A famous theorem of E. Gagliardo gives the characterization of traces for Sobolev spaces for when is a Lipschitz domain. The extension of this result to for and is now well-known when is a smooth domain. The situation is more complicated for polygonal and polyhedral domains since the characterization is given only in terms of local compatibility conditions at the vertices, edges, .... Some recent papers give the characterization for general Lipschitz domains for m=2 in terms of global compatibility conditions. Here we give the necessary compatibility conditions for and we prove how the local compatibility conditions can be derived.
@article{AMBP_2007__14_2_187_0, author = {Giuseppe Geymonat}, title = {Trace {Theorems} for {Sobolev} {Spaces} on {Lipschitz} {Domains.} {Necessary} {Conditions}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {187--197}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {14}, number = {2}, year = {2007}, doi = {10.5802/ambp.232}, mrnumber = {2369871}, zbl = {1161.46019}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.232/} }
TY - JOUR AU - Giuseppe Geymonat TI - Trace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 187 EP - 197 VL - 14 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.232/ DO - 10.5802/ambp.232 LA - en ID - AMBP_2007__14_2_187_0 ER -
%0 Journal Article %A Giuseppe Geymonat %T Trace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions %J Annales mathématiques Blaise Pascal %D 2007 %P 187-197 %V 14 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.232/ %R 10.5802/ambp.232 %G en %F AMBP_2007__14_2_187_0
Giuseppe Geymonat. Trace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions. Annales mathématiques Blaise Pascal, Tome 14 (2007) no. 2, pp. 187-197. doi : 10.5802/ambp.232. https://ambp.centre-mersenne.org/articles/10.5802/ambp.232/
[1] Sobolev spaces. Second edition, Academic Press, New York, 2003 | Zbl
[2] On the traces of functions in for Lipschitz domains in , C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 699-704 | MR | Zbl
[3] On traces for functional spaces related to Maxwell’s equations. Part I: an integration by parts formula in Lipschitz Polyedra, Math. Meth. Appl. Sci., Volume 24 (2001), pp. 9-30 | DOI | Zbl
[4] A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proc. A. M. S., Volume 124 (1996), pp. 591-600 | DOI | MR | Zbl
[5] On the traces of for a Lipschitz domain, Rev. Mat. Complutense, Volume XIV (2001), pp. 371-377 | MR | Zbl
[6] Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n-variabili, Rend. Sem. Mat. Univ. Padova, Volume 27 (1957), pp. 284-305 | Numdam | MR | Zbl
[7] On the existence of the airy function in Lipschitz domains. Application to the traces of , C. R. Acad. Sci. Paris, Série I, Volume 330 (2000), pp. 355-360 | MR | Zbl
[8] Elliptic boundary value problems in nonsmooth domains, Pitman, London, 1985 | Zbl
[9] Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR
Cité par Sources :