Une opérade anticyclique sur les arbustes
Annales mathématiques Blaise Pascal, Volume 17 (2010) no. 1, pp. 17-45.

We define new combinatorial objects, called shrubs, such that forests of rooted trees are shrubs. We then introduce a structure of operad on shrubs. We show that this operad is contained in the Zinbiel operad, by using the inclusion of Zinbiel in the operad of moulds. We also prove that this inclusion is compatible with the richer structure of anticyclic operad that exists on Zinbiel and on moulds.

DOI: 10.5802/ambp.277
Classification: 18D50,  05C05,  06A07
Keywords: Operad, anticyclic operad, tree, permutation, fraction
Frédéric Chapoton 1

1 Université de Lyon ; Université Lyon 1 ; CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France
@article{AMBP_2010__17_1_17_0,
     author = {Fr\'ed\'eric Chapoton},
     title = {Une op\'erade anticyclique sur les arbustes},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {17--45},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {1},
     year = {2010},
     doi = {10.5802/ambp.277},
     mrnumber = {2674653},
     zbl = {1202.18005},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.277/}
}
TY  - JOUR
AU  - Frédéric Chapoton
TI  - Une opérade anticyclique sur les arbustes
JO  - Annales mathématiques Blaise Pascal
PY  - 2010
DA  - 2010///
SP  - 17
EP  - 45
VL  - 17
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.277/
UR  - https://www.ams.org/mathscinet-getitem?mr=2674653
UR  - https://zbmath.org/?q=an%3A1202.18005
UR  - https://doi.org/10.5802/ambp.277
DO  - 10.5802/ambp.277
LA  - fr
ID  - AMBP_2010__17_1_17_0
ER  - 
%0 Journal Article
%A Frédéric Chapoton
%T Une opérade anticyclique sur les arbustes
%J Annales mathématiques Blaise Pascal
%D 2010
%P 17-45
%V 17
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.277
%R 10.5802/ambp.277
%G fr
%F AMBP_2010__17_1_17_0
Frédéric Chapoton. Une opérade anticyclique sur les arbustes. Annales mathématiques Blaise Pascal, Volume 17 (2010) no. 1, pp. 17-45. doi : 10.5802/ambp.277. https://ambp.centre-mersenne.org/articles/10.5802/ambp.277/

[1] F. Bergeron; G. Labelle; P. Leroux Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, 67, Cambridge University Press, Cambridge, 1998 (Translated from the 1994 French original by Margaret Readdy, With a foreword by Gian-Carlo Rota) | MR | Zbl

[2] F. Chapoton On some anticyclic operads, Algebr. Geom. Topol., Volume 5 (2005), p. 53-69 (electronic) | DOI | MR | Zbl

[3] F. Chapoton The anticyclic operad of moulds, Int. Math. Res. Not. IMRN (2007) no. 20, pp. Art. ID rnm078, 36 | MR | Zbl

[4] Frédéric Chapoton A bijection between shrubs and series-parallel posets, 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) (DMTCS Proceedings) (2008)

[5] Frédéric Chapoton; Florent Hivert; Jean-Christophe Novelli; Jean-Yves Thibon An operational calculus for the mould operad, Int. Math. Res. Not. IMRN (2008) no. 9, pp. Art. ID rnn018, 22 | MR | Zbl

[6] Muriel Livernet A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra, Volume 207 (2006) no. 1, pp. 1-18 | DOI | MR | Zbl

[7] Jean-Louis Loday Dialgebras, Dialgebras and related operads (Lecture Notes in Math.), Volume 1763, Springer, Berlin, 2001, pp. 7-66 | MR | Zbl

[8] Jean-Louis Loday; Maria O. Ronco Combinatorial Hopf algebras (2008) (ArXiv :math :08100435)

[9] Richard P. Stanley Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc., Volume 45 (1974), pp. 295-299 | DOI | MR | Zbl

[10] Richard P. Stanley Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin) | MR | Zbl

Cited by Sources: