Universal edge fluctuations of discrete interlaced particle systems
[Universalité au bord pour la fluctuation de systèmes discrets de particules entrelacées]
Annales Mathématiques Blaise Pascal, Tome 25 (2018) no. 1, pp. 75-197.

Nous considérons la mesure uniforme sur l’ensemble des configurations de Gelfand–Tsetlin de profondeur n après avoir fixé la position des particules de la n-ième ligne. De maniere équivalente, ces systèmes décrivent une grande classe de modèles de pavages aléatoires et ont un rapport étroit avec les processus de valeurs propres de mineurs d’une grande classe de matrices aléatoires hermitiennes. Ils ont une structure déterminantale et leur noyau de corrélation est connu. Nous redimensionnons le système par un facteur 1/n, et examinons son comportement asymptotique lorsque n, sous l’hypothèse faible pour les particules sur la rangée n, que la distribution empirique redimensionnée de ces dernières converge faiblement vers une mesure de probabilité avec support compact, et que cette dernière satisfasse un minimum de régularité.

Nous prouvons que le noyau de corrélation des particules dans le voisinage d’un « point typique du bord » converge vers le noyau de Airy étendu. A cette fin, nous trouvons dans un premier temps un dimensionnement adéquat pour la fluctuation des particules. Nous donnons une paramétrisation explicite du noyau asymptotique, définissons une courbe non-asymptotique analogue (et son équivalent en dimension n), et choisissons notre scaling de telle sorte que les particules fluctuent autour de cette courbe avec des ordres O(n -1 3 ) et O(n -2 3 ), dans les directions respectivement tangentes et normales. Bien que les résultats de l’article soient naturels, les difficultés techniques liées à l’etude d’une si grande classe de modèles sous des hypothèses si faibles sont substantielles et inévitables.

We impose the uniform probability measure on the set of all discrete Gelfand–Tsetlin patterns of depth n with the particles on row n in deterministic positions. These systems equivalently describe a broad class of random tilings models, and are closely related to the eigenvalue minor processes of a broad class of random Hermitian matrices. They have a determinantal structure, with a known correlation kernel. We rescale the systems by 1 n, and examine the asymptotic behaviour, as n, under weak asymptotic assumptions for the (rescaled) particles on row n: The empirical distribution of these converges weakly to a probability measure with compact support, and they otherwise satisfy mild regulatory restrictions.

We prove that the correlation kernel of particles in the neighbourhood of “typical edge points” convergences to the extended Airy kernel. To do this, we first find an appropriate scaling for the fluctuations of the particles. We give an explicit parameterisation of the asymptotic edge, define an analogous non-asymptotic edge curve (or finite n-deterministic equivalent), and choose our scaling such that the particles fluctuate around this with fluctuations of order O(n -1 3 ) and O(n -2 3 ) in the tangent and normal directions respectively. While the final results are quite natural, the technicalities involved in studying such a broad class of models under such weak asymptotic assumptions are unavoidable and extensive.

Publié le : 2018-07-02
DOI : https://doi.org/10.5802/ambp.373
Classification : 60B20
Mots clés: Random lozenge tilings, Universal edge fluctuations, Steepest descent
@article{AMBP_2018__25_1_75_0,
     author = {Erik Duse and Anthony Metcalfe},
     title = {Universal edge fluctuations of discrete interlaced particle systems},
     journal = {Annales Math\'ematiques Blaise Pascal},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {25},
     number = {1},
     year = {2018},
     pages = {75-197},
     doi = {10.5802/ambp.373},
     language = {en},
     url = {ambp.centre-mersenne.org/item/AMBP_2018__25_1_75_0/}
}
Duse, Erik; Metcalfe, Anthony. Universal edge fluctuations of discrete interlaced particle systems. Annales Mathématiques Blaise Pascal, Tome 25 (2018) no. 1, pp. 75-197. doi : 10.5802/ambp.373. https://ambp.centre-mersenne.org/item/AMBP_2018__25_1_75_0/

[1] Zhidong Bai; Jack W. Silverstein Spectral Analysis of Large Dimensional Random Matrices, Springer Series in Statistics, Springer, New York, 2010 | Zbl 1301.60002

[2] Alexei Borodin; Jeffrey Kuan Asymptotics of Plancherel measures for the infinite-dimensional unitary group, Adv. Math., Tome 219 (2008) no. 3, pp. 894-931 | Zbl 1153.60058

[3] Alexey Bufetov; Knizel Knizel Asymptotics of random domino tilings of rectangular Aztec diamonds (2016) (https://arxiv.org/abs/1604.01491)

[4] Sunil Chhita; Kurt Johansson; Benjamin Young Asymptotic domino statistics in the Aztec diamond, Ann. Appl. Probab., Tome 25 (2015) no. 3, pp. 1232-1278 | Zbl 1329.60331

[5] Henry Cohn; Michael Larsen; James Propp The shape of a typical boxed plane partition, New York J. Math., Tome 4 (1998), pp. 137-165 | Zbl 0908.60083

[6] Manon Defosseux Orbit measures, random matrix theory and interlaced determinantal processes, Ann. Inst. Henri Poincaré, Probab. Stat., Tome 46 (2010) no. 1, pp. 209-249 | Zbl 1216.15024

[7] Erik Duse; Kurt Johansson; Anthony Metcalfe The Cusp-Airy Process, Electron. J. Probab., Tome 21 (2016), 57, 57, 50 pages | Zbl 1348.60008

[8] Erik Duse; Anthony Metcalfe Asymptotic geometry of discrete interlaced patterns: Part I, Int. J. Math., Tome 26 (2015) no. 11, 1550093, 1550093, 66 pages | Zbl 1359.60021

[9] Erik Duse; Anthony Metcalfe Asymptotic geometry of discrete interlaced patterns: Part II (2015) (https://arxiv.org/abs/1507.00467)

[10] Walid Hachem; Adrien Hardy; Jamal Najim Large Complex Correlated Wishart Matrices: Fluctuations and Asymptotic Independence at the Edges, Ann. Probab., Tome 44 (2016) no. 3, pp. 2264-2348 | Zbl 1346.15035

[11] Kurt Johansson Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Commun. Math. Phys., Tome 215 (2001), pp. 683-705 | Zbl 0978.15020

[12] Kurt Johansson Discrete polynuclear growth and determinantal processes, Commun. Math. Phys., Tome 242 (2003), pp. 277-329 | Zbl 1031.60084

[13] Kurt Johansson The arctic circle boundary and the Airy process, Ann. Probab., Tome 33 (2005) no. 1, pp. 1-30 | Zbl 1096.60039

[14] Kurt Johansson Random matrices and determinantal processes, Mathematical Statistical Physics, Session LXXXIII: Lecture Notes of the Les Houches Summer School, Elsevier, 2006, pp. 1-56 | Zbl 05723794

[15] Kurt Johansson; Eric J.G. Nordenstam Eigenvalues of GUE Minors, Electron. J. Probab., Tome 11 (2006), pp. 1342-1371 (erratum in ibid., 12:1048–1051, 2007) | Zbl 1127.60047

[16] Richard Kenyon; Andrei Okounkov Limit shapes and the complex Burgers equation, Acta Math., Tome 199 (2007) no. 2, pp. 263-302 | Zbl 1156.14029

[17] Richard Kenyon; Andrei Okounkov; Scott Sheffield Dimers and Amoebae, Ann. Math., Tome 163 (2006) no. 3, pp. 1019-1056 | Zbl 1154.82007

[18] Madan Lal Mehta Random Matrices, Pure and Applied Mathematics, Tome 142, Elsevier, 2004 | Zbl 1107.15019

[19] Anthony Metcalfe Universality properties of Gelfand-Tsetlin patterns, Probab. Theory Relat. Fields, Tome 155 (2013) no. 1-2, pp. 303-346 | Zbl 1271.60017

[20] James Murray Asymptotic Analysis, Applied Mathematical Sciences, Tome 48, Springer, New York, 1984 | Zbl 0529.41001

[21] Leonid Pastur; Mariya Shcherbina Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Stat. Phys., Tome 86 (1997), pp. 109-147 | Zbl 0916.15009

[22] Leonid Pastur; Mariya Shcherbina Eigenvalue Distribution of Large Random Matrices, Mathematical Surveys and Monographs, Tome 171, American Mathematical Society, 2011 | Zbl 1244.15002

[23] Leonid Petrov Asymptotics of random lozenge tilings via Gelfand-Tsetlin schemes, Probab. Theory Relat. Fields, Tome 160 (2014) no. 3-4, pp. 429-487 | Zbl 1315.60013

[24] Michael Prähofer; Herbert Spohn Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys., Tome 108 (2002) no. 5-6, pp. 1071-1106 | Zbl 1025.82010

[25] Craig A. Tracy; Harold Widom The Pearcey process, Commun. Math. Phys., Tome 263 (2006), pp. 381-400 | Zbl 1129.82031