We establish a singular perturbation property for a class of quasilinear parabolic degenerate equations associated with a mixed Dirichlet-Neumann boundary condition in a bounded domain of , . In order to prove the -convergence of viscous solutions toward the entropy solution of the corresponding first-order hyperbolic problem, we refer to some properties of bounded sequences in together with a weak formulation of boundary conditions for scalar conservation laws.
Marie-Josée Jasor 1 ; Laurent Lévi 2
@article{AMBP_2003__10_2_269_0, author = {Marie-Jos\'ee Jasor and Laurent L\'evi}, title = {Singular {Perturbations} for a {Class} of {Degenerate} {Parabolic} {Equations} with {Mixed} {Dirichlet-Neumann} {Boundary} {Conditions}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {269--296}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {10}, number = {2}, year = {2003}, doi = {10.5802/ambp.177}, mrnumber = {2031272}, zbl = {1065.35158}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.177/} }
TY - JOUR AU - Marie-Josée Jasor AU - Laurent Lévi TI - Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions JO - Annales mathématiques Blaise Pascal PY - 2003 SP - 269 EP - 296 VL - 10 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.177/ DO - 10.5802/ambp.177 LA - en ID - AMBP_2003__10_2_269_0 ER -
%0 Journal Article %A Marie-Josée Jasor %A Laurent Lévi %T Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions %J Annales mathématiques Blaise Pascal %D 2003 %P 269-296 %V 10 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.177/ %R 10.5802/ambp.177 %G en %F AMBP_2003__10_2_269_0
Marie-Josée Jasor; Laurent Lévi. Singular Perturbations for a Class of Degenerate Parabolic Equations with Mixed Dirichlet-Neumann Boundary Conditions. Annales mathématiques Blaise Pascal, Tome 10 (2003) no. 2, pp. 269-296. doi : 10.5802/ambp.177. https://ambp.centre-mersenne.org/articles/10.5802/ambp.177/
[1] A Version of the Fundamental Theorem for Young Measures, PDEs and Continuum Model of Phase Transition, Springer-Verlag, Berlin, 1995, pp. 241-259 | MR | Zbl
[2] Etude d’une équation doublement non linéaire, J. Func. Anal., Volume 24 (1977), pp. 148-155 | DOI | MR | Zbl
[3] First-Order Quasilinear Equations with Boundary Conditions, Commun. in Partial Differential Equations, Volume 4 (1979) no. 9, pp. 1017-1034 | DOI | MR | Zbl
[4] On a Free Boundary Problem for a Strongly Degenerate Quasilinear Parabolic Equation with an Application to a Model of Pressure Filtration, Web Site Conservation Laws http://www.math.ntnu.no/conservation/, 2002
[5] Entropy Solution for Nonlinear Degenerate Problems, Arch. Rat. Mech. Anal., Volume 147 (1999) no. 2, pp. 269-361 | DOI | MR | Zbl
[6] Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986
[7] Measure-Valued Solutions to Conservation Laws, Arch. Rat. Mech. Anal., Volume 88 (1985) no. 3, pp. 223-270 | DOI | MR | Zbl
[8] Existence and Uniqueness of the Entropy Solution to a Nonlinear Hyperbolic Equation, Chin. Ann. of Math., Volume 16B (1995) no. 1, pp. 1-14 | MR | Zbl
[9] Convergence of a Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations, Numer. Math., Volume 92 (2002) no. 1, pp. 41-82 | DOI | MR | Zbl
[10] Analyse mathématique de modèles non linéaires de l’ingénierie pétrolière, Mathématiques & Applications - SMAI, 22, Springer-Verlag, Berlin, 1996 | MR | Zbl
[11] Formulation forte entropique de lois scalaires hyperboliques-paraboliques dégénérées, Ann. Fac. Sci. Toulouse, Volume X (2001) no. 1, pp. 163-183 | Numdam | MR | Zbl
[12] Behaviour of a Class of Nonlinear Diffusion-Convection Equations, Adv. in Math. Sci. and Appl., Volume 5 (1995) no. 2, pp. 631-638 | MR | Zbl
[13] Perturbations singulières de problèmes aux limites, non linéaires paraboliques dégénérés-hyperboliques, Ann. Fac. Sci. Toulouse, Volume VIII (1998) no. 2, pp. 267-291 | DOI | Numdam | MR | Zbl
[14] First-Order Quasilinear Equations in Several Independent Variables, Math. USSR Sb., Volume 10 (1970) no. 2, pp. 217-243 | DOI | Zbl
[15] Singular Perturbations of Unilateral Problems Arising from the Theory of Flows through Porous Media, Adv. in Math. Sci. and Appl., Volume 9 (1999) no. 2, pp. 597-620 | MR | Zbl
[16] Strong Variational Formulations for Bilateral Obstacle Problems for Parabolic Degenerate Equations and Singular Perturbations Properties (2001) no. 26 (Technical report)
[17] Un résultat de perturbations singulières pour des inéquations variationnelles dégénérées, Annali di Matematica pura et applicata, Volume IV (1982) no. CXXXI, pp. 117-143 | DOI | MR | Zbl
[18] 2, Weak and Measure-Valued Solutions to Evolutionary PDE’s (Applied Mathematics and Mathematical Computation), Volume 4 (1996) | MR | Zbl
[19] Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations, Arch. Rat. Mech. Anal., Volume 163 (2002) no. 2, pp. 87-124 | DOI | MR | Zbl
[20] Un résultat de perturbations singulières dans les inéquations variationnelles, Lecture Notes in Mathematics, Singular Perturbations and Boundary Layer Theory, Springer-Verlag, 1977 | MR | Zbl
[21] Compensated Compactness and Applications to Partial Differential Equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Pitman Advanced Publishing Program, 1979 | MR | Zbl
Cité par Sources :