Polynomiality of shifted Plancherel averages and content evaluations
Annales Mathématiques Blaise Pascal, Tome 24 (2017) no. 1, pp. 55-82.

La mesure de Plancherel décalée est une mesure de probabilité naturelle sur les partitions strictes. Nous démontrons une propriété de polynomialité pour les moyennes de mesures de Plancherel décalées. Comme application, nous donnons une nouvelle preuve de certaines formules d’évaluation des contenus obtenues par Han et Xiong très récemment. Nous utilisons, comme outil principal, les Q-fonctions de Schur factorielles.

The shifted Plancherel measure is a natural probability measure on strict partitions. We prove a polynomiality property for the averages of the shifted Plancherel measure. As an application, we give alternative proofs of some content evaluation formulas, obtained by Han and Xiong very recently. Our main tool is factorial Schur Q-functions.

Publié le : 2017-08-24
DOI : https://doi.org/10.5802/ambp.364
Classification : 05E05,  05A19,  60C05
Mots clés: partitions strictes, mesure de Plancherel, Q-fonction de Schur, contenu
@article{AMBP_2017__24_1_55_0,
     author = {Sho Matsumoto},
     title = {Polynomiality of shifted Plancherel averages and content evaluations},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {55--82},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {24},
     number = {1},
     year = {2017},
     doi = {10.5802/ambp.364},
     language = {en},
     url = {ambp.centre-mersenne.org/item/AMBP_2017__24_1_55_0/}
}
Sho Matsumoto. Polynomiality of shifted Plancherel averages and content evaluations. Annales Mathématiques Blaise Pascal, Tome 24 (2017) no. 1, pp. 55-82. doi : 10.5802/ambp.364. https://ambp.centre-mersenne.org/item/AMBP_2017__24_1_55_0/

[1] A.M. Borodin Multiplicative central measures on the Schur graph, J. Math. Sci., Volume 96 (1999) no. 5, pp. 3472-3477 | Article | Zbl 0938.43001

[2] Sylvie Corteel; Alain Goupil; Gilles Schaeffer Content evaluation and class symmetric functions, Adv. Math., Volume 188 (2004) no. 2, pp. 315-336 | Article | Zbl 1059.05104

[3] Maciej Dołȩga; Valentin Féray Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., Volume 165 (2016) no. 7, pp. 1193-1282 | Zbl 1338.60017

[4] Valentin Féray Stanley’s formula for characters of the symmetric group, Ann. Comb., Volume 13 (2010) no. 4, pp. 453-461 | Article | Zbl 1234.20014

[5] Valentin Féray On complete functions in Jucys–Murphy elements, Ann. Comb., Volume 16 (2012) no. 4, pp. 677-707 | Article | Zbl 1256.05252

[6] Shigeyuki Fujii; Hiroaki Kanno; Sanefumi Moriyama; Soichi Okada Instanton calculus and chiral one-point functions in supersymmetric gauge theories, Adv. Theor. Math. Phys., Volume 12 (2008) no. 6, pp. 1401-1428 | Article | Zbl 1151.81359

[7] Guo-Niu Han Some conjectures and open problems on partition hook lengths, Exp. Math., Volume 18 (2009) no. 1, pp. 97-106 | Article | Zbl 1167.05004

[8] Guo-Niu Han; Huan Xiong New hook-content formulas for strict partitions, DMTCS proc. BC (FPSAC 2016) (2016), pp. 635-646

[9] Peter N. Hoffman; John F. Humphreys Projective Representations of the Symmetric Groups. Q-Functions and Shifted Tableaux, Oxford Mathematical monographs, Clarendon Press, 1992, xiii+304 pages | Zbl 0777.20005

[10] Vladimir Ivanov Dimensions of skew-shifted Young diagrams and projective characters of the infinite symmetric group, J. Math. Sci., Volume 96 (1999) no. 5, pp. 3517-3530 | Article | Zbl 0960.20009

[11] Vladimir Ivanov Interpolation analogues of Schur Q-functions, J. Math. Sci., Volume 131 (2005) no. 2, pp. 5495-5507 | Article | Zbl 1073.05069

[12] Vladimir Ivanov; Sergei V. Kerov The algebra of conjugacy classes in symmetric groups and partial permutations, J. Math. Sci., Volume 107 (2001) no. 5, pp. 4212-4230 | Article | Zbl 0979.20002

[13] Vladimir Ivanov; Grigori Olshanski Kerov’s central limit theorem for the Plancherel measure on Young diagrams, Symmetric Functions 2001: Surveys of Developments and Perspectives (NATO Sci. Ser. II Math. Phys. Chem.) Volume 74 (2002), pp. 93-151 | Zbl 1016.05073

[14] Alain Lascoux; Jean-Yves Thibon Vertex operators and the class algebras of symmetric groups, J. Math. Sci., Volume 121 (2004) no. 3, pp. 2380-2392 | Article | Zbl 1078.20011

[15] Michel Lassalle Class expansion of some symmetric functions in Jucys–Murphy elements, J. Algebra, Volume 394 (2013), pp. 397-443 | Article | Zbl 1318.20011

[16] Ian Grant Macdonald Symmetric Functions and Hall Polynomials, Clarendon Press, 1995, x+475 pages | Zbl 0824.05059

[17] Sho Matsumoto Correlation functions of the shifted Schur measure, J. Math. Soc. Japan, Volume 57 (2005) no. 3, pp. 619-637 | Article | Zbl 1078.60010

[18] Sho Matsumoto Jucys–Murphy elements, orthogonal matrix integrals, and Jack measures, Ramanujan J., Volume 26 (2011) no. 1, pp. 69-107 | Article | Zbl 1233.05214

[19] Sho Matsumoto; Jonathan Novak Jucys–Murphy elements and unitary matrix integrals, Int. Math. Res. Not. (2013) no. 1, pp. 362-397 | Article | Zbl 1312.05143

[20] Maxim Nazarov Young’s symmetrizers for projective representations of the symmetric group, Adv. Math., Volume 127 (1997) no. 2, pp. 190-257 | Article | Zbl 0930.20011

[21] Grigori Olshanski Plancherel averages: Remarks on a paper by Stanley, Electron. J. Comb., Volume 17 (2010) no. 1 (#R43, 16 pages) | Zbl 1193.05161

[22] Greta Panova Polynomiality of some hook-length statistics, Ramanujan J., Volume 27 (2012) no. 3, pp. 349-356 | Article | Zbl 1244.05230

[23] Alexander N. Sergeev The Howe duality and the projective representations of symmetric groups, Representation Theory, Volume 3 (1999), pp. 416-434 | Article | Zbl 0999.17014

[24] Richard P. Stanley A conjectured combinatorial interpretation of the normalized irreducible character values of the symmetric group (2006) (https://arxiv.org/abs/math/0606467)

[25] Richard P. Stanley Some combinatorial properties of hook lengths, contents, and parts of partitions, Ramanujan J., Volume 23 (2010) no. 1-3, pp. 91-105 | Article | Zbl 1234.05234

[26] Jill Tysse; Weiqiang Wang The centers of spin symmetric group algebras and Catalan numbers, J. Algebr. Comb., Volume 29 (2009) no. 2, pp. 175-193 | Article | Zbl 1200.20011

[27] Anatoli Moiseevich Vershik; Alexander N. Sergeev A new approach to the representation theory of the symmetric groups IV. 2 -graded groups and algebras; projective representations of the group S n , Mosc. Math. J., Volume 8 (2008) no. 4, pp. 813-842 | Zbl 1196.20017