Quantum Isometry Group of Deformation: A Counterexample
Annales Mathématiques Blaise Pascal, Tome 26 (2019) no. 1, pp. 55-65.

We give a counterexample to show that the quantum isometry group of a deformed finite dimensional spectral triple may not be isomorphic with a deformation of the quantum isometry group of the undeformed spectral triple.

Publié le : 2020-01-21
DOI : https://doi.org/10.5802/ambp.382
Classification : 58B34,  46L87,  46L89
Mots clés: Compact quantum groups, Quantum isometry group, Spectral triple
@article{AMBP_2019__26_1_55_0,
     author = {Debashish Goswami and Arnab Mandal},
     title = {Quantum Isometry Group of Deformation: A Counterexample},
     journal = {Annales Math\'ematiques Blaise Pascal},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {26},
     number = {1},
     year = {2019},
     pages = {55-65},
     doi = {10.5802/ambp.382},
     language = {en},
     url = {ambp.centre-mersenne.org/item/AMBP_2019__26_1_55_0/}
}
Goswami, Debashish; Mandal, Arnab. Quantum Isometry Group of Deformation: A Counterexample. Annales Mathématiques Blaise Pascal, Tome 26 (2019) no. 1, pp. 55-65. doi : 10.5802/ambp.382. https://ambp.centre-mersenne.org/item/AMBP_2019__26_1_55_0/

[1] Teodor Banica Quantum automorphism groups of homogeneous graphs, J. Funct. Anal., Tome 224 (2005), pp. 243-280 | Article | MR 2146039 | Zbl 1088.46040

[2] Teodor Banica Quantum automorphism groups of small metric spaces, Pac. J. Math., Tome 219 (2005) no. 1, pp. 27-51 | Article | MR 2174219 | Zbl 1104.46039

[3] Teodor Banica; Adam Skalski Quantum symmetry groups of C * -algebras equipped with orthogonal filtrations, Proc. Lond. Math. Soc, Tome 106 (2013) no. 5, pp. 980-1004 | Article | MR 3066746 | Zbl 1276.46057

[4] Jyotishman Bhowmick; Debashish Goswami Quantum group of orientation preserving Riemannian isometries, J. Funct. Anal., Tome 257 (2009) no. 8, pp. 2530-2572 | Article | MR 2555012 | Zbl 1180.58005

[5] Jyotishman Bhowmick; Debashish Goswami Quantum isometry groups: examples and computations, Commun. Math. Phys., Tome 285 (2009) no. 2, pp. 421-444 | Article | MR 2461983 | Zbl 1159.81028

[6] Jyotishman Bhowmick; Debashish Goswami Quantum isometry groups of the Podles spheres, J. Funct. Anal., Tome 258 (2009) no. 9, pp. 2937-2960 | Article | MR 2595730 | Zbl 1210.58005

[7] Jyotishman Bhowmick; Debashish Goswami Quantum isometry groups, Infosys Science Foundation Series, Springer, 2016 | Zbl 1381.81004

[8] Julien Bichon Quantum automorphism groups of finite graphs, Proc. Am. Math. Soc., Tome 131 (2003) no. 3, pp. 665-673 | Article | MR 1937403 | Zbl 1013.16032

[9] Vyjayanthi Chari; Andrew Pressley A guide to Quantum groups, Cambridge University Press, 1994 | Zbl 0839.17009

[10] Alain Connes Noncommutative Geometry, Academic Press Inc., 1994 | Zbl 0818.46076

[11] Liebrecht De Sadeleer Deformations of spectral triples and their quantum isometry group via monoidal equivalences, Lett. Math. Phys., Tome 107 (2017) no. 4, pp. 673-715 | Article | MR 3623277 | Zbl 1367.58003

[12] Vladimir G. Drinfeld Quantum groups, Proceedings of the International Congress of Mathematicians (Berkeley, 1986). Vol. 1, American Mathematical Society, 1987 | Zbl 0667.16003

[13] Murray Gerstenhaber On the deformation of rings and algebras, Ann. Math., Tome 79 (1964) no. 1, pp. 59-103 | Article | MR 171807 | Zbl 0123.03101

[14] Debashish Goswami Quantum group of isometries in classical and noncommutative geometry, Commun. Math. Phys., Tome 285 (2009) no. 1, pp. 141-160 | Article | MR 2453592 | Zbl 1228.81188

[15] Debashish Goswami; Soumalya Joardar Quantum isometry group of non commutative manifolds obtained by deformation using dual unitary 2-cocycles, SIGMA, Symmetry Integrability Geom. Methods Appl., Tome 10 (2014), 076, 18 pages | Zbl 1297.58004

[16] Debashish Goswami; Arnab Mandal Quantum isometry group of dual of finitely generated discrete groups and quantum groups, Rev. Math. Phys., Tome 29 (2017), 1750008, 38 pages | Article | MR 3622844 | Zbl 1360.58006

[17] Ann Maes; Alfons Van Daele Notes on compact quantum groups, Nieuw. Arch. Wisk., Tome 16 (1998) no. 1-2, pp. 73-112 | MR 1645264 | Zbl 0962.46054

[18] Arnab Mandal Quantum isometry group of dual of finitely generated discrete groups. II, Ann. Math. Blaise Pascal, Tome 23 (2016) no. 2, pp. 219-247 | Article | MR 3581026 | Zbl 1358.58006

[19] Yuri Manin Quantum groups and non-commutative geometry, Université de Montréal, Centre de Recherches Mathématiques, 1988 | Zbl 0724.17006

[20] Shuzhou Wang Quantum symmetry groups of finite spaces, Commun. Math. Phys., Tome 195 (1998) no. 1, pp. 195-211 | Article | MR 1637425 | Zbl 1013.17008

[21] Stanisław L. Woronowicz Compact matrix pseudogroups, Commun. Math. Phys., Tome 111 (1987), pp. 613-665 | Article | MR 901157 | Zbl 0627.58034