Convex hulls, Sticky particle dynamics and Pressure-less gas system
Annales Mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 57-80.

We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities u 0 with negative jumps. We show the existence of a stochastic process and a forward flow φ satisfying X s+t =φ(X s ,t,P s ,u s ) and dX t =E[u 0 (X 0 )/X t ]dt, where P s =PX s -1 is the law of X s and u s (x)=E[u 0 (X 0 )/X s =x] is the velocity of particle x at time s0. Results on the flow characterization and Lipschitz continuity are also given.

Moreover, the map (x,t)M(x,t):=P(X t x) is the entropy solution of a scalar conservation law t M+ x (A(M))=0 where the flux A represents the particles momentum, and P t , u t , t > 0 is a weak solution of the pressure-less gas system of equations of initial datum P 0 ,u 0 .

DOI : https://doi.org/10.5802/ambp.239
Classification : 52A10,  52A22,  60G44,  60H10,  60H30
Mots clés : Convex hull, sticky particles, forward flow, stochastic differential equation, scalar conservation law, pressure-less gas system, Hamilton-Jacobi equation
@article{AMBP_2008__15_1_57_0,
     author = {Octave Moutsinga},
     title = {Convex hulls, {Sticky} particle dynamics and {Pressure-less} gas system},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {57--80},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {15},
     number = {1},
     year = {2008},
     doi = {10.5802/ambp.239},
     mrnumber = {2418013},
     zbl = {1153.76062},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.239/}
}
Octave Moutsinga. Convex hulls, Sticky particle dynamics and Pressure-less gas system. Annales Mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 57-80. doi : 10.5802/ambp.239. https://ambp.centre-mersenne.org/articles/10.5802/ambp.239/

[1] Y. Brenier; E. Grenier Sticky particles and scalar conservation laws, Siam. J. Numer. Anal., Volume 35 (1998), pp. 2317-2328 ((No 6)) | Article | MR 1655848 | Zbl 0924.35080

[2] C. M. Dafermos Polygonal approximations of solutions of the initial value problem for a conservation law, Journal of Mathematical Analysis and Appl., Volume 38 (1972), pp. 33-41 | Article | MR 303068 | Zbl 0233.35014

[3] A. Dermoune Probabilistic interpretation for system of conservation law arising in adhesion particle dynamics, C. R. Acad. Sci. Paris, Volume tome 5 (1998), pp. 595-599 | MR 1649309 | Zbl 0920.60087

[4] A. Dermoune; O. Moutsinga Generalized variational principles, Séminaire de Probabilités XXXVI, Lect. Notes in Math., Volume 1801 (2003), pp. 183-193 | EuDML 114085 | Numdam | MR 1971585 | Zbl 1038.60045

[5] W. E; Yu. G. Rykov; Ya. G. Sinai Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Com. Math. Phys., Volume 177 (1996), pp. 349-380 | Article | MR 1384139 | Zbl 0852.35097

[6] O. Moutsinga Equations de gaz sans pression avec une distribution initiale de Radon (2002) (Technical report)

[7] O. Moutsinga Probabilistic approch of sticky particles and pressure-less gas system (2003) (Ph. D. Thesis)

[8] Ya. B. Zeldovich Gravitational instability; an approximation theory for large density perturbations, Astron. Astrophys, Volume 5 (1970), pp. 84-89