the same notion of
dual action ([16], 9.6) and of dual weight ([16], 13.1).
As b is central, we have a = b, and the Hilbert space Hψ a⊗sG

νo
L2(G, µ) can
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be identified with
∫⊕
G Hψs(g)dµ(g). Using then [49], 2.6, we get that Ua

ψ =∫⊕
G ugdµ(g), which is a unitary from

∫⊕
G Hψs(g)dµ(g) onto

∫⊕
G Hψr(g)dµ(g).

6. The (b, γ) property for weights

If G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, and if
b is a normal faithful non degenerate anti-homomorphism from N into a
von Neumann algebra A, we define the (b, γ) property for normal faithful
semi-finite weights on A (6.1). We define then, for such a weight, a normal
semi-finite faithful weight ψδ on A b∗α

N
L(H) (6.4). We obtain then several

technical results (6.6, 6.7, 6.8) which will be used in chapter 7.

6.1. Definition

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, and let
b be a normal faithful non degenerate anti-homomorphism from N into a
von Neumann algebra A; we shall say that a normal faithful semi-finite
weight ψ on A satisfies the (b, γ) property if, for all n ∈ N and t ∈ R, we
have σψt (b(n)) = b(γt(n)), where γt is the one-parameter automorphism
group of N defined by σTt (β(n)) = β(γt(n)) ([16], 3.8 (v)).

6.2. Example

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, A a
von Neumann algebra, (b, a) an action of G on A, ψ a δ-invariant normal
faithful semi-finite weight on A bearing the density property, as defined
in ([16]) and recalled in 2.3. Then, ψ satisfies the (b, γ) property.
Namely, for any x ∈ A, t ∈ R, we have:

a(σψt (x)) = (∆it
ψ b⊗α

ν
δ−it∆−it

Φ̂
)a(x)(∆−itψ b⊗α

ν
δit∆it

Φ̂)
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and, therefore, for any n ∈ N , we get, using ([16], 3.8(ii)):

a(σψt (b(n))) = (∆it
ψ b⊗α

ν
δ−it∆−it

Φ̂
)(1 b⊗α

N
β(n))(∆−itψ b⊗α

ν
δit∆it

Φ̂)

= 1 b⊗α
N

δ−it∆−it
Φ̂
β(n)δit∆it

Φ̂

= 1 b⊗α
N

σΦ
t σ

Φ◦R
−t τ−t(β(n))

= 1 b⊗α
N

σΦ
t (β(n))

= 1 b⊗α
N

β(γt(n))

= a(b(γt(n)))
from which we get the property, by the injectivity of a.

6.3. Example
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, and
let (N, b,A) be a faithful weighted right von Neumann right-module, in
the sense of 4.1; let ψ be a normal faithful semi-finite weight on A, lifted
from νo, and let ψ be the normal faithful semi-finite weight on A b∗α

N
L(H)

defined in 4.4. Then, ψ satisfies the (1 b⊗α
N

β̂, γ) property.

Namely, using 4.8 and ([16] 3.10 (vii)), we get:

σ
ψ

t (1 b⊗α
N

β̂(n)) = 1 b⊗α
N

∆−it
Φ̂
β̂(n)∆it

Φ̂ = 1 b⊗α
N

σΦ̂
−t(β̂(n))

= 1 b⊗α
N

β̂(γ̂−t(n)) = 1 b⊗α
N

β̂(γt(n))

6.4. Theorem
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, and let
b be a normal faithful non degenerate anti-homomorphism from N into a
von Neumann algebra A; let ψ be a normal faithful semi-finite weight on
A satisfying the (b, γ) property; then:
(i) it is possible to define a one-parameter group of unitaries ∆it

ψ b⊗α
ν

(δ∆Φ̂)−it on Hψ b⊗α
ν

H, with natural values on elementary tensors. We

shall denote ∆1/2
ψ b⊗α

ν
(δ∆Φ̂)−1/2 its analytic generator;

283



M. Enock

(ii) there exists a normal semi-finite faithful weight ψ
δ

on Ab∗α
N
L(H) such

that:
dψ

δ

dψo
= ∆1/2

ψ b⊗α
ν

(δ∆Φ̂)−1/2 ;

(iii) for any a in Nψ ∩N∗ψ, and ξ ∈ D(αH, ν) ∩ D((δ∆Φ̂)−1/2), such that
(δ∆Φ̂)−1/2ξ belongs to D(αH, ν), we have:

ψ
δ
(ρb,αξ aa∗(ρb,αξ )∗) = ‖∆1/2

ψ Λψ(a) b⊗α
ν

(δ∆Φ̂)−1/2ξ‖2 .

Proof. Let η ∈ D(αH, ν), n ∈ Nν ; then, we get:

α(n)(δ∆Φ̂)−itη = (δ∆Φ̂)−itσΦ̂
t σ

Φ◦R
t σΦ

−t(α(n))η

= (δ∆Φ̂)−itα(σνt γ−tσν−t(n))η

= (δ∆Φ̂)−itRα,ν(η)Λν(γ−t(n))

There exists a positive self-adjoint non singular operator h on Hν such
that:

Λν(γt(n)) = hitΛν(n) .
We then get that:

α(n)(δ∆Φ̂)−itη = (δ∆Φ̂)−itRα,ν(η)h−itΛν(n)

from which we get that (δ∆Φ̂)−itη belongs to D(αH, ν), and that:

Rα,ν((δ∆Φ̂)−itη) = (δ∆Φ̂)−itRα,ν(η)h−it

from which we get that:

〈(δ∆Φ̂)−itη, (δ∆Φ̂)−itη〉α,ν = hit〈η, η〉α,νh−it .

As we have, for all m ∈ N , γt(m) = hitmh−it, we therefore get that:

〈(δ∆Φ̂)−itη, (δ∆Φ̂)−itη〉oα,ν = γt(〈η, η〉oα,ν)

and, therefore, for all ξ ∈ Hψ:

‖∆it
ψξ b⊗α

ν
(δ∆Φ̂)−itη‖2 = (b(γt(〈η, η〉oα,ν))∆it

ψξ|∆it
ψξ)

= (σψt (b(〈η, η〉oα,ν))∆it
ψξ|∆it

ψξ)
= ‖ξ b⊗α

ν
η‖2
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which is (i).
As (∆it

ψ b⊗α
ν

(δ∆Φ̂)−it)(JψxJψ b⊗α
N

1)(∆it
ψ b⊗α

ν
(δ∆Φ̂)−it) = Jψσ

ψ
t (x)Jψ b⊗α

N
1,

we get (ii). Result (iii) is just a corollary of (ii) and 4.3(iv). �

6.5. Corollary

Let G be a measured quantum groupoid, and (b, a) an action of G on a
von Neumann algebra A; let ψ be a δ-invariant weight on A, bearing the
density condition, as defined in 2.3, and ψa the weight constructed on
A b∗α

N
L(H) by transporting the bidual weight (2.4) of ψ. Using 6.2, we can

use 6.4 and define the weight ψ
δ

on A b∗α
N
L(H) Then, we have: ψa = ψ

δ
.

Proof. We have, in general, dψa

dψo = ∆ψ̃ (2.4). So, using 3.2(ii) and 6.4, we
get the result. �

6.6. Corollary

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, and let
b be a normal faithful non degenerate anti-homomorphism from N into a
von Neumann algebra A; let ψ1 (resp. ψ2) be a normal faithful semi-finite
weight on A satisfying the (b, γ) property; then:
(i) the cocycle (Dψ1 : Dψ2)t belongs to A ∩ b(N)′;
(ii) we have: (Dψ1δ : Dψ2δ)t = (Dψ1 : Dψ2)t b⊗α

N
1.

Proof. For any x ∈ A, we have:

σψ1
t (x) = (Dψ1 : Dψ2)tσψ2

t (x)(Dψ1 : Dψ2)∗t
and, therefore:

σψ1
t ◦ σ

ψ2
−t(x) = (Dψ1 : Dψ2)tx(Dψ1 : Dψ2)∗t .

In particular, we get, for any n ∈ N :

b(n) = (Dψ1 : Dψ2)tb(n)(Dψ1 : Dψ2)∗t
from which we get (i). Let (H, π, J,P) be a standard representation of the
von Neumann algebra A; then Ao is represented on H by JAJ ; for any
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normal semi-finite faithful weight ψ on A, we have dψ
dψo = ∆1/2

ψ ; moreover,
we have then:

(dψ1
dψo1

)it(Dψo1 : Dψo2)t(
dψo2
dψ2

)it = (dψ1
dψo1

)it(dψ
o
1

dψ1
)it(dψ

o
2

dψ1
)−it(dψ

o
2

dψ2
)it

= (dψ1
dψo2

)it(dψ2
dψo2

)−it

= (Dψ1 : Dψ2)t

and, therefore (Dψo1 : Dψo2)t = ∆−itψ1
(Dψ1 : Dψ2)t∆it

ψ2
. By similar argu-

ments, we have on H b⊗α
ν
H:

(Dψ1δ : Dψ2δ)t = (
dψ1δ
dψo1

)it( dψ
o
1

dψ2δ
)it

= (
dψ1δ
dψo1

)it(Dψo1 : Dψo2)t(
dψ2δ
dψo2

)−it

As (Dψo1 : Dψo2)t belongs to JAJ b⊗α
N

1H and is therefore equal to:

∆−itψ1
(Dψ1 : Dψ2)t∆it

ψ2 b⊗α
N

1H

we obtain, using 6.4(ii), that (Dψ1δ : Dψ2δ)t is equal to:

(∆it
ψ1 b⊗αν

(δ∆Φ̂)−it)(∆−itψ1
(Dψ1 : Dψ2)t∆it

ψ2 b⊗α
N

1H)(∆−itψ2 b⊗α
ν

(δ∆Φ̂)it)

from which we get the result. �

6.7. Proposition
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid; it is
possible to define one parameter groups of unitaries ∆it

Φ̂ β⊗α
ν

∆it
Φ̂

and

(δ∆Φ̂)it α⊗β̂
νo

∆it
Φ̂

, with natural values on elementary tensors, and we have:

W (∆it
Φ̂ β⊗α

ν
∆it

Φ̂)W ∗ = (δ∆Φ̂)it α⊗β̂
νo

∆it
Φ̂ .

Proof. From ([16] 3.10 (vi)), we get that ∆Φ̂ is the closure of PJΦδ
−1JΦ,

where P is the managing operator of the pseudo-multiplicative unitary W ,
and δ the modulus of G; in ([16] 3.8 (vii)), we had got that it is possible
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to define one parameter groups of unitaries P it β⊗α
ν

P it and P it α⊗β̂
νo

P it,

with natural values on elementary tensors, and that:
W (P it β⊗α

ν
P it) = (P it α⊗β̂

νo
P it)W .

On the other hand, it is possible ([16], 3.8 (vi)) to define a one parameter
group of unitaries δit β⊗α

ν
δit, with natural values on elementary tensors,

and that:
δit β⊗α

ν
δit = Γ(δit) = W ∗(1 α⊗β̂

No

δit)W .

Moreover, we know, from ([16], 3.11 (iii)), that:
W (JΦ̂ α⊗β̂

νo
JΦ) = (JΦ̂ α⊗β̂

νo
JΦ)W ∗

and from ([16] 3.8 (vi)) that JΦ̂δ
−itJΦ̂ = R(δit) = δ−it.

With all these data, we get that it is possible to define ∆it
Φ̂ β⊗α

ν
∆it

Φ̂
as:

∆it
Φ̂ β⊗α

ν
∆it

Φ̂ = (P it β⊗α
ν

P it)(JΦδ
itJΦ β⊗α

N

JΦδ
itJΦ)

and (δ∆Φ̂)it α⊗β̂
νo

∆it
Φ̂

as:

(δ∆Φ̂)it α⊗β̂
νo

∆it
Φ̂

= (P it α⊗β̂
νo

P it)(JΦ̂ β⊗α
ν

JΦ)(δit β⊗α
ν

δit)(JΦ̂ α⊗β̂
νo

JΦ)(JΦδ
itJΦ α⊗β̂

No

1)

and to verify that:
W (∆it

Φ̂ β⊗α
ν

∆it
Φ̂)W ∗

= W (P it β⊗α
ν

P it)(JΦδ
itJΦ β⊗α

N

JΦδ
itJΦ)W ∗

= (P it α⊗β̂
νo

P it)W (JΦδ
itJΦ β⊗α

N

JΦδ
itJΦ)W ∗

= (P it α⊗β̂
νo

P it)(JΦδ
itJΦ α⊗β̂

No

1)W (1 β⊗α
N

JΦδ
itJΦ)W ∗

which is equal to:
(P it α⊗β̂

νo
P it)(JΦδ

itJΦ α⊗β̂
No

1)(JΦ̂ β⊗α
ν

JΦ)W ∗(1 α⊗β̂
No

δit)W (JΦ̂ α⊗β̂
νo

JΦ)
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and, therefore, to:

(P it α⊗β̂
νo

P it)(JΦδ
itJΦ α⊗β̂

No

1)(JΦ̂ β⊗α
ν

JΦ)(δit β⊗α
ν

δit)(JΦ̂ α⊗β̂
νo

JΦ)

or to:

(P it α⊗β̂
νo

P it)(JΦδ
itJΦ α⊗β̂

No

1)(δit α⊗β̂
νo

JΦ̂δ
itJΦ̂) = (δ∆Φ̂)it α⊗β̂

νo
∆it

Φ̂

which finishes the proof. �

6.8. Proposition
Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, (b, a)
a weighted action of G on a von Neumann algebra A, and ψ a normal
semi-finite faithful weight on A, lifted from νo; then the von Neumann
algebra A b∗α

N
L(H) is a faithful right N -module in two different ways,

using 1 b⊗α
N

β, and 1 b⊗α
N

β̂; moreover, the weight ψ constructed in 4.4 is
a lifted weight from ν, using 1 b⊗α

N
β, and, on the other hand, satisfies the

(1 b⊗α
N

β̂, γ) property; therefore, we can define a normal semi-finite faithful

weight ψ on A b∗α
N
L(H) β∗α

N

L(H), and another normal semi-finite faithful

weight (ψ)
δ

on A b∗α
N
L(H) β̂∗α

N

L(H). As in 5.1, let us write, for any Y in

L(H b⊗α
ν
H β̂⊗α

ν

H),

Θ̃(Y ) = (1 b⊗α
N

W )∗(id b∗α
N
ςN )(Y )(1 b⊗α

N
W )

which belongs to L(H b⊗α
ν
H β⊗α

ν
H). Then, we have:

ψ ◦ Θ̃ = (ψ)
δ
.

Proof. By definition, the weight ψ is defined on A b∗α
N
L(H) β∗α

N

L(H) by

considering on Hψ β⊗α
ν

H the spatial derivative:

dψ

d(ψ)o
= ∆ψ β⊗α

ν
∆−1

Φ̂
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and, using 4.10, we therefore get, on H β⊗a
ν

Hψ b⊗α
ν
H β⊗α

ν
H, that:

dψ

d(ψ)o
= ∆−1

Φ̂ β⊗a
ν

∆ψ b⊗α
ν

∆−1
Φ̂ β⊗α

ν
∆−1

Φ̂
.

On the other hand, the weight (ψ)
δ

is defined on A b∗α
N
L(H) β̂∗α

N

L(H) by

considering on Hψ β̂⊗α
ν

H = H β⊗a
ν
Hψ b⊗α

ν
H β̂⊗α

ν

H the spatial derivative:

d(ψ)
δ

d(ψ)o
= ∆ψ β̂⊗α

ν

(δ∆Φ̂)−1 = ∆−1
Φ̂ β⊗a

ν
∆ψ b⊗α

ν
∆−1

Φ̂ β̂⊗α
ν

(δ∆Φ̂)−1

from which we get, using 6.7 and the definition of Θ̃ that:
dψ

d(ψ)o
= (id β∗a

N

Θ̃)(
d(ψ)

δ

d(ψ)o
) .

The weight (ψ)o is defined on Jψπψ(A b∗α
N
L(H))Jψ, which, using again

4.10, is equal to L(H)β∗a
N

A′ b⊗α
N

1H ; we see, therefore, for X ∈ L(H)β∗a
N

A′,

that (id β∗a
N

Θ̃) sends X b⊗α
N

1H β̂⊗α
N

1H on X b⊗α
N

1H β⊗α
N

1H , and leaves

(ψ)o invariant. From which we deduce that:

dψ ◦ Θ̃
d(ψ)o

=
d(ψ)

δ

d(ψ)o

from which we get the result. �

7. Biduality of weights

In that chapter, following what had been done for locally compact quan-
tum groups in [51], [50], and [3], starting from an action a of a measured
quantum groupoid on a von Neumann algebra A, we define the Radon-
Nikodym derivative of a lifted weight on A with respect to this action (7.2);
this operator is an a-cocycle (7.3), which measures, in a certain sense, how
the weight ψ behaves towards the action. In particular, we prove that this
cocycle is equal to 1 if and only if the weight is invariant by the action
(7.7, 7.9).
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7.1. Theorem

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, (b, a)
a weighted action of G on a von Neumann algebra A, ψ a normal semi-
finite faithful weight on A lifted from νo; let ψ̃ be the dual weight on the
crossed-product AoaG, and let ψa be the normal semi-finite faithful weight
on A b∗α

N
L(H) obtained from the bidual weight ˜̃ψ and the isomorphism

between A b∗α
N
L(H) and the double crossed-product; let ψ be normal semi-

finite faithful weight on A b∗α
N
L(H) constructed in 4.4. We have then:

(Dψa : Dψ)t = ∆it
ψ̃

(∆−itψ b⊗α
ν

∆it
Φ̂) .

Moreover, the unitaries ∆it
ψ̃

(∆−itψ b⊗α
ν

∆it
Φ̂

) belong to A b∗α
N

(M ∩ β(N)′).

Proof. We have (Dψa : Dψ)t = ( dψa

dψo )it( dψdψo )−it, from which we get the
first result, by 2.4 and 4.8. So, we get that the unitaries ∆it

ψ̃
(∆−itψ b⊗α

ν
∆it

Φ̂
)

belong to A b∗α
N
L(H); let’s take x ∈ M ′; using 3.8, we have σψa

t (1 b⊗α
N

x) = 1 b⊗α
N

∆−it
Φ̂
x∆it

Φ̂
, and, using 4.8, we get that σψt (1 b⊗α

N
x) = 1 b⊗α

N

∆−it
Φ̂
x∆it

Φ̂
; therefore, we get that ( dψa

dψo )it( dψdψo )−it commutes with 1 b⊗α
N

x,
and, therefore, belongs to A b∗α

N
M .

Let n ∈ N ; we have:

σ
ψ

t (1 b⊗α
N

β(n)) = 1 b⊗α
N

∆−it
Φ̂
β(n)∆it

Φ̂ = 1 b⊗α
N

τ−t(β(n)) = 1 b⊗α
N

β(σν−t(n))

and, on the other hand:

σ
ψa
t (1 b⊗α

N
β(n)) = σ

ψa
t (a(b(n))) = a(σψt (b(n)))

= a(b(σν−t(n)) = 1 b⊗α
N

β(σν−t(n))

which proves that both ψ and ψa are lifted weights from the weight νo,
and, therefore, that (Dψa : Dψ)t belongs to A b∗α

N
β(N)′, which finishes

the proof. �
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7.2. Definition

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, (b, a)
a weighted action of G on a von Neumann algebra A, ψ a normal semi-
finite faithful weight on A lifted from νo; we shall call the unitaries (Dψa :
Dψ)t ∈ A b∗α

N
(M ∩β(N)′) the Radon-Nikodym derivative of the weight ψ

with respect to the action (b, a), and denote it, for simplification, (Dψ ◦a :
Dψ)t, following the notations of ([3], 10.2).

7.3. Theorem

Let G = (N,M,α, β,Γ, T, T ′, ν) be a measured quantum groupoid, (b, a)
a weighted action of G on a von Neumann algebra A, ψ a normal semi-
finite faithful weight on A lifted from νo; the Radon-Nikodym derivative
(Dψ ◦ a : Dψ)t introduced in 7.2 is a a-cocycle, i.e., we have:

(idb∗α
N

Γ)((Dψ◦a : Dψ)t) = (ab∗α
N
id)((Dψ◦a : Dψ)t)((Dψ◦a : Dψ)t)β⊗α

N

1) .

Proof. For all t ∈ R, (a b∗α
N
id)((Dψ ◦ a : Dψ)t) belongs to A b∗α

N
M β∗α

N

M ,

and the operator a((Dψ ◦ a : Dψ)t) = Θ̃−1(a b∗α
N

id)((Dψ ◦ a : Dψ)t)

belongs to A b∗α
N
M β̂∗α

N

M (where Θ̃ had been defined in 6.8).

We have, using successively 2.4, 6.5 and 5.2(iii):

a((Dψ ◦ a : Dψ)t) = a((Dψa : Dψ)t)

= (D(ψa)a : D(ψ)a)t = (D(ψa)
δ

: D(ψa) ◦ Θ̃)t

On the other hand, using successively 4.5(ii) and 6.8:

Θ̃−1((Dψ ◦ a : Dψ)t) β⊗α
N

1) = Θ̃−1((Dψa : Dψ)t β⊗α
N

1)

= Θ̃−1(Dψa : Dψ)t)

= (Dψa ◦ Θ̃ : Dψ ◦ Θ̃)t
= (Dψa ◦ Θ̃ : D(ψ)

δ
)t
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and, therefore, we get that:

Θ̃−1[(a b∗α
N
id)((Dψ ◦ a : Dψ)t)((Dψ ◦ a : Dψ)t) β⊗α

N

1)]

= a((Dψ ◦ a : Dψ)t)Θ̃−1((Dψ ◦ a : Dψ)t) β⊗α
N

1)

is equal, using 6.6(ii), to:

(D(ψa)
δ

: D(ψa) ◦ Θ̃)t(D(ψa) ◦ Θ̃ : D(ψ)
δ
)t = (D(ψa)

δ
: D(ψ)

δ
)t

= (Dψa : Dψ)t β̂⊗α
N

1

= (Dψ ◦ a : Dψ)t β̂⊗α
N

1

from which we get that:

(a b∗α
N
id)((Dψ ◦ a : Dψ)t)((Dψ ◦ a : Dψ)t) β⊗α

N

1)

= Θ̃((Dψ ◦ a : Dψ)t β̂⊗α
N

1)

= (id b∗α
N

Γ)((Dψ ◦ a : Dψ)t)

which is the result. �

7.4. Example
Let G be a locally compact quantum group, and a an action of G on a
von Neumann algebra A; then this result had been obtained in ([51], 4.8
and [50], 3.7 and [3], 10.3).

7.5. Example
Let G be a measured groupoid; let us use all the notations introduced
in 5.10. Let (a)g∈G be an action of G on a von Neumann algebra A =∫⊕
G(0) A

xdν(x), and ψ =
∫⊕
G(0) ψ

xdν(x) a normal semi-finite faithful weight
on A. Then, the Radon-Nikodym derivative of ψ with respect to the action
a, is, using ([49], 2.6), given by:

(Dψ ◦ a : Dψ)t =
∫ ⊕
G

(Dψr(g) : Dψs(g) ◦ ag−1)tdν(g)
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which is acting on
∫⊕
G Hψr(g)dµ(g) = Hψ b⊗rG

ν
L2(G, µ).

7.6. Definition
Let (b, a) an action of a measured quantum groupoid G on a von Neu-
mann algebra A. A normal semi-finite faithful weight ψ on A will be said
invariant by a if, for all η ∈ D(αH, ν) ∩D(Hβ, ν

o) and x ∈ Nψ, we have:

ψ[(id b∗α
N
ωη)a(x∗x)] = ‖Λψ(x) a⊗β

νo
η‖2 .

We shall always suppose that such weights bear the density property,
defined in 2.3, as for δ-invariant weights.

7.7. Theorem
Let (b, a) an action of a measured groupoid G on a von Neumann algebra
A, ψ a normal semi-finite faithful weight on A, invariant by a in the
sense of 7.6. Then, let (ei)i∈I be an (α, ν)-orthogonal basis of H, x ∈ Nψ,
η ∈ D(αH, ν) ∩D(Hβ, ν

o):
(i) for any ξ ∈ D(αH, ν), (id b∗α

N
ωη,ξ)a(x) belongs to Nψ;

(ii) the sum
∑
i Λψ((id b∗α

N
ωη,ei)a(x) b⊗α

ν
ei is strongly converging; its limit

does not depend upon the choice of the (α, ν)-othogonal basis of H, and
allow us to define an isometry V ′ψ from Hψ a⊗β

νo
H to Hψ b⊗α

ν
H such that:

V ′ψ(Λψ(x) a⊗β
νo

η) =
∑
i

Λψ((id b∗α
N
ωη,ei)a(x) b⊗α

ν
ei ;

(iii) we have:

Λψ((id b∗α
N
ωη,ξ)a(x)) = (id ∗ ωη,ξ)(V ′ψ)λψ(x) ;

(iv) for any y ∈ A, z ∈M ′, n ∈ N , we have:

a(y)V ′ψ = V ′ψ(y a⊗β
No

1)

(1 b⊗α
N

z)V ′ψ = V ′ψ(1 a⊗β
No

z)

(a(n) b⊗α
N

1)V ′ψ = V ′ψ(1 a⊗β
No

α(n))
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(1 b⊗α
N

β(n))V ′ψ = V ′ψ(b(n) a⊗β
No

1)

(1 b⊗α
N

β̂(n))V ′ψ = V ′ψ(1 a⊗β
No

β̂(n)) ;

(v) the operator V ′ψ is a unitary; moreover, it is a copresentation of G on
a(Hψ)b which implements a;
(vi) we have:

V ′ψ(∆it
ψ a⊗β

No

∆−it
Φ̂

) = (∆it
ψ b⊗α

N
∆−it

Φ̂
)V ′ψ .

Moreover, the weight ψ is lifted from νo; more precisely, there exists a
normal faithful semi-finite operator-valued weight T from A onto b(N)
such that ψ = νo ◦ b−1 ◦ T, and, for all x ∈ NT ∩Nψ, we have:

(T b∗α
N
id)a(x∗x) = 1 b⊗α

N
β ◦ b−1T(x∗x) = a(T(x∗x))

(ψ b∗α
ν
id)a(x∗x) = β ◦ b−1T(x∗x) ;

(vii) we have:
a(σψt (y)) = (σψt b∗α

N
τt)a(y) ;

(viii) the standard implementation Ua
ψ is equal to V ′ψ;

(ix) the dual weight satisfies ∆it
ψ̃

= ∆it
ψ b⊗α

N
∆−it

Φ̂
;

(x) the Radon-Nikodym derivative (Dψ ◦ a : Dψ)t is equal to 1.

Proof. Result (i) is identical to ([16], 8.3(i)), and (ii) is similar to ([16],
8.3(ii) and 8.4(i)); the proof of (iii) is similar to the proof of ([16], 8.4(ii)
and (iii)), and the proof of (iv) is similar (and somehow simpler) to the
proof of ([16], 8.4(iv) and (v)). Now result (v) is obtained in a similar way
to ([16], 8.5 and 8.6); by similar calculations to ([16], 8.7 and 8.8(i)), we
obtain that, for all t ∈ R, we have σψt (b(n)) = b(σν−t(n)), which gives the
existence of a normal faithful semi-finite operator-valued weight T from
A onto b(N) such that ψ = νo ◦ b−1 ◦T. For any x ∈ Nψ ∩NT, the vector
Λψ(x) belongs to D(αH, ν), and we have, for any η ∈ H:

‖Λψ(x) a⊗β
νo

η‖2 = (β ◦ b−1T(x∗x)η|η) .

So, using the density property and 7.6, we get, for all x ∈ Nψ ∩NT, that:

(ψ b∗α
ν
id)a(x∗x) = β ◦ b−1T(x∗x)
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and, therefore, that:

(T b∗α
N
id)a(x∗x) = 1 b⊗α

N
β ◦ b−1T(x∗x) = a(T(x∗x)

we finish the proof of (vi) in a similar way to ([16], 8.8(ii)). Then (vii) is a
straightforward corollary of (vi) and (v), and (viii) and (ix) are obtained in
a similar way to 3.2(i) and (ii). As ∆ψ̃ = dψa

dψo ([16] 13.6) and ∆ψ b⊗α
N

∆−1
Φ̂

=
dψ

dψo by 4.4(ii), we infer from (ix) that ψa = ψ, which, by 7.2, finishes the
proof. �

7.8. Corollary

Let (b, a) be an action of a measured quantum groupoid G on a von Neu-
mann algebra A; let ψ1, ψ2 be two invariant normal faithful semi-finite
weights on A, as defined in 7.6, and let us suppose that both ψ1 and ψ2 bear
the density property, as defined in 2.3. Then, for all t ∈ R, (Dψ1 : Dψ2)t
belongs to Aa.

Proof. The proof is similar to ([16], 8.11). �

7.9. Theorem

Let (b, a) be a weighted action of a measured quantum groupoid G on a
von Neumann algebra A, and ψ a normal semi-finite faithful weight on A,
lifted from νo. If the Radon-Nikodym derivative (Dψ ◦ a : Dψ)t is equal to
1, then the weight ψ is invariant by a in the sense of 7.6.

Proof. Let ξ ∈ D(αH, ν)∩D(Hβ, ν
o)∩D(∆−1/2

Φ̂
) such that ∆−1/2

Φ̂
ξ belongs

to D(αH, ν); let us remark first that if y belongs to NΦ̂ ∩N∗
Φ̂
∩NT̂ ∩N∗

T̂
,

and is analytic with respect to σΦ̂
t , and such that σz(x) belongs to NΦ̂ ∩

N∗
Φ̂
∩NT̂N∗

T̂
, for all z ∈ C, then ΛΦ̂(z) satisfies all those conditions, and

this gives that the set of such elements ξ is dense in H.
Let η be in D(αH, ν) ∩ D(∆−1/2

Φ̂
) such that ∆−1/2

Φ̂
η belongs to D(αH, ν),

and x ∈ Nψ, analytic with respect to ψ, such that σ−i/2(x∗) belongs to
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Nψ. Then, we have, using 4.10(i) applied to νo:

((ψ b∗α
ν
id)a(x∗x)ξ α⊗β

No

J
φ̂
∆−1/2

Φ̂
η|ξ α⊗β

No

J
φ̂
∆−1/2

Φ̂
η) =

((ψ b∗α
ν
id)a(x∗x)Λνo(θα,ν(ξ, η))|Λνo(θα,ν(ξ, η)) =

νo(θα,ν(ξ, η)∗(ψ b∗α
ν
id)a(x∗x)θα,ν(ξ, η)

which is equal, using 4.8 and 4.9, to:

ψ(1 b⊗α
N

θα,ν(ξ, η))∗a(x∗x)(1 b⊗α
N

θα,ν(ξ, η))) .

By hypothesis, as ψa = ψ by 7.2, we get, using 2.3 that σ
ψ

t (a(x)) =
σψa
t (a(x)) = a(σψt (x)). Moreover, we can write, thanks to the hypothesis

and to 4.10 applied to νo:

JνoΛνo(θα,ν(ξ, η)) = JΦ̂ξ β⊗α
ν

∆−1/2
Φ̂

η = Λνo(θα,ν(∆−1/2
Φ̂

η,∆1/2
Φ̂
ξ))

from which we get that [a(x)(1 b⊗α
N

θα,ν(ξ, η))]∗ belongs to D(σψ−i/2), and,
therefore, that:

((ψ b∗α
ν
id)a(x∗x)ξ α⊗β

νo
J
φ̂
∆−1/2

Φ̂
η|ξ α⊗β

νo
J
φ̂
∆−1/2

Φ̂
η)

is equal to:

‖Λψ(σψ−i/2([a(x)(1 b⊗α
N

θα,ν(ξ, η))]∗)‖2

= ‖Λψ((1 b⊗α
N

θα,ν(∆−1/2
Φ̂

η,∆1/2
Φ̂
ξ))a(σψ−i/2(x∗)))‖2

which, thanks again to the hypothesis and to 4.11, is equal to:

‖Λψ(σψ−i/2(x∗))b⊗α
ν
JΦ̂ξ β⊗α

ν
∆−1/2

Φ̂
η‖2

= ‖JψΛψ(x) b⊗α
ν
JΦ̂ξ β⊗α

ν
∆−1/2

Φ̂
η‖2

= ‖Λψ(x) a⊗β
νo

ξ α⊗β
νo

JΦ̂∆−1/2
Φ̂

η‖2
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So, finally, we get the equality:

((ψ b∗α
ν
id)a(x∗x)ξ α⊗β

νo
J
φ̂
∆−1/2

Φ̂
η|ξ α⊗β

νo
J
φ̂
∆−1/2

Φ̂
η)

= ‖Λψ(x) a⊗β
νo

ξ α⊗β
νo

JΦ̂∆−1/2
Φ̂

η‖2

which, by continuity, remains true for any x ∈ Nψ and ξ ∈ D(αH, ν) ∩
D(Hβ, ν

o); from which we infer that:

((ψ b∗α
ν
id)a(x∗x)α(〈JΦ̂∆−1/2

Φ̂
η, JΦ̂∆−1/2

Φ̂
η〉β,νo)ξ|ξ) =

(Λψ(x) a⊗β
νo

α(〈JΦ̂∆−1/2
Φ̂

η, JΦ̂∆−1/2
Φ̂

η〉β,νo)ξ|Λψ(x) a⊗β
νo

ξ)

from which, by density of the elements of the form

〈JΦ̂∆−1/2
Φ̂

η, JΦ̂∆−1/2
Φ̂

η〉β,νo

in N+, we get, for any n ∈ N+:

((ψ b∗α
ν
id)a(x∗x)α(n)ξ|ξ) = (Λψ(x) a⊗β

νo
α(n)ξ|Λψ(x) a⊗β

νo
ξ)

from which we get the result, by density of D(αH, ν) ∩D(Hβ, ν
o). �

7.10. Proposition

Let G be a measured quantum groupoid, (b, a) a weighted action of G on a
von Neumann algebra A, ψ1 and ψ2 two normal semi-finite faithful weights
on A, lifted from νo, and (Dψ1 ◦ a : Dψ1)t, (Dψ2 ◦ a : Dψ2)t their Radon-
Nikodym derivatives with respect to the action (b, a), as defined in 7.2.
Then, the Radon-Nikodym derivative (Dψ1 : Dψ2)t belongs to A ∩ b(N)′,
and we have, for all t ∈ R:

(Dψ2◦a : Dψ2)t = a((Dψ2 : Dψ1)t)(Dψ1◦a : Dψ1)t((Dψ2 : Dψ1)∗t b⊗α
N

1) .

Proof. As ψ1 and ψ2 are lifted weights from ν, we get that (Dψ1 : Dψ2)t
belongs to A ∩ b(N)′ by ([35], 4.22(iii)); moreover, we have:

(Dψ2a : Dψ2)t = (Dψ2a : Dψ1a)t(Dψ1a : Dψ1)t(Dψ1 : Dψ2)t
from which we get the result, using 2.3, 7.2 and 4.5(ii). �
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7.11. Corollary

Let G be a measured quantum groupoid, (b, a) a weighted action of G on
a von Neumann algebra A; then, are equivalent:
(i) there exists a normal semi-finite faithful weight on A, which is invariant
and bears the density condition;
(ii) there exists a normal semi-finite faithful weight ψ on A, lifted from νo,
and a σψt -cocycle ut on A∩b(N)′ such that (Dψ◦a : Dψ)t = a(u∗t )(utb⊗α

N
1);

(iii) for any normal semi-finite faithful weight ψ on A, lifted from νo,
there exists a σψt -cocycle ut on A ∩ b(N)′ such that (Dψ ◦ a : Dψ)t =
a(u∗t )(ut b⊗α

N
1).

Proof. Let suppose (i), and let ϕ be an invariant weight on A, bearing the
density condition; then, by 7.7(vi), the weight is lifted, and, if ψ is any
another lifted weight on A, ut = (Dϕ : Dψ)t is a σψt -cocycle in A ∩ b(N)′
by ([35], 4.22(iii)); moreover, using 7.10, we get (iii).
Conversely, if we suppose (ii), there exists a normal semi-finite faithful
weight ϕ on A such that ut = (Dϕ : Dψ)t; as ψ is lifted, and ut belongs
to A ∩ b(N)′, we know, using ([35], 4.22(iii)), that ϕ is lifted, too. Using
now 7.10, we get that (Dϕ ◦ a : Dϕ)t = 1, which, thanks to 7.9, gives the
result. �
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