L’existence et le comportement asymptotique des solutions d’ondes progressives pour une équation fortement non linéaire
Annales Mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 29-41.

Dans ce papier on étudie l’existence et le comportement asymptotique des solutions de type ondes progressives à propagations finies de l’équation U t =AU x p-2 U x x +KU q . On prouve que ces solutions existent si et seulement si q<1 et c<0 ou bien qp-1 et c>0. On donne aussi le comportement asymptotique de ces solutions.

In this paper we study the existence and the asymptotic behavior of traveling waves solutions for the equation U t =AU x p-2 U x x +KU q . We prove that these solutions exist if and only if q<1 and c<0 or qp-1 and c>0. We introduce also the asymptotic behavior of these solutions.

DOI : https://doi.org/10.5802/ambp.237
Classification : 35K55,  35K65
Mots clés : Diffusion ; Absorption ; fortement non linéaire ; Solution d’onde ; Comportement asymptotique
@article{AMBP_2008__15_1_29_0,
     author = {Ahmed Hamydy},
     title = {L{\textquoteright}existence et le comportement asymptotique des solutions d{\textquoteright}ondes progressives pour une \'equation fortement non lin\'eaire},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {29--41},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {15},
     number = {1},
     year = {2008},
     doi = {10.5802/ambp.237},
     mrnumber = {2418011},
     zbl = {1163.35424},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.237/}
}
Ahmed Hamydy. L’existence et le comportement asymptotique des solutions d’ondes progressives pour une équation fortement non linéaire. Annales Mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 29-41. doi : 10.5802/ambp.237. https://ambp.centre-mersenne.org/articles/10.5802/ambp.237/

[1] D Arcoya; J. Diaz; L. Tello S-Shaped biffurcation branch in quasilinear multivalued model arising in climatology, J. Diff Equ., Volume 150 (1998), pp. 215-225 | Article | MR 1660246 | Zbl 0921.35198

[2] A. De Pablo; A. Sanchez Global Travelling Waves in Reaction- Convection- Diffusion Equations, J.Diff. Eq, Volume 165 (2000), pp. 377-413 | Article | MR 1772566 | Zbl 0961.34011

[3] A. De Pablo; J.L. Vazquez Travelling waves and finite propagation in reaction-Diffusion equation, J.Diff. Eq, Volume 93 (1991), pp. 19-61 | Article | MR 1122305 | Zbl 0784.35045

[4] A. C. Fowler Matematical models in the Applied Sciences, Cambridge texts Applied Mathematics, Cambridge University press, 1997 | MR 1483893 | Zbl 0997.00535

[5] K.P. Hadeler Travelling Front and Free Boundary value problems, Numerical Treatment of Free Boundary Problems, Birkhäuser verlag, 1981 | Zbl 0482.35050

[6] H AMANN Ordinary Differential Equations, Walter de Gruyter, 1996 | MR 1071170 | Zbl 0823.34001

[7] M.A. Herrero; J.L. Vazquez Thermal waves in absorption media, J.Diff.Eq, Volume 74 (1988), pp. 218-233 | Article | MR 952896 | Zbl 0665.35035

[8] A. Kolmogorov; I. Petrovsky; N. Piskunov Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskov, ser. Internat.Sec A 1,6 (1937), pp. 1-25 | Zbl 0018.32106

[9] S.V. Lee; W.F. Ames Similarity solution for non-Newtonian fluids, A.T.CH.E. Journal, Volume 12 (1966) no. 4, pp. 700-708

[10] F. Sanchez-Garduno Travelling Wave Phenomena in Some degenerate Reaction-diffusion Equations, J.Dif. Eq., Volume 177 (1995), pp. 281-319 | Article | MR 1325800 | Zbl 0821.35085

[11] A. Sànchez-Valdés; Hernàndez-Bermejo B. New travelling wave solutions for the Fisher equation with general exponents, Applied Mathematics Letters, Volume 18 (2005), pp. 1281-1285 | Article | MR 2170884 | Zbl 1082.35512