Geometric types of twisted knots
Annales Mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 31-85.

Let K be a knot in the 3-sphere S 3 , and Δ a disk in S 3 meeting K transversely in the interior. For non-triviality we assume that |ΔK|2 over all isotopies of K in S 3 -Δ. Let K Δ,n (S 3 ) be a knot obtained from K by n twistings along the disk Δ. If the original knot is unknotted in S 3 , we call K Δ,n a twisted knot. We describe for which pair (K,Δ) and an integer n, the twisted knot K Δ,n is a torus knot, a satellite knot or a hyperbolic knot.

@article{AMBP_2006__13_1_31_0,
     author = {Mohamed A{\"\i}t-Nouh and Daniel Matignon and Kimihiko Motegi},
     title = {Geometric types of twisted knots},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {31--85},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {13},
     number = {1},
     year = {2006},
     doi = {10.5802/ambp.213},
     mrnumber = {2233011},
     zbl = {1158.57005},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.213/}
}
Mohamed Aït-Nouh; Daniel Matignon; Kimihiko Motegi. Geometric types of twisted knots. Annales Mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 31-85. doi : 10.5802/ambp.213. https://ambp.centre-mersenne.org/articles/10.5802/ambp.213/

[1] M. Aït Nouh; D. Matignon; K. Motegi Obtaining graph knots by twisting unknots, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 321-326 | MR 2016983 | Zbl 1033.57003

[2] M. Aït Nouh; D. Matignon; K. Motegi Obtaining graph knots by twisting unknots, Topology Appl., Volume 146-147 (2005), pp. 105-121 | Article | MR 2107139 | Zbl 02136458

[3] M. Culler; J. Luecke C. McA. Gordon; P. B. Shalen Dehn surgery on knots, Ann. Math, Volume 125 (1987), pp. 237-300 | Article | MR 881270 | Zbl 0633.57006

[4] L. Glass A combinatorial analog of the Poincaré Index Theorem, J. Comb. Theory Ser., Volume B15 (1973), pp. 264-268 | Article | MR 327558 | Zbl 0264.05112

[5] H. Goda; C. Hayashi; H-J. Song Dehn surgeries on 2-bridge links which yield reducible 3-manifolds (preprint)

[6] C. Goodman-Strauss On composite twisted unknots, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4429-4463 | Article | MR 1355072 | Zbl 0883.57004

[7] C.McA. Gordon Combinatorial methods in Dehn surgery, Lectures at Knots 96, World Scientific Publishing Co, 1997, pp. 263-290 | MR 1474525 | Zbl 0940.57022

[8] C.McA. Gordon; R. A. Litherland Incompressible planar surfaces in 3-manifolds, Topology Appl., Volume 18 (1984), pp. 121-144 | Article | MR 769286 | Zbl 0554.57010

[9] C.McA. Gordon; J. Luecke Knots are determined by their complements, J. Amer. Math. Soc., Volume 2 (1989), pp. 371-415 | Article | MR 965210 | Zbl 0678.57005

[10] C.McA. Gordon; J. Luecke Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom., Volume 4 (1995), pp. 597-644 | MR 1371211 | Zbl 0865.57015

[11] C.McA. Gordon; J. Luecke Toroidal and boundary-reducing Dehn fillings, Topology Appl., Volume 93 (1999), pp. 77-90 | Article | MR 1684214 | Zbl 0926.57019

[12] C.McA. Gordon; J. Luecke Non-integral toroidal Dehn surgeries, Comm. Anal. Geom., Volume 12 (2004), pp. 417-485 | MR 2074884 | Zbl 1062.57006

[13] C. Hayashi; K. Motegi Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4465-4479 | Article | MR 1355073 | Zbl 0883.57005

[14] W. Jaco; P. B. Shalen Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., Volume 220 (1979) | MR 539411 | Zbl 0415.57005

[15] K. Johannson Homotopy equivalences of 3-manifolds with boundaries, Lect.Notes in Math, Springer-Verlag, 1979 | MR 551744 | Zbl 0412.57007

[16] M. Kouno; K. Motegi; T. Shibuya Twisting and knot types, J. Math. Soc. Japan, Volume 44 (1992), pp. 199-216 | Article | MR 1154840 | Zbl 0739.57003

[17] Y. Mathieu Unknotting, knotting by twists on disks and property (P) for knots in S 3 , Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related Topics, de Gruyter (1992), pp. 93-102 | MR 1177414 | Zbl 0772.57012

[18] W. Menasco Closed incompressible surfaces in alternating knot and link complements, Topology, Volume 23 (1984), pp. 37-44 | Article | MR 721450 | Zbl 0525.57003

[19] K. Miyazaki; K. Motegi Seifert fibered manifolds and Dehn surgery III, Comm. Anal. Geom., Volume 7 (1999), pp. 551-582 | MR 1698388 | Zbl 0940.57025

[20] J. Morgan; H. Bass The Smith conjecture, Academic Press, 1984 | MR 758459 | Zbl 0599.57001

[21] K. Motegi Knot types of satellite knots and twisted knots, Lectures at Knots 96, World Scientific Publishing Co, 1997, pp. 579-603 | MR 1474519 | Zbl 0914.57005

[22] K. Motegi; T. Shibuya Are knots obtained from a plain pattern always prime ?, Kobe J. Math., Volume 9 (1992), pp. 39-42 | MR 1189955 | Zbl 0766.57004

[23] Y. Ohyama Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, Volume 7 (1994), pp. 289-305 | MR 1297516 | Zbl 0861.57015

[24] D. Rolfsen Knots and links, Publish or Perish, Berkeley, Calif., 1976 | MR 515288 | Zbl 0339.55004

[25] M. Scharlemann Unknotting-number-one knots are prime, Invent. Math., Volume 82 (1985), pp. 37-55 | Article | MR 808108 | Zbl 0576.57004

[26] M. Scharlemann Producing reducible 3-manifolds by surgery on a knot, Topology, Volume 29 (1990), pp. 481-500 | Article | MR 1071370 | Zbl 0727.57015

[27] M. Teragaito Composite knots trivialized by twisting, J. Knot Theory Ramifications, Volume 1 (1992), pp. 1623-1629 | Article | MR 1194998 | Zbl 0765.57010

[28] W. P. Thurston The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1979

[29] Y-Q. Wu Dehn surgery on arborescent links, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 2275-2294 | Article | MR 1458339 | Zbl 0919.57008