[Une description géométrique de la cohomologie différentielle]
Nous donnons une définition géométrique de la cohomologie intégrale différentielle. Nous utilisons des cycles de cobordisme avec singularités, et des formes différentielles distributionnelles. Avec cette description, la construction de la multiplication et de l’intégration avec toutes les proprietés désirées est particulièrement simple.
In this paper we give a geometric cobordism description of differential integral cohomology. The main motivation to consider this model (for other models see [5, 6, 7, 8]) is that it allows for simple descriptions of both the cup product and the integration. In particular it is very easy to verify the compatibilty of these structures. We proceed in a similar way in the case of differential cobordism as constructed in [4]. There the starting point was Quillen’s cobordism description of singular cobordism groups for a differential manifold . Here we use instead the similar description of integral cohomology from [11]. This cohomology theory is denoted by . In this description smooth manifolds in Quillen’s description are replaced by so-called stratifolds, which are certain stratified spaces. The cohomology theory is naturally isomorphic to ordinary integral cohomology , thus we obtain a cobordism type definition of the differential extension of ordinary integral cohomology.
Keywords: differential cohomology, smooth cohomology, geometric cycles, cobordism
Mot clés : cohomologie différentielle, cycles géométriques, cobordisme
Ulrich Bunke 1 ; Matthias Kreck 2 ; Thomas Schick 3
@article{AMBP_2010__17_1_1_0, author = {Ulrich Bunke and Matthias Kreck and Thomas Schick}, title = {A geometric description of differential cohomology}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--16}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {1}, year = {2010}, doi = {10.5802/ambp.276}, mrnumber = {2674652}, zbl = {1200.55007}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.276/} }
TY - JOUR AU - Ulrich Bunke AU - Matthias Kreck AU - Thomas Schick TI - A geometric description of differential cohomology JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 1 EP - 16 VL - 17 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.276/ DO - 10.5802/ambp.276 LA - en ID - AMBP_2010__17_1_1_0 ER -
%0 Journal Article %A Ulrich Bunke %A Matthias Kreck %A Thomas Schick %T A geometric description of differential cohomology %J Annales mathématiques Blaise Pascal %D 2010 %P 1-16 %V 17 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.276/ %R 10.5802/ambp.276 %G en %F AMBP_2010__17_1_1_0
Ulrich Bunke; Matthias Kreck; Thomas Schick. A geometric description of differential cohomology. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 1, pp. 1-16. doi : 10.5802/ambp.276. https://ambp.centre-mersenne.org/articles/10.5802/ambp.276/
[1] On formal groups and singularities in complex cobordism theory, Math. Scand., Volume 33 (1973), p. 303-313 (1974) | EuDML | MR | Zbl
[2] Smooth K-Theory (2009) arXiv:0707.0046, to appear in From Probability to Geometry. Volume dedicated to J.-M. Bismut for his 60th birthday (X. Ma, editor), Asterisque 327 & 328 | Zbl
[3] Uniqueness of smooth extensions of generalized cohomology theories (2010) (arXiv.org:0901.4423, to appear in Journal of Topology) | Zbl
[4] Landweber exact formal group laws and smooth cohomology theories, Algebr. Geom. Topol., Volume 9 (2009) no. 3, pp. 1751-1790 | DOI | MR | Zbl
[5] Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84) (Lecture Notes in Math.), Volume 1167, Springer, Berlin, 1985, pp. 50-80 | MR | Zbl
[6] Integration of simplicial forms and Deligne cohomology, Math. Scand., Volume 97 (2005) no. 1, pp. 11-39 | MR | Zbl
[7] From sparks to grundles—differential characters, Comm. Anal. Geom., Volume 14 (2006) no. 1, pp. 25-58 | MR | Zbl
[8] Quadratic functions in geometry, topology, and M-theory, J. Differential Geom., Volume 70 (2005) no. 3, pp. 329-452 | MR | Zbl
[9] The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003 Distribution theory and Fourier analysis, Reprint of the second (1990) edition | MR | Zbl
[10] Integration in glatter Kohomologie (2007) (Technical report)
[11] Differential algebraic topology (2007) (Preprint, available at http://www.hausdorff-research-institute.uni-bonn.de/kreck)
[12] Homology and cohomology theories on manifolds (2010) (to appear in Münster Journal of Mathematics)
[13] Axiomatic characterization of ordinary differential cohomology, J. Topol., Volume 1 (2008) no. 1, pp. 45-56 | DOI | MR | Zbl
Cité par Sources :