Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings
Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 1, pp. 93-102.

We obtain another proof of a Gaussian upper estimate for a gradient of the heat kernel on cofinite covering graphs whose covering transformation group has a polynomial volume growth. It is proved by using the temporal regularity of the discrete heat kernel obtained by Blunck [2] and Christ [3] along with the arguments of Dungey [7] on covering manifolds.

DOI: 10.5802/ambp.229
Classification: 60J10,  58J35,  58J37
Keywords: Gradient estimates, Random walks, Gaussian estimates for the heat kernel
Satoshi Ishiwata 1

1 Institute of Mathematics University of Tsukuba 1-1-1 Tennoudai, 305-8571 Ibaraki JAPAN
@article{AMBP_2007__14_1_93_0,
     author = {Satoshi  Ishiwata},
     title = {Discrete version of {Dungey{\textquoteright}s} proof for the gradient heat kernel estimate on coverings},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {93--102},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {14},
     number = {1},
     year = {2007},
     doi = {10.5802/ambp.229},
     zbl = {1137.60033},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.229/}
}
TY  - JOUR
AU  - Satoshi  Ishiwata
TI  - Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings
JO  - Annales mathématiques Blaise Pascal
PY  - 2007
DA  - 2007///
SP  - 93
EP  - 102
VL  - 14
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.229/
UR  - https://zbmath.org/?q=an%3A1137.60033
UR  - https://doi.org/10.5802/ambp.229
DO  - 10.5802/ambp.229
LA  - en
ID  - AMBP_2007__14_1_93_0
ER  - 
%0 Journal Article
%A Satoshi  Ishiwata
%T Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings
%J Annales mathématiques Blaise Pascal
%D 2007
%P 93-102
%V 14
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.229
%R 10.5802/ambp.229
%G en
%F AMBP_2007__14_1_93_0
Satoshi  Ishiwata. Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings. Annales mathématiques Blaise Pascal, Volume 14 (2007) no. 1, pp. 93-102. doi : 10.5802/ambp.229. https://ambp.centre-mersenne.org/articles/10.5802/ambp.229/

[1] P. Auscher; T. Coulhon; X. T. Duong; S. Hofmann Riesz transform on manifolds and heat kernel regurality, Ann. Scient. Éc. Norm. Sup., Volume 37 (2004), pp. 911-957 | Numdam | MR | Zbl

[2] S. Blunck Perturbation of analytic operators and temporal regularity, Colloq. Math., Volume 86 (2000), pp. 189-201 | MR | Zbl

[3] M. Christ Temporal regularity for random walk on discrete nilpotent groups, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl., Volume Special Issue (1995), pp. 141-151 | MR | Zbl

[4] T. Coulhon; X. T. Duong Riesz transforms for 1p2, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 1151-1169 | DOI | MR | Zbl

[5] E. B. Davies Non-gaussian aspects of heat kernel behaviour, J. London Math. Soc., Volume 55 (1997), pp. 105-125 | DOI | MR | Zbl

[6] N. Dungey Heat kernel estimates and Riesz transforms on some Riemannian covering manifolds, Math. Z., Volume 247 (2004), pp. 765-794 | DOI | MR | Zbl

[7] N. Dungey Some gradient estimates on covering manifolds, Bull. Pol. Acad. Sci. Math., Volume 52 (2004), pp. 437-443 | DOI | MR | Zbl

[8] N. Dungey A note on time regularity for discrete time heat kernel, Semigroup Forum, Volume 72 (2006), pp. 404-410 | DOI | MR | Zbl

[9] M. Gromov Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., Volume 53 (1981), pp. 53-73 | DOI | Numdam | MR | Zbl

[10] W. Hebisch; L. Saloff-Coste Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993), pp. 673-709 | DOI | MR | Zbl

[11] S. Ishiwata Asymptotic behavior of a transition probability for a random walk on a nilpotent covering graph, Contemp. Math., Volume 347 (2004), pp. 57-68 | MR | Zbl

[12] S. Ishiwata A Berry-Esseen type theorem on nilpotent covering graphs, Canad. J. Math., Volume 56 (2004), pp. 963-982 | DOI | MR | Zbl

[13] E. Russ Riesz transform on graphs for p>2, unpublished manuscript

Cited by Sources: