Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani
Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 2, pp. 149-186.

Dans cet article nous présentons quelques problèmes et résultats d’homogénéisation non locale pour certaines équations de type dégénéré. Nous considérons des équations de transport, une équation des ondes dégénérée et une équation différentielle de Riccati, et nous décrivons dans chacun des cas les effets non locaux induits par homogénéisation. Nous donnons aussi quelques résultats sur l’analyse mathématique des équations des fluides miscibles en milieu poreux.

DOI: 10.5802/ambp.231
Youcef Amirat 1; Kamel Hamdache 2

1 Laboratoire de Mathématiques UMR 6620 CNRS Université Blaise Pascal 63177 Aubière cedex France
2 Centre de Mathématiques Appliquées CNRS UMR 7641 Ecole Polytechnique 91128 Palaiseau cedex France
@article{AMBP_2007__14_2_149_0,
     author = {Youcef Amirat and Kamel Hamdache},
     title = {Sur quelques probl\`emes d{\textquoteright}homog\'en\'eisation non locale et de fluides en milieu poreux~: une contribution de {Abdelhamid} {Ziani}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {149--186},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {14},
     number = {2},
     year = {2007},
     doi = {10.5802/ambp.231},
     mrnumber = {2369870},
     zbl = {1158.35011},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.231/}
}
TY  - JOUR
AU  - Youcef Amirat
AU  - Kamel Hamdache
TI  - Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani
JO  - Annales mathématiques Blaise Pascal
PY  - 2007
DA  - 2007///
SP  - 149
EP  - 186
VL  - 14
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.231/
UR  - https://www.ams.org/mathscinet-getitem?mr=2369870
UR  - https://zbmath.org/?q=an%3A1158.35011
UR  - https://doi.org/10.5802/ambp.231
DO  - 10.5802/ambp.231
LA  - fr
ID  - AMBP_2007__14_2_149_0
ER  - 
%0 Journal Article
%A Youcef Amirat
%A Kamel Hamdache
%T Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani
%J Annales mathématiques Blaise Pascal
%D 2007
%P 149-186
%V 14
%N 2
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.231
%R 10.5802/ambp.231
%G fr
%F AMBP_2007__14_2_149_0
Youcef Amirat; Kamel Hamdache. Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani. Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 2, pp. 149-186. doi : 10.5802/ambp.231. https://ambp.centre-mersenne.org/articles/10.5802/ambp.231/

[1] N. I. Aheizer; M. Krein Some questions in the theory of moments, translated by W. Fleming and D. Prill. Translations of Mathematical Monographs, Vol. 2, American Mathematical Society, Providence, R.I., 1962 | MR | Zbl

[2] R. Alexandre Some results in homogenization tacking memory effects, Asymp. Anal., Volume Vol. 15 (1997), pp. 229-259 | MR | Zbl

[3] R. Alexandre Asymptotic behavior of transport equations, Appl. Anal., Volume Vol. 70, 3-4 (1999), pp. 405-430 | MR | Zbl

[4] G. Allaire Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23(6) (1992), pp. 1482-1518 | DOI | MR | Zbl

[5] Y. Amirat; K. Hamdache; A. Ziani Homogénéisation d’équations hyperboliques du premier ordre – Application aux milieux poreux, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 6, no. 5 (1989), pp. 397-417 | Numdam | Zbl

[6] Y. Amirat; K. Hamdache; A. Ziani Comportement limite de modèles d’équations de convection-diffusion dégénérées, C. R. Acad. Sci. Paris Sér. I Math., Volume 310, no. 11 (1990), pp. 765-768 | Zbl

[7] Y. Amirat; K. Hamdache; A. Ziani Étude d’une équation de transport à mémoire, C. R. Acad. Sci. Paris Sér. I Math., Volume 311, no. 11 (1990), pp. 685-688 | Zbl

[8] Y. Amirat; K. Hamdache; A. Ziani Homogénéisation d’un modèle d’écoulements miscibles en milieu poreux, Asymptotic Analysis, Volume 3 ̲ (1990), pp. 77-89 | Zbl

[9] Y. Amirat; K. Hamdache; A. Ziani Homogénéisation non locale pour des équations dégénérées à coefficients périodiques, C. R. Acad. Sci. Paris Sér. I Math., Volume 312, no. 13 (1991), pp. 963-966 | MR | Zbl

[10] Y. Amirat; K. Hamdache; A. Ziani Homogénéisation par décomposition en fréquences d’une équation de transport dans n , C. R. Acad. Sci. Paris Sér. I Math., Volume 312, no. 1 (1991), pp. 37-40 | Zbl

[11] Y. Amirat; K. Hamdache; A. Ziani Homogenization of a model of compressible miscible flow in porous media, Boll. U.M.I., Volume 7 (5-B) (1991), pp. 463-487 | MR | Zbl

[12] Y. Amirat; K. Hamdache; A. Ziani Kinetic formulation for a transport equation with memory, Comm. in P.D.E., Volume 16 (8 & 9) (1991), pp. 1287-13311 | DOI | MR | Zbl

[13] Y. Amirat; K. Hamdache; A. Ziani Some results on homogenization of convection-diffusion equations, Arch. Rational Mech. Anal., Volume 114, no. 2 (1991), pp. 155-178 | DOI | MR | Zbl

[14] Y. Amirat; K. Hamdache; A. Ziani Homogenization of parametrized families of hyperbolic problems, Proceedings of the Royal Society of Edinburgh, Volume 120 A (1992), pp. 199-221 | DOI | Zbl

[15] Y. Amirat; K. Hamdache; A. Ziani Homogenization of degenerate wave equations with periodic coefficients, SIAM Journal of Mathematical Analysis, Volume 24, no. 5 (1993), pp. 1226-1253 | DOI | MR | Zbl

[16] Y. Amirat; K. Hamdache; A. Ziani Remarques sur l’interaction d’oscillations dans une équation de transport (1993) (Technical report)

[17] Y. Amirat; K. Hamdache; A. Ziani Existence globale de solutions faibles pour un système parabolique-hyperbolique intervenant en dynamique des milieux poreux, C. R. Acad. Sci. Paris Sér. I Math., Volume 321, no. 2 (1995), pp. 253-258 | MR | Zbl

[18] Y. Amirat; K. Hamdache; A. Ziani On homogenization of ordinary differential equations and linear transport equations, Homogénéisation et Méthodes de Convergence en Calcul des Variations, Ed. G. Bouchitte, G. Buttazzo, and P. Suquet (Advances in Math. for Applied Sciences), Volume 18s, World Scientific-Singapore, 1995, pp. 29-50 | MR | Zbl

[19] Y. Amirat; K. Hamdache; A. Ziani Mathematical Analysis for compressible miscible displacement models in porous media, M³AS, Volume 6, no. 6 (1996), pp. 729-747 | MR | Zbl

[20] Y. Amirat; K. Hamdache; A. Ziani On Homogenisation of a Riccati Equation (1999) (Technical report)

[21] Y. Amirat; A. Ziani Global weak solutions to a parabolic system modeling a one-dimensional compressible miscible flow in porous media, Journal of Mathematical Analysis and Applications, Volume 220 (1998), pp. 697-718 | DOI | MR | Zbl

[22] Y. Amirat; A. Ziani Classical solutions of a parabolic-hyperbolic system modelling a three-dimensional compressible miscible flow in porous media, Applicable Analysis, Volume 72 (1–2) (1999), pp. 155-168 | DOI | MR | Zbl

[23] Y. Amirat; A. Ziani Asymptotic behavior of the solutions of an elliptic-parabolic system arising in flow in porous media, Z. Anal. Anwend., Volume 23, no. 2 (2004), pp. 335-351 | DOI | MR | Zbl

[24] Y. Amirat; A. Ziani Classical solutions for a multicomponent flow model in porous media, Differential and Integral Equations, Volume 17, no. 7-8 (2004), pp. 893-920 | MR | Zbl

[25] Y. Amirat; A. Ziani Global weak solutions for a nonlinear degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media, Boll. U.M.I., Volume 8 (7-B) (2004), pp. 109-128 | MR | Zbl

[26] J. Bear Dynamics of fluids in porous media, Elsevier, 1972

[27] A. Bensoussan; J. L. Lions; G. C. Papanicolaou Asymptotic analysis for periodic structures, North-Holland, 1978 | MR | Zbl

[28] E. Bonnetier; C. Conca Approximation of Young measures by functions and an application to an optimal design problem for plates with variable thickness, Proceedings of the Royal Society of Edinburgh, Volume 124 A, no. 3 (1994), pp. 399-422 | DOI | MR | Zbl

[29] M. Briane Nonlocal effects in two-dimensional conductivity, Arch. Rat. Mech. Anal., Volume 182(2) (2006), pp. 255-267 | DOI | MR | Zbl

[30] G. Chavent; J. Jaffré Mathematical models and finite elements for reservoir simulation, North-Holland, 1986 | Zbl

[31] R. J. DiPerna Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., Volume 88(3) (1985), pp. 223-270 | DOI | MR | Zbl

[32] R. J. DiPerna; A. J. Majda Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., Volume 108 (1987), pp. 667-689 | DOI | MR | Zbl

[33] W. F. Donoghue Monotone matrix functions and analytic continuation, Springer-Verlag: New York, Heidelberg, Berlin, 1974 | MR | Zbl

[34] J. Douglas; J. E. Roberts Numerical methods for a model of compressible miscible displacement in porous media, Math. Comput., Volume 41 (1983), pp. 441-459 | DOI | MR | Zbl

[35] Weinan E Homogenization of linear and nonlinear transport equations, Comm. Pure Appl. Math., Volume 45 (1992) no. 3, pp. 301-326 | DOI | MR | Zbl

[36] H. I. Ene; M. L. Mascarenhas; J. Saint Jean Paulin Fading memory effects in elastic-viscoelastic composites, M²AN, Volume 31(7) (1997), pp. 927-952 | Numdam | MR | Zbl

[37] B. Engquist; T. Y. Hou Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM J. Numer. Anal., Volume 26(2) (1989), pp. 289-319 | DOI | MR | Zbl

[38] P. Fabrie; M. Langlais Mathematical analysis of miscible displacement in porous media, SIAM Journal of Mathematical Analysis, Volume 23 (1992), pp. 1375-1392 | DOI | MR | Zbl

[39] X. Feng On existence and uniqueness results for a coupled system modeling miscible displacement in porous media, J. Math. Anal. Appl., Volume 194 (1995), pp. 883-910 | DOI | MR | Zbl

[40] I. M. Gel’fand; M. I. Graev; N. Ya. Vilenkin Generalized Functions 5, Academic Press, 1966 | Zbl

[41] Sigurdur Helgason The Radon transform, Progress in Mathematics, 5, Birkhäuser Boston, Mass., 1980 | MR | Zbl

[42] Ē. Ya. Hruslov Homogenized models of composite media, Composite media and homogenization theory (Trieste, 1990) (Progr. Nonlinear Differential Equations Appl.), Volume 5, Birkhäuser Boston, Boston, MA, 1991, pp. 159-182 | MR | Zbl

[43] J. A. Krommes Statistical desciptions and plasmas physics, Handbook of Plasmas Physics 2, eds A.A. Galeev and R.N. Sudan, North Holland, 1984

[44] J. L. Lions Homogénéisation non locale, Proceeding of the international meeting on recent methods in nonlinear analysis , eds E. De Giorgi , E. Magenes and U. Mosco, Bologna : Pitagora Editrice, 1979, pp. 189-203 | MR | Zbl

[45] V. A. Marčenko; E. Ja.Hruslov Boundary value-problems in domains with a fine-grained boundary, Naukova Dumka, Kiev, 1974 | MR | Zbl

[46] L. Mascarenhas A linear homogenization problem with time dependent coefficient, Trans. Am. Math. Soc., Volume 281, 1 (1984), pp. 179-195 | DOI | MR | Zbl

[47] A. Mikelic Mathematical theory of stationary miscible filtration, J. Differential Equations, Volume 90 (1991), pp. 186-202 | DOI | MR | Zbl

[48] François Murat; Luc Tartar H-convergence, Topics in the mathematical modelling of composite materials (Progr. Nonlinear Differential Equations Appl.), Volume 31, Birkhäuser Boston, Boston, MA, 1997, pp. 21-43 | MR | Zbl

[49] G. Nguetseng A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20(3) (1989), pp. 608-623 | DOI | MR | Zbl

[50] A. Pazy Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983 | MR | Zbl

[51] D. W. Peaceman Fundamentals of numerical reservoir simulation, Elsevier, 1977

[52] M. Renardy; J. A. Hrusa; W. J. Nohel Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics 35, Longman, 1987 | Zbl

[53] E. Sanchez-Palencia Méthodes d’homogénéisation pour l’étude de matériaux hétérogènes  : phénomène de mémoire, Rend. Sem. Mat. Torino, Volume 36 (1978), pp. 15-25 | Zbl

[54] E. Sanchez-Palencia Non-homogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, 1980 | Zbl

[55] M. I. Shvidler Dispersion of a filtration stream in a medium with random inhomogeneities, Sov. Phys. Dokl., Volume 20(3) (1975), pp. 171-173 | Zbl

[56] M. I. Shvidler Dispersion of a filtration flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, Volume 4 (1976), pp. 65-69

[57] M. I. Shvidler Conditional Conditional averaging of the equations of flow in random composite porous media, Transl. Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, Volume 1 (1987), pp. 75-81 | Zbl

[58] R. Smith A delay-diffusion description for contaminant dispersion, J. Fluid Mech., Volume 105, 9 (1981), pp. 469-486 | DOI | Zbl

[59] R. Smith Longitudinal dispersion coefficients for varying channels, J. Fluid Mech., Volume 130 (1983), pp. 299-314 | DOI | Zbl

[60] L. Tartar Remarks on Homogenization, Homogenization and Effective Moduli of Materials and Media (The IMA Volumes in Mathematics and its Applications), Volume 1, Springer, New York, 1986, pp. 228-246 | MR | Zbl

[61] L. Tartar Memory effects and Homogenization, Arch. Rat. Mech. Anal., Volume 111, No. 2 (1990), pp. 121-133 | DOI | MR | Zbl

[62] Luc Tartar Nonlocal effects induced by homogenization, Partial differential equations and the calculus of variations, Vol. II (Progr. Nonlinear Differential Equations Appl.), Volume 2, Birkhäuser Boston, 1989, pp. 925-938 | MR | Zbl

[63] G. I. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society of London, Volume A 219 (1953), pp. 186-203

[64] G. I. Taylor The dispersion of matter in turbulent flow through a pipe, Proceedings of the Royal Society of London, Volume A 223 (1954), pp. 446-468

Cited by Sources: