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Convex hulls, Sticky particle dynamics and
Pressure-less gas system

Octave Moutsinga

Abstract

We introduce a new condition which extends the definition of sticky particle
dynamics to the case of discontinuous initial velocities u0 with negative jumps.
We show the existence of a stochastic process and a forward flow φ satisfying
Xs+t = φ(Xs, t, Ps, us) and dXt = E[u0(X0)/Xt]dt, where Ps = PX−1

s is the law
of Xs and us(x) = E[u0(X0)/Xs = x] is the velocity of particle x at time s ≥ 0.
Results on the flow characterization and Lipschitz continuity are also given.

Moreover, the map (x, t) 7→ M(x, t) := P (Xt ≤ x) is the entropy solution of
a scalar conservation law ∂tM + ∂x(A(M)) = 0 where the flux A represents the
particles momentum, and

(
Pt, ut, t > 0

)
is a weak solution of the pressure-less

gas system of equations of initial datum P0, u0.

1. Introduction

Our purpose is to give the most natural assumptions which allow to define
the sticky particles model, and to study its main properties. It is well
known that this model is connected with the pressure-less gas system of
equations

∂t(ρ) + ∂x(uρ) = 0
∂t(uρ) + ∂x(u2ρ) = 0
ρ(dx, t) → P0 , u(x, t)ρ(dx, t) → u0(x)P0(dx) weakly as t→ 0+

(1.1)
when P0 is a Radon measure and u0 is a continuous function.

Definition 1.1. Let (u(·, t) : t ≥ 0) be a family of real functions and
(ρ(·, t) : t ≥ 0) be a family of real measures, weakly continuous with
respect to t. The family (ρ, u) is a weak solution of the above pressure-less

Keywords: Convex hull, sticky particles, forward flow, stochastic differential equation,
scalar conservation law, pressure-less gas system, Hamilton-Jacobi equation.
Math. classification: 52A10, 52A22, 60G44, 60H10, 60H30.
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gas system (1.1) if, for any f ∈ C1
c (R), the space of C1-functions on R

with compact support, and 0 < s < t :∫
f(x)ρ(dx, t)−

∫
f(x)ρ(dx, s) =

∫ t

s

∫
f ′(x)u(x, r)ρ(dx, r)dr∫

f(x)u(x, r)ρ(dx, t)−
∫
f(x)u(x, r)ρ(dx, s) =

∫ t

s

∫
f ′(x)u(x, r)2ρ(dx, r)dr.

The last line of system (1.1) defines the Cauchy problem of the initial
datum P0, u0, and is related to the weak convergence of measures.

In the discrete case (P0 with discrete support), Zeldovich [8] solved this
system from the sticky particle dynamics. Its solution is given by the mass
distribution ρ(·, t) and the velocity function u(·, t) of the particles at time
t.

For P0 with a continuous support with no vacuum, and u0 continu-
ous, E, Sinai, Rikov [5] constructed the sticky particle dynamics from
a generalized variational principle and by two functions (x, t) 7→ φt(x),
u(φt(x), t) which define respectively the position and the velocity at time
t of the initial particle x. Using discretization of P0, the authors showed
that (P0φ

−1
t , u(·, t) , t ≥ 0) is a weak solution of (1.1).

Independently and as in [5], Brenier and Grenier [1] solved the system
(1.1) by discretization of P0 which has a bounded support and continuous
u0. Using discrete sticky particle dynamics, they obtained a limit cumu-
lative distribution function (c.d.f.) M(·, t) which is the unique entropy
solution of the scalar conservation law

∂tM+∂x(A(M)) = 0 such that M(x, 0) = F0(x) := P0((−∞, x]) (1.2)

with the fluxA(m) =
∫ m
0 u0

(
F−1

0 (z)
)
dz, ∀m ∈ (0, 1). The measure ∂xA(M)

is absolutely continuous with respect to ∂xM =: ρ, and a weak solution of
(1.1) is given by ρ and the Radon-Nycodm derivative u(·, t). Although this
solution can be interpreted by sticky particles, the authors do not obtain
the sticky particles trajectories.

In [4], Dermoune and Moutsinga defined the sticky particles model from
convex hulls, for any probability P0 and any continuous bounded u0, thus
giving new proofs and completing the results of [1] and [5].

A first probabilistic interpretation (of [1, 5]) was made by Dermoune [3]
who deduced a weak solution ρ(dx, t)=PX−1

t , u(x, t)=E[u0(X0)/Xt = x]
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of the pressure-less gas system (1.1) from the ordinary stochastic differ-
ential equation

dXt = E[u0(X0)/Xt]dt a.s., PX−1
0 = P0 . (1.3)

In this paper, we introduce a more general condition on the initial
velocity : u0 is allowed to be discontinuous, but must have negative jumps.
Indeed, this condition appears (in proposition 3.3) to be natural in order
to have a sticky particles behavior.

We state several properties of the forward flow related to sticky parti-
cles, such as its characterization or its Lipschitz continuity. To complete
[3], we show that (1.2) can be solved from (1.3), by M(x, t) = P (Xt ≤ x),
as soon as X has a forward flow property.

We study in particular the sticky dynamics of the clusters formed be-
fore or at time t0 > 0, and starting with the new velocity ut0 . Although
this dynamics (starting from t0 > 0) is often evoked in the literature, its
exact definition is new and is made possible because of the propagation of
negative jumps (along the time).

Most of the details on the present work can be seen in [7].

2. Main results

For any probability P , let its support S(P ) = {x ∈ R : P (x − ε, x +
ε) > 0,∀ε > 0}, and the subsets S−(P ) = {x ∈ R : P (x − ε, x) >
0,∀ε > 0}, S+(P ) = {x ∈ R : P (x, x + ε) > 0,∀ε > 0}, S0(P ) = {x ∈
R : P ({x}) > 0}. The notations S, S−, S+, S0 are preferred when there
is no ambiguity. For all real function u, we define the functions u− on S−,
and u+ on S+ by

u−(x) = lim sup
ε→0+

∫
[x−ε,x) u(η)P (dη)

P
(
[x− ε, x)

) , u+(x) = lim inf
ε→0+

∫
(x,ε+x] u(η)P (dη)

P
(
(x, ε+ x]

) .

As the function u is related to (1.1), it is a priori a Radon-Nycodim
derivative (of uP w.r.t. P ); thus, it is not uniquely defined on S\S0. We
set u(x) := u−(x) for x ∈ S−\(S+ ∪ S0), and u(x) := u+(x) for x ∈
S+\(S−∪S0). Moreover, our version of u is required to satisfy the negative
jump condition on S :

u−(x) ≥ u(x) ∀x ∈ S− , u(x) ≥ u+(x) ∀x ∈ S+ . (2.1)

This condition is automatically fulfilled if u is continuous (on S).
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Theorem 2.1. Suppose that a probability P0 and a bounded real function
u0 satisfy (2.1). There exists a stochastic process (Xt) solution of (1.3),
such that

1) The trajectories of this process define the sticky particle dynam-
ics whose initial mass distribution is P0 and whose initial velocity
function is u0. More precisely, at time t ≥ 0, each x := Xt(ω) is
the position of the particle whose mass and velocity are respectively
Pt({x}) := P (Xt = x) and ut(x) := E[u0(X0)/Xt = x].

2) Propagation of negative jumps : For all t, ut and the law
Pt = PX−1

t of Xt satisfy (2.1).

3) Forward flow property : ∀ (s, t), Xs+t = φ(Xs, t, Ps, us), where
φ(·, ·, Ps, us) is a continuous forward flow defined on S(Ps)× R+,
non-decreasing in the first variable.

Then, as in [3], the pressure-less gas system (1.1) is solved from (1.3),
by ρ(dx, t) := Pt and u(x, t) := ut(x). We can also get (1.2) from (1.3)
and the forward flow property.

Proposition 2.2. Let X be a solution of (1.3) which satisfies assertion
3) of theorem (2.1). A weak solution of the scalar conservation law (1.2)
is given by the c.d.f. M(x, t) = P (Xt ≤ x).

This result is an other proof of the one of [4], without the entropy con-
dition (defined in [2]) which requires properties of the discontinuity lines
of M . One could easily get this entropy condition, if one could show that
these discontinuity lines coincide with the trajectories of sticky particles.
We make the conjecture that it is indeed the case in section 4, where we
give a description of these trajectories (Fig. 1 and Fig. 2).

In fact, M is the entropy solution because it is related to Hamilton
Jacobi equation. Indeed, one can see in next section that the process X
of theorem 2.1 and its c.d.f. M are given by convex hulls. Then, Hopf’s
formula leads to the following, as in [4].

Proposition 2.3. The function (x, t) 7→ Ψ(x, t) =
∫ x
0 M(y, t)dy is the

viscosity solution of the Hamilton-Jacobi equation ∂tΨ + A(∂xΨ) = 0,
Ψ(x, 0) =

∫ x
0 F0(y)dy. Hence, M is the entropy solution of the conserva-

tion law (1.2).
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Proof of Proposition 2.2. For all (x, t), let Ft(x) = M(x, t). As a weak
solution of (1.2), M must satisfy∫ ∫

[M(x, t)∂th(x, t) +A(M(x, t))∂xh(x, t)] dxdt = 0 ∀h ∈ C1
c(R× R∗

+).
Let λ be the Lebesgue measure and define the random vector (F−1

0 , F−1
t )

on the probability space
(
(0, 1), B, λ

)
. One has F−1

t = φ(F−1
0 , t, Ps, us),

so (F−1
0 , F−1

t ) has the same law as (X0, Xt).
Hence, the Heaviside function H = 1[0,+∞) gives M(x, t) = EH(x−Xt)

and A(M(x, t)) = E
(
u0(X0)H(x−Xt)

)
.

Then, using the Dirac measure δXt of atom Xt, one gets∫∫
∂th(x, t)M(x, t)dxdt = E

∫∫
∂th(x, t)H(x−Xt)dxdt

= E
∫∫

h(x, t)δXt(dx)dXt = −E
∫∫

∂xh(x, t)H(x−Xt)dXtdx

= −
∫∫

∂xh(x, t)E
(
u0(X0)H(x−Xt)

)
dxdt

= −
∫∫

∂xh(x, t)A(M(x, t))dxdt .

�

Theorem 2.4. (Flow characterization) The following properties char-
acterize the forward flow of the sticky particles with initial mass distribu-
tion P and initial velocity function u (which are supposed to satisfy (2.1)).
1) ∀x , φ(x, 0, P, u) = x.
2) For all t, x 7→ φ(x, t, P, u) is continuous and non-decreasing.
3) For all (x, t) , E(x, t) := {y : φ(y, t, P, u) = φ(x, t, P, u)} satisfies

φ(x, t, P, u) =

∫
E(x,t)[η + tu(η)]P (dη)

P (E(x, t))
if P (E(x, t)) > 0 ,

φ(x, t, P, u) = x+ tu−(x) if P (E(x, t)) = 0 , x ∈ S− ,
φ(x, t, P, u) = x+ tu+(x) if P (E(x, t)) = 0 , x ∈ S+ .

4) If E(x, t) = [α, β] ∩ S(P ) then ∀ y ∈ [α, β] s.t. P ([α, y))P ((y, β]) > 0 :∫
[α,y)[η + tu(η)]P (dη)

P ([α, y))
≥

∫
E(x,t)[η + tu(η)]P (dη)

P (E(x, t))

≥
∫
(y,β][η + tu(η)]P (dη)

P ((y, β])
.

Moreover, one or all the intervals can be closed in y.
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Proposition 2.5. (Lipschitz continuity) Let (Pt, ut, t ≥ 0) be defined
as in theorem 2.1, and let C ≥ ||u0||∞. ∀ t ≥ 0, ∀ s, s′, ∀x ≤ y in S(Pt),∣∣φ(x, s′, Pt, ut)− φ(y, s, Pt, ut)

∣∣ ≤ C|s′ − s|+ |x− y|
+s sup

x≤β≤α≤y

(
ut(α)− ut(β)

)
. (2.2)

∀ t > 0, ||ut||∞ ≤ ||u0||∞ and one has the Œlenick type entropy condition

ut(x2)− ut(x1) ≤ t−1(x2 − x1) ∀x1 < x2 in S(Pt) . (2.3)

Then, ∀ t > 0, ∀ s, s′, ∀x, y ∈ S(Pt),∣∣φ(x, s′, Pt, ut)− φ(y, s, Pt, ut)
∣∣ ≤C|s′ − s|+ |x− y|

(
1 + st−1) . (2.4)

In next sections 3 and 4, some results are similar to [4]; but all the
proofs must hold account of the discontinuity of u0, and are obtained by
the convex hulls properties.

3. The sticky particle dynamics

Let P0 be any probability measure with cumulative distribution function
F0, and u0 be a real function with negative jumps (2.1) on the support S
of P0.

In our construction, each particle, of initial position x, is indexed by
the total mass F0(x) of itself and all the initial particles situated on its
left; and each mass m indexes two initial particles F−1

d (m), F−1
g (m) which

can be confused or separated by a vacuum. We recall that the two inverse
functions of F0 are defined for all m ∈ (0, 1) by

F−1
g (m) = inf{x : F0(x) ≥ m} , F−1

d (m) = sup{x : F0(x) ≤ m} .

The function F−1
d is càdlàg and its left-hand limit is F−1

g . In the sequel,
F−1

0 will stand independently for F−1
g or F−1

d (which are equal almost
everywhere). For all t ≥ 0, let H(·, t) be the lower convex hull of any
primitive of F−1

0 (·) + tu0
(
F−1

0 (·)) :

m ∈ (0, 1) 7→
∫ m

a

[
F−1

0 (z) + tu0
(
F−1

0 (z)
)]

dz =: ϕ(m, t) (3.1)

(with a ∈ (0, 1)), i.e. the greatest convex lower bound for ϕ(·, t).
We define the sticky particle dynamics with initial c.d.f. F0 and initial

velocities given by u0, as follows.
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Definition 3.1. (Sticky dynamics) The initial state of the particles is
defined by the set of images m ∈ (0, 1) 7→ F−1

g (m), F−1
d (m).

While there is no collision, particles move with constant velocities de-
fined initially by u0; the state of the particles at time t is given by
m ∈ (0, 1) 7→ F−1

g (m) + tu0
(
F−1

g (m)
)
, F−1

d (m) + tu0
(
F−1

d (m)
)
.

After the first collision, the state of the particles at time t is defined by
m ∈ (0, 1) 7→ ∂−mH(m, t) =: xg(m, t), ∂+

mH(m, t) =: xd(m, t).

Note that in abscence of collision, the definition seems to depend on the
choice of a version of u0, which is arbitrary for x := F−1

g (m) = F−1
d (m)

if u−0 (x) > u+
0 (x). In fact, it is not the case since we show that such a

particle of initial position x is collided immediately after time zero (see
proposition 3.2). This fact is due to the negative jump condition (2.1)
which is also necessary here to guarantee the coherence of our definition
with a sticky dynamics, i.e. particles do not disintegrate.

The idea of using such a condition (2.1) comes naturally from the fol-
lowing inequalities obtained from the convex hull. For all t, let Et be the
set of abscissas of extremal points of H(·, t). ∀m ∈ Et :

F−1
g (m) + tu−0

(
F−1

g (m)
)
≤ xg(m, t)

≤ xd(m, t) ≤ F−1
d (m) + tu+

0

(
F−1

d (m)
)

if F−1
g (m) /∈ S0 and F−1

d (m) /∈ S0; u−0 (resp. u+
0 ) is replaced by u0 when

F−1
g (m) ∈ S0 (resp. when F−1

d (m) ∈ S0). This is simply given as limits of
rates of increase of ϕ(·, t), and by definition of u−0 , u

+
0 . Using the negative

jump condition (2.1), these inequalities become

F−1
g (m) + tu0

(
F−1

g (m)
)
≤ xg(m, t) ≤ xd(m, t) ≤ F−1

d (m) + tu0
(
F−1

d (m)
)

(3.2)

that we call fundamental property of convex hulls.

Proposition 3.2. (Coherence property) We have

xg(m, t) < xd(m, t) =⇒ F−1
g (m) < F−1

d (m) . (3.3)

Moreover, the state of particles at time t is determined by Et, and one has
Et ⊂ Es ∀ s < t.

Proof. (3.3) comes from (3.2). For m 6∈ Et, ∃m1,m2 s.t. m1 < m <
m2, (m1,m2)∩Et = ∅. Hence xg(m, t) = xd(m, t) = xd(m1, t) = xg(m2, t).
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This shows also that the state of particles at time t is given by elements
of Et.

Last assertion comes from the definition of m ∈ Et : ∀m1 < m < m2,∫ m
m1

[
F−1

0 (z) + tu0
(
F−1

0 (z)
)]

dz

m−m1
<

∫ m2
m

[
F−1

0 (z) + tu0
(
F−1

0 (z)
)]

dz

m2 −m
.

Seeing the fractions as functions of t (straight lines) which start respec-
tively from

∫ m
m1
F−1

0 (z)dz/(m−m1) <
∫ m2
m F−1

0 (z)dz/(m2−m) , it follows
that m ∈ Es, ∀ s < t. �

Assertion (3.3) implies that initial particles do not disintegrate. The
second assertion suggests the fact (confirmed in proposition 4.2) that the
particles have a sticky behavior, because their “number” decreases.

4. Forward flow

For all t, let us define E−t = {m : (z, m) ∩ Et 6= ∅ , ∀ z < m}, E+
t = {m :

(m, z) ∩ Et 6= ∅ , ∀ z > m}. From (2.1) and the simple limits of rates
of increase of the function ϕ(·, t) (given in (3.1) and which coincides with
H(·, t) on Et), we obtain the exact expression of the positions. For all m, t
and consecutive m1,m2 ∈ Et :

xg(m, t) =


F−1

g (m) + tu0
(
F−1

g (m)
)

if m ∈ E−t∫ m2
m1

[
F−1

0 (m) + tu0
(
F−1

0 (m)
)]

dm
m2 −m1

if m ∈ (m1,m2]
(4.1)

xd(m, t) =


F−1

d (m) + tu0
(
F−1

d (m)
)

if m ∈ E+
t∫ m2

m1

[
F−1

0 (m) + tu0
(
F−1

0 (m)
)]

dm
m2 −m1

if m ∈ [m1,m2) .
(4.2)

Let ε ∈ {g, d}. In order to study the properties of trajectories, we define
for all x, t :

M∗(x, t) = sup{m : xε(m, t) < x} , M∗(x, t) = inf{m : xε(m, t) > x} .
(4.3)

These functions do not depend on ε. M∗(x, t) is the mass of all clusters
whose positions at time t is less than x; the mass of the cluster of position
x is M∗(x, t)−M∗(x, t).
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Theorem 4.1. Let C ≥ ||u0||∞. We have ∀m, t, s,
|xε(m, t)− xε(m, s)| ≤ C|t− s| ,

lim
h→0+

xε(m, t+ h)− xε(m, t)
h

= u
(
xε(m, t), t

)
,

except if xg(m, t) = xd(m, t) =: x, F−1
g (m) < F−1

d (m) and M∗(x, t) =
M∗(x, t), with

u(x, t) =


u0

(
F−1

ε (m)
)

if M∗(x, t) = M∗(x, t) = m,∫ m2
m1

u0
(
F−1

0 (z)
)
dz

m2 −m1
if m1 = M∗(x, t) < M∗(x, t) = m2.

(4.4)
Furthermore, t 7→ u

(
xε(m, t), t

)
is càdlàg.

Proof. The proof is due to (4.1) and (4.2), to the following four possibilities
and to following propositions 4.2 and 4.3. Let m∗(t) = M∗(xε(m, t), t),
m∗(t) = M∗(xε(m, t), t) ∀ (m, t), and let s > t.
1) If m∗(s) < m∗(t) and m∗(t) < m∗(s), then the fact that m∗(s),m∗(s)
are consecutive in Es, with m∗(t),m∗(t) ∈ [m∗(s),m∗(s)], implies that

ϕ
(
m∗(t), s

)
− ϕ

(
m∗(s), s

)
m∗(t)−m∗(s)

≤ xε(m, s) ≤
ϕ

(
m∗(s), s

)
− ϕ

(
m∗(t), s

)
m∗(s)−m∗(t)

(with ϕ given in (3.1)). As m∗(t),m∗(t) are also consecutive in Et, one has

ϕ
(
m∗(t), t

)
− ϕ

(
m∗(s), t

)
m∗(t)−m∗(s)

≥ xε(m, t) ≥
ϕ

(
m∗(s), t

)
− ϕ

(
m∗(t), t

)
m∗(s)−m∗(t)

.

Using the fact that ϕ(m′, r) = ϕ(m′, 0) + rA(m′) ∀(m′, r), one gets

A
(
m∗(t)

)
−A

(
m∗(s)

)
m∗(t)−m∗(s)

≤ xε(m, s)− xε(m, t)
s− t

≤
A

(
m∗(s)

)
−A

(
m∗(t)

)
m∗(s)−m∗(t)

.

2) If m = m∗(s) = m∗(t) < m∗(s), then

xg(m, s)− xg(m, t) = (s− t)u0

(
F−1

g (m)
)
,

A
(
m∗(s)

)
−A

(
m

)
m∗(s)−m

≤ xd(m, s)− xd(m, t)
s− t

≤ u0

(
F−1

d (m)
)
.

Indeed, for the first result (with ε = g), the fact that m = m∗(t) = m∗(s)
implies that m ∈ E−t ∩ E−s , and one concludes with (4.1). In the result
with ε = d, the left-hand side is obtained as in 1). For the right-hand
side, the equation m = m∗(t) implies that m ∈ E+

t , then xd(m, t) =
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F−1
d (m)+tu0

(
F−1

d (m)
)
. From (3.2), xd(m, s) ≤ F−1

d (m)+su0

(
F−1

d (m)
)
.

3) If m∗(s) < m∗(t) = m∗(s) = m, then (as previously)

xd(m, s)− xd(m, t) = (s− t)u0

(
F−1

d (m)
)
,

u0

(
F−1

g (m)
)
≤ xg(m, s)− xg(m, t)

s− t
≤
A

(
m∗(s)

)
−A

(
m

)
m∗(s)−m

.

4) If m∗(s) = m∗(s) = m, then m ∈ E−t ∩ E+
t ∩ E−s ∩ E+

s , so xε(m, s) −
xε(m, t) = (s− t)u0

(
F−1

ε (m)
)
.

The Lipschitz continuity is then immediate. The derivative of t 7→ xε(m, t)
has thus the form (4.4), provided by the fact (shown in proposition 4.2)
that the functions t 7→ m∗(t),m∗(t) are càdlàg. This fact implies also the
càdlàg property of t 7→ u(xε(m, t), t). �

The velocity is not defined when xg(m, t) = xd(m, t) =: x, F−1
g (m) <

F−1
d (m), m = m∗(t) = m∗(t). In this case, m ∈ E−s ∩ E+

s ∀ s ≤ t, and
xε(m, s) = F−1

ε (m)+su0
(
F−1

ε (m)
)
. Thus, u0

(
F−1

g (m)
)
> u0

(
F−1

d (m)
)

and
one can define u(x, t) as any value of

[
u0

(
F−1

d (m)
)
, u0

(
F−1

g (m)
)]

. Remark
that for all s 6= t, the velocity is well defined in the theorem. Indeed, as
functions of s which coincide at t, one has xg(m, s) < xd(m, s) ∀ s < t.
For s > t, one gets F−1

g (m) + su0
(
F−1

g (m)
)
> F−1

d (m) + su0
(
F−1

d (m)
)
, so

m /∈ Es (from (3.2)), and m∗(s) < m < m∗(s), xg(m, s) = xd(m, s).
The following results show that clusters grow up.

Proposition 4.2. 1) The functions M∗(·, t) and M∗(·, t) describe the
whole set Et.
2) ∀ ε ∈ {g, d}, ∀m, ∀ s > t :

M∗ (xε(m, s), s) ≤M∗ (xε(m, t), t) ≤M∗ (xε(m, t), t) ≤M∗ (xε(m, s), s) .

3) The functions t 7→M∗(xε(m, t), t), M∗(xε(m, t), t) are càdlàg.

Proof. 1) One can see that ∀ (x, t), M∗(x, t),M∗(x, t) ∈ Et. Moreover,
∀m ∈ Et, one has

∀ z1 < m < z2,
ϕ(m, t)− ϕ(z1, t)

m− z1
<
ϕ(m, t)− ϕ(z2, t)

m− z2
.
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Let us define

x := sup
z<m

ϕ(m, t)− ϕ(z, t)
m− z

= sup
z<m

H(m, t)−H(z, t)
m− z

= xg(m, t) .

These equalities follow from the definition of H and xg. As xg(·, t) is non-
decreasing and by definition of M∗(x, t), one gets m ≥ M∗(x, t). In the
same way, m ≤ M∗(x, t). As M∗(x, t),M∗(x, t) are consecutive in Et, i.e.
(M∗(x, t),M∗(x, t)) ∩ Et = ∅, one gets m ∈ {M∗(x, t),M∗(x, t)}.
2) ∀ t, one has m∗(t),m∗(t) ∈ Et and

(
m∗(t),m∗(t)

)
∩ Et = ∅. For s >

t, Es ⊂ Et (see proposition 3.2); so
(
m∗(t),m∗(t)

)
∩Es = ∅. This implies that

m∗(s),m∗(s) /∈
(
m∗(t),m∗(t)

)
. As

[
m∗(t),m∗(t)

]
∩

[
m∗(s),m∗(s)

]
⊃ {m},

one gets
[
m∗(t),m∗(t)

]
⊂

[
m∗(s),m∗(s)

]
.

3) This is a consequence of the monotonicity of the functions, with asser-
tion (b) of next proposition. �

Proposition 4.3. (Regularity of M∗ and M∗)

(a) x < x′ =⇒ M∗(x, t) ≤M∗(x′, t) ∀ t.

(b) If m is a value of adherence of M∗(x′, s) or M∗(x′, s) as (x′, s)
tends to (x, t), then m ∈ [M∗(x, t),M∗(x, t)]

(c) ∀ (x, t), M∗(x+ 0, t) = M∗(x+ 0, t) = M∗(x, t),
M∗(x− 0, t) = M∗(x− 0, t) = M∗(x, t).

(d) M∗ (resp. M∗) is continuous in (x, t) if and only if M∗(x, t) =
M∗(x, t).

Furthermore, lim
x→−∞

M∗(x, t) = 0 , lim
x→+∞

M∗(x, t) = 1.

(e) If M∗(x, t) < M∗(x, t), then ∀m ∈
(
M∗(x, t), M∗(x, t)

)
,

A(m)−A(M∗(x, t))
m−M∗(x, t)

≥ A(m)−A(M∗(x, t))
m−M∗(x, t)

.

One can see that M∗(·, t) is a c.d.f.

Proof. (a) If x < x′, then for all m < M∗(x, t), one has xε(m, t) < x′; so
by definition, M∗(x′, t) ≥M∗(x, t).
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For assertion (b), one uses the fact that for all (x, t), the function m 7→
ϕ(m, t)− x(m− a) reaches its lower bound in [M∗(x, t), M∗(x, t)]:

ϕ(M∗(x, t), t)− x
(
M∗(x, t)− a

)
= ϕ(M∗(x, t), t)− x

(
M∗(x, t)− a

)
;

ϕ(m, t)− x(m− a) ≥ ϕ(M∗(x, t), t)− x
(
M∗(x, t)− a

)
∀m ;

ϕ(m, t)− x(m− a) > ϕ(M∗(x, t), t)− x
(
M∗(x, t)− a

)
∀m /∈ [M∗(x, t), M∗(x, t)] .

Let (m,x, t) be a value of adherence of
(
M∗(x′, s), x′, s

)
or

(
M∗(x′, s), x′, s

)
.

One has ϕ(m′, s)− x′(m′− a) ≥ ϕ(M∗(x′, s), s)− x′
(
M∗(x′, s)− a

)
∀m′.

Then, by continuity, ϕ(m′, t) − x(m′ − a) ≥ ϕ(m, t) − x
(
m − a

)
∀m′,

which means that m ∈ [M∗(x, t), M∗(x, t)].
Assertions (c) and (d) are immediate consequences of (b).
For assertion (e) : let us define, for all s,

d1(s) =
ϕ(m, s)− ϕ(M∗(x, t), s)

m−M∗(x, t)
, d2(s) =

ϕ(M∗(x, t), s)− ϕ(m, s)
M∗(x, t)−m

.

One has d1(t) ≥ d2(t) by definition of M∗(x, t),M∗(x, t). As d1(0) ≤
F−1

g (m) ≤ F−1
d (m) ≤ d2(0), one gets the desired result : t−1(d1(t) −

d1(0)) ≥ t−1(d2(t)− d2(0)). �

Forward flow indexed by initial positions

Now, we define precisely a cluster at time t as the set of all initial particles
F−1

d (m), F−1
g (m′) which have the same position p = xd(m, t) = xg(m′, t).

Let ξt be the set of these clusters.

Proposition 4.4. (Construction of clusters) The set ξt is a partition
of the initial support S. Furthermore, the slope of a segment (or simply
a derivative) on the graph of H(·, t), given by abscissas [m1,m2], is the
position at time t of a cluster

[
F−1

ε (m1), F−1
ε′ (m2)

]
∩ S which has mass

m2 −m1, where ε, ε′ ∈ {g, d} are given as follows :

1) m1 < m2 consecutive in Et (case of massive clusters) :
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m1

∖
m2 xg < xd xg = xd

xg < xd

[
F−1

d (m1), F−1
g (m2)

]
∩ S

[
F−1

d (m1), F−1
d (m2)

]
∩ S

xg = xd

[
F−1

g (m1), F−1
g (m2)

]
∩ S

[
F−1

g (m1), F−1
d (m2)

]
∩ S

2) m1 = m2 = m ∈ E−t ∩ E+
t , xg(m, t) = xd(m, t) (first case of

massless clusters) : {F−1
g (m), F−1

d (m)} is a cluster not isolated on
the left nor on the right in ξt; the two particles (if not confused)
stick together at time t and were not shocked before.

3) m1 = m2 = m, xg(m, t) < xd(m, t) (second case of massless
clusters) :

If m ∈ E−t ∩ E+
t , then {F−1

g (m)}, {F−1
d (m)} ∈ ξt and these parti-

cles, separated by a vacuum, were not shocked until time t.

If m ∈ E−t \E+
t , then {F−1

g (m)} ∈ ξt and this particle was not
shocked until time t (and F−1

d (m) is in a massive cluster given in
1)).

If m ∈ E+
t \E−t , then {F−1

d (m)} ∈ ξt and this particle was not
shocked until time t (and F−1

g (m) is in a massive cluster given in
1)).

These results arise immediately from the above expressions of xg, xd.
As a consequence, we get the generalized variational principle (GVP) in-
troduced in [5]. If P0(G) > 0, let us define

C(G, t) := (P0(G))−1
∫

G
[η + tu0(η)]P0(dη) .

Proposition 4.5. (GVP) For all cluster [α, β] ∩ S at time t, we have
∀ y1 < α < y2 s.t. P0([y1, α))P0([α, y2)) > 0 :

C([y1, α), t) < C([α, y2), t) ; (GVP)g

∀ y1 < β < y2 s.t. P0((y1, β])P0((β, y2]) > 0 :

C((y1, β], t) < C((β, y2], t) ; (GVP)d
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∀ y ∈ [α, β] s.t. P0([α, y))P0((y, β]) > 0 :

C([α, y), t) ≥ C([α, β], t) ≥ C((y, β], t) (4.5)

and one or all the intervals can be closed in y; if P0([α, β]) > 0, then

α+ tu0(α) ≥ C([α, β], t) ≥ β + tu0(β) . (4.6)

Proof. In proposition 4.4, [α, β] is given by m1 = F0(α − 0) =: M∗(x, t),
m2 = F0(β) =: M∗(x, t), with x = xd(m1, t) = xg(m2, t). As in the proof
of proposition 4.3, one has

ϕ(m, t)− ϕ(M∗(x, t), t) ≥ x
(
m−M∗(x, t)

)
∀m ,

ϕ(m, t)− ϕ(M∗(x, t), t) > x
(
m−M∗(x, t)

)
∀m /∈ [M∗(x, t), M∗(x, t)] .

Then one gets (GVP)g, (GVP)d and (4.5), using the change of variable,
for all locally integrable f and m < m′ : if m,m′ ∈ F0(R),∫ m′

m
f(F−1

0 (z))dz =
∫
(F−1

g (m),F−1
g (m′)]

f(η)P0(dη) ;

if m ∈ F0(R− 0), m′ ∈ F0(R),∫ m′

m
f(F−1

0 (z))dz =
∫
[F−1

d
(m),F−1

g (m′)]
f(η)P0(dη) .

For (4.6), if α ∈ S0 ∪ S+ and β ∈ S0 ∪ S−, one gets the result from
(4.5) when y ↓ α and y′ ↑ β. If α /∈ S0 ∪ S+, then α = F−1

g (F0(α)) and
xg(F0(α), t) = α + tu0(α) = xd(F0(α), t) = C([α, β], t) by construction of
the cluster. In the same way, C([α, β], t) = β + tu0(β) if β /∈ S0 ∪ S−. �

Let us define

φ (x, t, P0, u0) =
{
xg(F0(x), t) if x ∈ S− ∪ S0 ,
xd(F0(x), t) if x ∈ S+\

(
S− ∪ S0

)
.

This function defines the trajectories of particles since for x ∈ S− ∪S0,
one has x = F−1

g (F0(x)); if not, x = F−1
d (F0(x)).

Corollary 4.6. 1) For all t, the function x 7→ φ(x, t, P0, u0) is continuous
and non-decreasing on S.
2) ∀ (x, t) ∈ S × R+,

φ(x, t, P0, u0) =
{

C([α, β], t) if x ∈ [α, β] ∩ S massive cluster
x+ tu0(x) otherwise .
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3) Take C ≥ ||u0||∞. ∀x ∈ S,∀ s, t :

|φ(x, t, P0, u0)− φ(x, s, P0, u0)| ≤ C|t− s| ,

lim
h→0+

φ(x, t+ h, P0, u0)− φ(x, t, P0, u0)
h

= v(x, t, P0, u0) ,

v(x, t, P0, u0) =


∫
[α,β] u0(η)P0(dη)
P0([α, β]) if x ∈ [α, β] ∩ S massive cluster

u0(x) for massless {x} ∈ ξt.
Moreover, for all x ∈ S, the function t 7→ v(x, t, P0, u0) is càdlàg.

4) For any cluster [α, β]∩S ∈ ξt, the trajectory s ∈ [0, t] 7→ φ(α, s, P0, u0)
is concave, and the trajectory s ∈ [0, t] 7→ φ(β, s, P0, u0) is convex.

Proof. Any cluster [α, β]∩S is given, in proposition 4.4, by m1 = F0(α−
0), m2 = F0(β).
1) If α ∈ S−, then α = F−1

g (m1) = F−1
g (F0(α)), m1 ∈ E−t and

lim
x↑α

xg(F0(x), t) = lim
x↑α

xd(F0(x), t) = lim
x↑α

φ(x, t, P0, u0) = xg(m1, t)

= α+ tu0(α) = xg(F0(α), t) = φ(α, t, P0, u0) .

Idem for β ∈ S+ : φ(β, t, P0, u0) = β + tu0(β) = lim
y↓β

φ(y, t, P0, u0).

Moreover, for x < y in S s.t. F0(x) < F0(y), one has φ(x, t, P0, u0) ≤
xd(F0(x), t) ≤ xg(F0(y), t) ≤ φ(y, t, P0, u0). If F0(x) = F0(y), then x ∈
S−∪S0, y ∈ S+\

(
S−∪S0

)
so φ(x, t, P0, u0) = xg(F0(x), t) ≤ xd(F0(y), t) =

φ(y, t, P0, u0).
2) For x ∈ [α, β]∩S, one has thus φ(x, t, P0, u0) = x+tu0(x) if P0([α, β]) =
0. If not, one has m1 ≤ F0(x − 0) ≤ F0(x) ≤ m2, and then xd(m1, t) =
φ(x, t, P0, u0) = xg(m2, t) = C([F−1

d (m1), F−1
g (m2)], t) = C([α, β], t).

Part 3) is an application of theorem 4.1.
4) Let us show that s ∈ [0, t] 7→ v(α, s, P0, u0) is non-increasing. Define
[α(s), β(s)] ∩ S = {y ∈ S : φ(y, s, P0, u0) = φ(α, s, P0, u0)}. As clusters
grow up, one has α = α(s′) = α(s) ≤ β(s) ≤ β(s′) ≤ β, ∀ s < s′ ≤ t.
If P0([α, β(s)]) > 0, then

v(α, r, P0, u0) =

∫
[α,β(r)] u0(η)P0(dη)

P0([α, β(r)])
∀ r ∈ {s, s′} .

One has (from (4.5)) C([α, β(s)], s′) ≥ C([α, β(s′)], s′), with

C([α, β(r)], s′) =C([α, β(r)], 0) + s′v(α, r, P0, u0) ∀ r ∈ {s, s′} ,
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C([α, β(s)], 0) ≤ C([α, β(s′)], 0). Hence v(α, s, P0, u0) ≥ v(α, s′, P0, u0).
If P0([α, β(s)]) = 0 < P0([α, β(s′)]) with α = β(s), the result comes from
v(α, s, P0, u0) = u0(α), α+ s′u0(α) ≥ C([α, β(s′)], s′) given by (4.6).
If P0([α, β(s′)]) = 0 with α = β(s), then v(α, s, P0, u0) = v(α, s′, P0, u0) =
u0(α).
If P0([α, β(s)]) = 0 with α < β(s), then v(α, s, P0, u0) is not (well) defined;
but there can exist atmost one such s.

The proof of the convexity of the trajectory of β is analogous. �

These trajectories then give a butterfly with folded wings (Fig. 1). In
contrast, the endpoints of a vacuum give a butterfly with spread wings
(Fig. 2); the whole interior of the butterfly is then a vacuum.
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Fig. 1. Trajectories of the endpoints of a cluster [α, β]
before their collision at position x and time t.
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Fig. 2. Trajectories of the endpoints of a vacuum (β, α)
before their collision at position x and time t.
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Discontinuity lines

Here, we exhibit and describe some discontinuity lines of the entropy so-
lution M of (1.2), i.e. curves of discontinuity points (x(t), t) of M ; they
are usually used in the resolution of this equation ([2]).

As a consequence of proposition 2.3, the function (x, t) 7→ M(x, t) :=
M∗(x, t) = P (Xt ≤ x) given in the proof of theorem 2.1, is the entropy
solution of (1.2), with Xt(y) = φ(y, t, P0, u0). Then, the trajectory of a
massive particle y, illustrated in the above figures, is a discontinuity line of
M , since M(Xt(y)+0, t)−M(Xt(y)−0, t) = M∗(Xt(y), t)−M∗(Xt(y), t) ≥
F0(y) − F0(y − 0) = P0({y}). All the discontinuity lines of the entropy
solution are not known a priori. We make the conjecture that they coincide
with the trajectories t 7→ Xt(y), motivated by the following property of
the entropy solution (see [2]) : for all discontinuity line t 7→ x(t),

dx(t)
dt

=
A(M∗(x(t), t))−A(M∗(x(t), t))

M∗(x(t), t)−M∗(x(t), t)
=

∫
[α(t),β(t)] u0(η)P0(dη)

P0([α(t), β(t)])
,

with [α(t), β(t)] ∩ S = {Xt = x(t)}. Hence

dx(t)
dt

=
dXt

dt
(y) , ∀ y ∈ [α(t), β(t)] ∩ S .

5. Proof of the main results

We recall that the probability P0 and the velocity u0 satisfy the negative
jump condition (2.1), and F0 is the c.d.f. of P0; for G ⊂ R such that
P0(G) > 0, C(G, t) = (P0(G))−1

∫
G [η + tu0(η)]P0(dη).

5.1. Flow characterization and Lipschitz continuity

Proof of Theorem 2.4. We give the proof with P = P0, u = u0. The sticky
particles flow φ(·, ·, P0, u0) already satisfies these four properties. Let Φ be
a function which satisfies these four properties. Property 2) shows that for
all (x, t), there exist α, β ∈ S such that

E(x, t) := {y ∈ S : Φ(y, t) = Φ(x, t)} = [α, β] ∩ S .

We will show that E(x, t) ∈ ξt . First, let us show that each right endpoint
β1 (of an E(z, t)) and each left endpoint α2 (of an E(z′, t)) such that
P0((β1, α2)) > 0, satisfy Φ(β1, t) < C((β1, α2), t) < Φ(α2, t). Let the
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stochastic process (Xt(x) := Φ(x, t) , t ≥ 0) be defined on (R,B(R), P0)
and Pt = P0X

−1
t , D = S0(Pt). It easy to see that for all t,

Xt = E[X0 + tu0(X0)/Xt]1D(Xt) + (X0 + tu0(X0))1Dc(Xt)

= E[X0 + tu0(X0)/Xt]

since for Xt(y) /∈ D, Xt(y) = y + tu0(y) if y ∈ (S−)∆(S+), and Xt(y) =
y + tu−0 (y) = y + tu+

0 (y) if y ∈ S− ∩ S+; in the last case, (2.1) implies
u−0 (y) = u+

0 (y) = u0(y).
So, using the fact that C(G, t) = E[X0 + tu0(X0)/X0 ∈ G] for massive

G, we get the desired result from

C((β1, α2), t) = E[X0 + tu0(X0)/β1 < X0 < α2]

= E[X0 + tu0(X0)/Φ(β1, t) < Xt < Φ(α2, t)]

= E[Xt/Φ(β1, t) < Xt < Φ(α2, t)] .

For all y1 < α < y2 s.t. P0([y1, α))P0([α, y2)) > 0, let β1 be the right
endpoint of E(y1, t), and α2 be the left endpoint of E(y2, t). Suppose
that P0([y1, β1])P0((β1, α)) > 0. One has β1 < α ≤ α2 and Φ(β1, t) <
C((β1, α), t) < Φ(α, t). Because of the fourth property C([y1, β1], t) ≤
Φ(β1, t), this gives C([y1, β1], t) < C((β1, α), t) < Φ(α, t), so one gets from
barycenter calculus C([y1, α), t)<Φ(α, t).WhenP0([y1, β1])P0((β1, α)) = 0,
the result is the same. If y2 ≤ β, the fourth property says Φ(α, t) ≤
C([α, y2), t). If β < y2 with P0((β, y2)) > 0, then β < α2 and this leads
(as for y1, α) to Φ(β, t) < C((β, y2), t). Using Φ(β, t) = C([α, β], t) if
P0([α, β]) > 0, one gets from barycenter calculus

C([y1, α), t) < C([α, y2), t),

which means that α satisfies (GVP)g (defined in proposition 4.5).
In the same way, β satisfies (GVP)d at time t, and these two endpoints

satisfy the whole proposition 4.5 (the fourth property gives (4.5) which
implies (4.6)). There exist [a, b] ∩ S, [a′, b′] ∩ S ∈ ξt such that α ∈ [a, b],
β ∈ [a′, b′]. Suppose that [a, b] = [a′, b′].

If P0([a, b]) = 0, then Φ(x, t) = x + tu0(x) = φ(x, t). If P0([a, b]) > 0,
only one of the probabilities P0([a, α)), P0([α, β]) or P0((β, b]) is positive;
in the contrary case, C([a, α), t) < C([α, b], t) or C([a, β], t) < C((β, b], t)
would contradict property 4) for [a, b]. Now, suppose that P0([a, α)) > 0 =
P0([α, b]). One has a < α, and then α /∈ S−; indeed, if α ∈ S−, there exit
αn, βn ↑ α s.t. E(αn, t) = [αn, βn] ∩ S, P0([a, αn))P0([αn, α)) > 0, and
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then C([a, αn), t) < C([αn, b], t), since αn satisfies (GVP)g. Necessarily,
α ∈ S+, so α = β = b = x. Thus Φ(x, t) = x+ tu0(x), and as in the proof
of (4.6), φ(x, t) = C([a, x], t) = x+tu0(x). One gets the same result, either
when P0([a, β]) = 0 < P0((β, b]) (with Φ(x, t) = φ(x, t) = a + tu0(a)),
or when P0([α, β]) > 0 = P0([a, α) ∪ (β, b]) (with Φ(x, t) = φ(x, t) =
C([α, β], t)).

In the same way (as for x), one has Φ(a, t) = φ(a, t) = φ(b, t) = Φ(b, t),
which means that α = a, β = b.

With the same arguments, the case [a, b] 6= [a′, b′], i.e. b < a′, is in
contradiction with the fourth property. �

In order to prove theorem 2.1, we define the process (x, t) 7→ Yt(x) =
φ(x, t, P0, u0) on the probability space (R , B(R) , P0), and the processes
(m, t) 7→ X−

t (m) = xg(m, t), X+
t (m) = xd(m, t) on the probability

space
(
(0, 1) ,B , λ

)
, where λ is the Lebesgue measure. It is clear that

the processes (X−
t ), (X+

t ) are not distinguishable : a.s., X−
t = X+

t =:
Xt ∀ t ≥ 0, and Xt = φ(X0, t, P0, u0) ∀ t ≥ 0.

Both processes (Xt) and (Yt) are illustrations of theorem 2.1.

Proof of theorem 2.1. 1) In the case ofX0 = F−1
0 , we consider the previous

process (Xt). By the definition (4.3) of M∗, one has Xt = F−1
t where

Ft := M∗(·, t) is the c.d.f. of Xt. Theorem 4.1 shows that (Xt) is almost
surely Lipschitz continuous. Moreover, if D := {x : Ft(x) > Ft(x − 0)},
then using theorem 4.1 and the same argument as in the previous proof,
one gets

dXt

dt
= u(Xt, t) = u0(X0)1Dc(Xt) + E[u0(X0)/Xt]1D(Xt)

= E[u0(X0)/Xt].

In the general case of PX−1
0 = P0, the process Xt := φ(X0, t, P0, u0) is

also Lipschitz continuous and we get again the same result from corollary
4.6.
2) Now, we show the negative jump condition (2.1) for Pt := PX−1

t and
ut := u(·, t). Let S,S0,S−,S+ be the support of P0 and its subsets defined
in section 2. We recall that the functions u−t , u

+
t are respectively defined

on S−(Pt), S+(Pt) by

u−t (x) = lim sup
x′→x−0

∫
[x′,x) ut(η)Pt(dη)

Pt([x′, x))
, u+

t (x) = lim inf
x′→x+0

∫
(x,x′] ut(η)Pt(dη)

Pt((x, x′])
.
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One has S−(Pt) ⊂ φ(S−, t, P0, u0), S+(Pt) ⊂ φ(S+, t, P0, u0). If x ∈
S−(Pt) and G(x, t) := {y ∈ S : φ(y, t, P0, u0) = x} = [α, β] ∩ S then
α ∈ S−. Thus, writing G(x′, t) = [α′, β′] ∩ S in the term defining u−t , one
gets∫
{x′≤Xt<x} ut(Xt)dP

P ({x′ ≤ Xt < x})
=

∫
{x′≤Xt<x} u0(X0)dP

P ({x′ ≤ Xt < x})
=

∫
{α′≤X0<α} u0(X0)dP

P ({α′ ≤ X0 < α})
,

u−t (x) = lim sup
α′→α−0

∫
[α′,α) u0(η)P0(dη)

P0([α′, α))
= u−0 (α) = u0(α) . (5.1)

If x ∈ S−(Pt)∩S0(Pt), then (4.6) gives α+ tu−t (x) ≥ x = C([α, β], 0) +
tut(x), so u−t (x) ≥ ut(x). In the same way, ut(x) ≥ u+

t (x) for x ∈ S+(Pt)∩
S0(Pt), since

u+
t (x) = lim inf

β′→β+0

∫
(β,β′] u0(η)P0(dη)

P0((β, β′])
= u+

0 (β) = u0(β) . (5.2)

If x ∈ S−(Pt) ∩ S+(Pt)\S0(Pt), one has u−t (x) = u0(α) ≥ u0(β) = u+
t (x).

If α = β, then ut(x) = u0(α) = u−t (x) = u+
t (x) =. If α < β, then

u0(α) > u0(β) and the velocity is not defined, but one can define ut(x) ∈
[u0(β), u0(α)]; the set of such x’s is at most countable.

For x ∈ S−(Pt)\(S+(Pt) ∪ S0(Pt)), α = β ∈ S−\(S+ ∪ S0), so ut(x) =
u0(α) = u−t (x). In the same way, for x ∈ S+(Pt)\(S−(Pt)∪S0(Pt)), ut(x) =
u+

t (x) = u0(β).
3) The flow (x, s) 7→ φ(x, s, Pt, ut) is then well defined. Let us define

(x, s) 7→ ψ(x, s) := φ
(
y, t+ s, P0, u0

)
∀ y s.t. φ(y, t, P0, u0) = x .

This function is also well defined because clusters grow up. The following
lemma 5.1 then implies that ψ = φ(·, ·, Pt, ut). �

Lemma 5.1. Let (Pt, ut, t ≥ 0) be defined as in theorem 2.1. If a function
ψ is such that

ψ
(
φ(y, t, P0, u0), s

)
= φ(y, t+ s, P0, u0) ∀ (y, s) ∈ S(P0)× R+ ,

then ψ(x, s) = φ(x, s, Pt, ut) ∀ (x, s) ∈ S(Pt)× R+.

Proof. Let us show that ψ = φ(·, ·, Pt, ut), by proving that ψ satisfies the
characteristic properties of theorem 2.4 with P = Pt, u = ut. Properties 1)
and 2) are immediate. For property 3) while Pt({a : ψ(a, s) = ψ(x, s)}) >
0, we remark that

ψ(·, s) = EPt [ψ0 + sut(ψ0)/ψ(·, s)] ∀ s
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on (R, Pt), where ψ0 is the identity function. This comes from the process
(Xt(x) = φ(x, t, P0, u0) , t ≥ 0) defined on (R, P0), which satisfies for all
s, t, ut(Xt) = EP0 [u0(X0)/Xt], σ(Xt+s) ⊂ σ(Xt), so EP0 [u0(X0)/Xt+s] =
EP0 [ut(Xt)/Xt+s]. The fact that Xt = EP0 [X0+tu0(X0)/Xt] and P0X

−1
t =

Pt then leads to

ψ(Xt, s) = Xt+s = EP0 [X0 + tu0(X0)/Xt+s] + sEP0 [u0(X0)/Xt+s]

= EP0 [Xt/Xt+s] + sEP0 [ut(Xt)/Xt+s]

= EP0 [Xt + sut(Xt)/ψ(Xt, s)] = EPt [ψ0 + sut(ψ0)/ψ(·, s)](Xt) .

What about elements B(x, s) := {a ∈ S(Pt) : ψ(a, s) = ψ(x, s)} such
that Pt(B(x, s)) = 0? As ψ(·, s) is continuous and non-decreasing, there
exist a, b ∈ S(Pt) such that B(x, s) = [a, b] ∩ S(Pt). One has {y ∈ S :
φ(y, t + s, P0, u0) = ψ(x, s)} =: [α, β] ∩ S ∈ ξt+s with a = φ(α, t, P0, u0),
b = φ(β, t, P0, u0), Pt([a, b]) = P0([α, β]). If Pt([a, b]) = P0([α, β]) = 0,
there are two cases.
i) x = a ∈ S−(Pt) : in this case, a is an accumulation on the left of elements
of S(Pt) = φ(S, t, P0, u0) and α ∈ S−, so

a = φ(α, t, P0, u0) = α+ tu0(α) , φ(α, t+ s, P0, u0) = α+ (t+ s)u0(α) .

We have already seen in (5.1) that in this case u−t (a) = u0(α) . So ψ(a, s) =
a+ su−t (a).
ii) x = b ∈ S+(Pt) : using (5.2), we get in the same way as in the previous
case ψ(b, s) = b+ su+

t (b).
Now, let us show that B(x, t) = [a, b] ∩ S(Pt) satisfies the fourth prop-

erty. Suppose that Pt([a, x])Pt([x, b]) > 0. Using previous α, β, we have

[α1, β1] ∩ S := {y ∈ S : φ(y, t, P0, u0) = x}
⊂ {y ∈ S : a ≤ φ(y, t, P0, u0) ≤ b}
= [α, β] ∩ S

with Pt([a, x]) = P0([α, β1]). The fourth characteristic property of φ(·, t+
s, P0, u0) for β1 ∈ [α, β]∩S ∈ ξt+s means that φ(α, t+s, P0, u0) ≤ EP0 [X0+
(t+ s)u0(X0)/α ≤ X0 ≤ β1]. As

EP0 [X0 + (t+ s)u0(X0)/α ≤ X0 ≤ β1]

= EP0 [X0 + (t+ s)u0(X0)/a ≤ Xt ≤ x] = EP0 [Xt + sut(Xt)/a ≤ Xt ≤ x]

= EPt [ψ0 + sut(ψ0)/a ≤ ψ0 ≤ x] ,
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we get ψ(a, s) = φ(α, t + s, P0, u0) ≤ EPt [ψ0 + sut(ψ0)/a ≤ ψ0 ≤ x]. In
the same way, ψ(a, s) ≥ EPt [ψ0 + sut(ψ0)/x ≤ ψ0 ≤ b] which is the fourth
characteristic property of ψ(·, s) for [a, b] ∩ S(Pt) = B(x, t). We conclude
from theorem 2.4 that ψ = φ(·, ·, Pt, ut). �

Remark 5.2. The stochastic process Xt := φ(X0, t, P0, u0) is such that
Xt = E[X0+tu0(X0)/Xt], simply because of the third characteristic prop-
erty in theorem 2.4.

Proof of Proposition 2.5. From the definition of ut, it is clear that

||ut||∞ ≤ ||u0||∞ ≤ C

for all t ≥ 0. One has∣∣φ(x, s′, Pt, ut)− φ(y, s, Pt, ut)
∣∣

≤
∣∣φ(x, s′, Pt, ut)− φ(x, s, Pt, ut)

∣∣
+

∣∣φ(x, s, Pt, ut)− φ(y, s, Pt, ut)
∣∣

≤ C|s′ − s|+
∣∣φ(x, s, Pt, ut)− φ(y, s, Pt, ut)

∣∣.
If x < y in S(Pt), define

[α1, β1] ∩ S(Pt) := {a ∈ S(Pt) : φ(a, s, Pt, ut) = φ(x, s, Pt, ut)} ,
[α2, β2] ∩ S(Pt) := {a ∈ S(Pt) : φ(a, s, Pt, ut) = φ(y, s, Pt, ut)} .

If φ(x, s, Pt, ut) 6= φ(y, s, Pt, ut), then x ≤ β1 < α2 ≤ y and one gets by
definition of massless clusters or from proposition 4.5 (replacing (P0, u0)
by (Pt, ut)) : β1 + sut(β1) ≤ φ(x, s, Pt, ut) < φ(y, s, Pt, ut) ≤ α2 + sut(α2).
So ∣∣φ(x, s, Pt, ut)− φ(y, s, Pt, ut)

∣∣ ≤ α2 − β1 + s[ut(α2)− ut(β1)] ,∣∣φ(x, s′, Pt, ut)− φ(y, s, Pt, ut)
∣∣ ≤ C|s′ − s|+ |x− y|

+ s sup
x≤β≤α≤y

(
ut(α)− ut(β)

)
.

Now, we show (2.3). For t > 0 define

[α1, β1] ∩ S(P0) : = {a ∈ S(P0) : φ(a, t, P0, u0) = x1}
[α2, β2] ∩ S(P0) : = {a ∈ S(P0) : φ(a, t, P0, u0) = x2} .

78



Convex hulls and Sticky particle dynamics

If x1 < x2 in S0(Pt), one has

x2 − x1 = φ(β2, t, P0, u0)− φ(β1, t, P0, u0)

= C([α2, β2], 0)− C([α1, β1], 0) + t[ut(x2)− ut(x1)] .

As C([α2, β2], 0) ≥ α2 > β1 ≥ C([α1, β1], 0), one gets (2.3). If xi /∈ S0(Pt),
then xi = αi + tu0(αi) = βi + tu0(βi), with ut(xi) ∈ [u0(βi), u0(αi)]. �

These results can easily be generalized to the case of infinite mass (mod-
eled by a Radon measure P0) with unbounded velocity function. In [6], an
extension of the flow for Radon measures was already done.
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