Let be a knot in the -sphere , and a disk in meeting transversely in the interior. For non-triviality we assume that over all isotopies of in . Let () be a knot obtained from by twistings along the disk . If the original knot is unknotted in , we call a twisted knot. We describe for which pair and an integer , the twisted knot is a torus knot, a satellite knot or a hyperbolic knot.
Mohamed Aït-Nouh 1 ; Daniel Matignon 2 ; Kimihiko Motegi 3
@article{AMBP_2006__13_1_31_0, author = {Mohamed A{\"\i}t-Nouh and Daniel Matignon and Kimihiko Motegi}, title = {Geometric types of twisted knots}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {31--85}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {13}, number = {1}, year = {2006}, doi = {10.5802/ambp.213}, mrnumber = {2233011}, zbl = {1158.57005}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.213/} }
TY - JOUR AU - Mohamed Aït-Nouh AU - Daniel Matignon AU - Kimihiko Motegi TI - Geometric types of twisted knots JO - Annales mathématiques Blaise Pascal PY - 2006 SP - 31 EP - 85 VL - 13 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.213/ DO - 10.5802/ambp.213 LA - en ID - AMBP_2006__13_1_31_0 ER -
%0 Journal Article %A Mohamed Aït-Nouh %A Daniel Matignon %A Kimihiko Motegi %T Geometric types of twisted knots %J Annales mathématiques Blaise Pascal %D 2006 %P 31-85 %V 13 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.213/ %R 10.5802/ambp.213 %G en %F AMBP_2006__13_1_31_0
Mohamed Aït-Nouh; Daniel Matignon; Kimihiko Motegi. Geometric types of twisted knots. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 31-85. doi : 10.5802/ambp.213. https://ambp.centre-mersenne.org/articles/10.5802/ambp.213/
[1] Obtaining graph knots by twisting unknots, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 321-326 | MR | Zbl
[2] Obtaining graph knots by twisting unknots, Topology Appl., Volume 146-147 (2005), pp. 105-121 | DOI | MR | Zbl
[3] Dehn surgery on knots, Ann. Math, Volume 125 (1987), pp. 237-300 | DOI | MR | Zbl
[4] A combinatorial analog of the Poincaré Index Theorem, J. Comb. Theory Ser., Volume B15 (1973), pp. 264-268 | DOI | MR | Zbl
[5] Dehn surgeries on -bridge links which yield reducible -manifolds (preprint)
[6] On composite twisted unknots, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4429-4463 | DOI | MR | Zbl
[7] Combinatorial methods in Dehn surgery, Lectures at Knots 96, World Scientific Publishing Co, 1997, pp. 263-290 | MR | Zbl
[8] Incompressible planar surfaces in -manifolds, Topology Appl., Volume 18 (1984), pp. 121-144 | DOI | MR | Zbl
[9] Knots are determined by their complements, J. Amer. Math. Soc., Volume 2 (1989), pp. 371-415 | DOI | MR | Zbl
[10] Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom., Volume 4 (1995), pp. 597-644 | MR | Zbl
[11] Toroidal and boundary-reducing Dehn fillings, Topology Appl., Volume 93 (1999), pp. 77-90 | DOI | MR | Zbl
[12] Non-integral toroidal Dehn surgeries, Comm. Anal. Geom., Volume 12 (2004), pp. 417-485 | MR | Zbl
[13] Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4465-4479 | DOI | MR | Zbl
[14] Seifert fibered spaces in -manifolds, Mem. Amer. Math. Soc., Volume 220 (1979) | MR | Zbl
[15] Homotopy equivalences of -manifolds with boundaries, Lect.Notes in Math, Springer-Verlag, 1979 | MR | Zbl
[16] Twisting and knot types, J. Math. Soc. Japan, Volume 44 (1992), pp. 199-216 | DOI | MR | Zbl
[17] Unknotting, knotting by twists on disks and property (P) for knots in , Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related Topics, de Gruyter (1992), pp. 93-102 | MR | Zbl
[18] Closed incompressible surfaces in alternating knot and link complements, Topology, Volume 23 (1984), pp. 37-44 | DOI | MR | Zbl
[19] Seifert fibered manifolds and Dehn surgery III, Comm. Anal. Geom., Volume 7 (1999), pp. 551-582 | MR | Zbl
[20] The Smith conjecture, Academic Press, 1984 | MR | Zbl
[21] Knot types of satellite knots and twisted knots, Lectures at Knots 96, World Scientific Publishing Co, 1997, pp. 579-603 | MR | Zbl
[22] Are knots obtained from a plain pattern always prime ?, Kobe J. Math., Volume 9 (1992), pp. 39-42 | MR | Zbl
[23] Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, Volume 7 (1994), pp. 289-305 | MR | Zbl
[24] Knots and links, Publish or Perish, Berkeley, Calif., 1976 | MR | Zbl
[25] Unknotting-number-one knots are prime, Invent. Math., Volume 82 (1985), pp. 37-55 | DOI | MR | Zbl
[26] Producing reducible -manifolds by surgery on a knot, Topology, Volume 29 (1990), pp. 481-500 | DOI | MR | Zbl
[27] Composite knots trivialized by twisting, J. Knot Theory Ramifications, Volume 1 (1992), pp. 1623-1629 | DOI | MR | Zbl
[28] The geometry and topology of -manifolds, Lecture notes, Princeton University, 1979
[29] Dehn surgery on arborescent links, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2275-2294 | DOI | MR | Zbl
Cité par Sources :