We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities with negative jumps. We show the existence of a stochastic process and a forward flow satisfying and , where is the law of and is the velocity of particle at time . Results on the flow characterization and Lipschitz continuity are also given.
Moreover, the map is the entropy solution of a scalar conservation law where the flux represents the particles momentum, and is a weak solution of the pressure-less gas system of equations of initial datum .
Mots clés : Convex hull, sticky particles, forward flow, stochastic differential equation, scalar conservation law, pressure-less gas system, Hamilton-Jacobi equation
Octave Moutsinga 1
@article{AMBP_2008__15_1_57_0, author = {Octave Moutsinga}, title = {Convex hulls, {Sticky} particle dynamics and {Pressure-less} gas system}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {57--80}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {1}, year = {2008}, doi = {10.5802/ambp.239}, mrnumber = {2418013}, zbl = {1153.76062}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.239/} }
TY - JOUR AU - Octave Moutsinga TI - Convex hulls, Sticky particle dynamics and Pressure-less gas system JO - Annales mathématiques Blaise Pascal PY - 2008 SP - 57 EP - 80 VL - 15 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.239/ DO - 10.5802/ambp.239 LA - en ID - AMBP_2008__15_1_57_0 ER -
%0 Journal Article %A Octave Moutsinga %T Convex hulls, Sticky particle dynamics and Pressure-less gas system %J Annales mathématiques Blaise Pascal %D 2008 %P 57-80 %V 15 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.239/ %R 10.5802/ambp.239 %G en %F AMBP_2008__15_1_57_0
Octave Moutsinga. Convex hulls, Sticky particle dynamics and Pressure-less gas system. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 57-80. doi : 10.5802/ambp.239. https://ambp.centre-mersenne.org/articles/10.5802/ambp.239/
[1] Sticky particles and scalar conservation laws, Siam. J. Numer. Anal., Volume 35 (1998), pp. 2317-2328 (No 6) | DOI | MR | Zbl
[2] Polygonal approximations of solutions of the initial value problem for a conservation law, Journal of Mathematical Analysis and Appl., Volume 38 (1972), pp. 33-41 | DOI | MR | Zbl
[3] Probabilistic interpretation for system of conservation law arising in adhesion particle dynamics, C. R. Acad. Sci. Paris, Volume tome 5 (1998), pp. 595-599 | MR | Zbl
[4] Generalized variational principles, Séminaire de Probabilités XXXVI, Lect. Notes in Math., Volume 1801 (2003), pp. 183-193 | EuDML | Numdam | MR | Zbl
[5] Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Com. Math. Phys., Volume 177 (1996), pp. 349-380 | DOI | MR | Zbl
[6] Equations de gaz sans pression avec une distribution initiale de Radon (2002) (Technical report)
[7] Probabilistic approch of sticky particles and pressure-less gas system, Univ. Sciences Tech. Lille (2003) (Ph. D. Thesis)
[8] Gravitational instability; an approximation theory for large density perturbations, Astron. Astrophys, Volume 5 (1970), pp. 84-89
Cité par Sources :