A geometric description of differential cohomology
Annales mathématiques Blaise Pascal, Volume 17 (2010) no. 1, pp. 1-16.

In this paper we give a geometric cobordism description of differential integral cohomology. The main motivation to consider this model (for other models see [5, 6, 7, 8]) is that it allows for simple descriptions of both the cup product and the integration. In particular it is very easy to verify the compatibilty of these structures. We proceed in a similar way in the case of differential cobordism as constructed in [4]. There the starting point was Quillen’s cobordism description of singular cobordism groups for a differential manifold X. Here we use instead the similar description of integral cohomology from [11]. This cohomology theory is denoted by SH * (X). In this description smooth manifolds in Quillen’s description are replaced by so-called stratifolds, which are certain stratified spaces. The cohomology theory SH * (X) is naturally isomorphic to ordinary integral cohomology H * (X), thus we obtain a cobordism type definition of the differential extension of ordinary integral cohomology.

Nous donnons une définition géométrique de la cohomologie intégrale différentielle. Nous utilisons des cycles de cobordisme avec singularités, et des formes différentielles distributionnelles. Avec cette description, la construction de la multiplication et de l’intégration avec toutes les proprietés désirées est particulièrement simple.

DOI: 10.5802/ambp.276
Classification: 55N20,  57R19
Keywords: differential cohomology, smooth cohomology, geometric cycles, cobordism
Ulrich Bunke 1; Matthias Kreck 2; Thomas Schick 3

1 NWF I - Mathematik Universität Regensburg 93040 Regensburg Deutschland
2 Hausdorff Research Institute for Mathematics Poppelsdorfer Allee 45 D-53115 Bonn Germany
3 Mathematisches Institut Georg-August-Universität Göttingen Bunsenstr. 3 37073 Göttingen Germany
@article{AMBP_2010__17_1_1_0,
     author = {Ulrich Bunke and Matthias Kreck and Thomas Schick},
     title = {A geometric description of differential cohomology},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--16},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {1},
     year = {2010},
     doi = {10.5802/ambp.276},
     mrnumber = {2674652},
     zbl = {1200.55007},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.276/}
}
TY  - JOUR
AU  - Ulrich Bunke
AU  - Matthias Kreck
AU  - Thomas Schick
TI  - A geometric description of differential cohomology
JO  - Annales mathématiques Blaise Pascal
PY  - 2010
DA  - 2010///
SP  - 1
EP  - 16
VL  - 17
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.276/
UR  - https://www.ams.org/mathscinet-getitem?mr=2674652
UR  - https://zbmath.org/?q=an%3A1200.55007
UR  - https://doi.org/10.5802/ambp.276
DO  - 10.5802/ambp.276
LA  - en
ID  - AMBP_2010__17_1_1_0
ER  - 
%0 Journal Article
%A Ulrich Bunke
%A Matthias Kreck
%A Thomas Schick
%T A geometric description of differential cohomology
%J Annales mathématiques Blaise Pascal
%D 2010
%P 1-16
%V 17
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.276
%R 10.5802/ambp.276
%G en
%F AMBP_2010__17_1_1_0
Ulrich Bunke; Matthias Kreck; Thomas Schick. A geometric description of differential cohomology. Annales mathématiques Blaise Pascal, Volume 17 (2010) no. 1, pp. 1-16. doi : 10.5802/ambp.276. https://ambp.centre-mersenne.org/articles/10.5802/ambp.276/

[1] Nils Andreas Baas On formal groups and singularities in complex cobordism theory, Math. Scand., Volume 33 (1973), p. 303-313 (1974) | EuDML | MR | Zbl

[2] Ulrich Bunke; Thomas Schick Smooth K-Theory (2009) arXiv:0707.0046, to appear in From Probability to Geometry. Volume dedicated to J.-M. Bismut for his 60th birthday (X. Ma, editor), Asterisque 327 & 328 | Zbl

[3] Ulrich Bunke; Thomas Schick Uniqueness of smooth extensions of generalized cohomology theories (2010) (arXiv.org:0901.4423, to appear in Journal of Topology) | Zbl

[4] Ulrich Bunke; Thomas Schick; Ingo Schröder; Moritz Wiethaup Landweber exact formal group laws and smooth cohomology theories, Algebr. Geom. Topol., Volume 9 (2009) no. 3, pp. 1751-1790 | DOI | MR | Zbl

[5] Jeff Cheeger; James Simons Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84) (Lecture Notes in Math.), Volume 1167, Springer, Berlin, 1985, pp. 50-80 | MR | Zbl

[6] Johan L. Dupont; Rune Ljungmann Integration of simplicial forms and Deligne cohomology, Math. Scand., Volume 97 (2005) no. 1, pp. 11-39 | MR | Zbl

[7] Reese Harvey; Blaine Lawson From sparks to grundles—differential characters, Comm. Anal. Geom., Volume 14 (2006) no. 1, pp. 25-58 | MR | Zbl

[8] M. J. Hopkins; I. M. Singer Quadratic functions in geometry, topology, and M-theory, J. Differential Geom., Volume 70 (2005) no. 3, pp. 329-452 | MR | Zbl

[9] Lars Hörmander The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003 Distribution theory and Fourier analysis, Reprint of the second (1990) edition | MR | Zbl

[10] Manuel Köhler Integration in glatter Kohomologie (2007) (Technical report)

[11] Matthias Kreck Differential algebraic topology (2007) (Preprint, available at http://www.hausdorff-research-institute.uni-bonn.de/kreck)

[12] Matthias Kreck; Wilhelm Singhoff Homology and cohomology theories on manifolds (2010) (to appear in Münster Journal of Mathematics)

[13] James Simons; Dennis Sullivan Axiomatic characterization of ordinary differential cohomology, J. Topol., Volume 1 (2008) no. 1, pp. 45-56 | DOI | MR | Zbl

Cited by Sources: