Polynomiality of shifted Plancherel averages and content evaluations
Annales mathématiques Blaise Pascal, Volume 24 (2017) no. 1, pp. 55-82.

The shifted Plancherel measure is a natural probability measure on strict partitions. We prove a polynomiality property for the averages of the shifted Plancherel measure. As an application, we give alternative proofs of some content evaluation formulas, obtained by Han and Xiong very recently. Our main tool is factorial Schur Q-functions.

La mesure de Plancherel décalée est une mesure de probabilité naturelle sur les partitions strictes. Nous démontrons une propriété de polynomialité pour les moyennes de mesures de Plancherel décalées. Comme application, nous donnons une nouvelle preuve de certaines formules d’évaluation des contenus obtenues par Han et Xiong très récemment. Nous utilisons, comme outil principal, les Q-fonctions de Schur factorielles.

Published online:
DOI: 10.5802/ambp.364
Classification: 05E05,  05A19,  60C05
Keywords: strict partition, Plancherel measure, Schur Q-function, content
Sho Matsumoto 1

1 Graduate School of Science and Engineering Kagoshima University 1-21-35, Korimoto Kagoshima-city, Kagoshima, Japan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AMBP_2017__24_1_55_0,
     author = {Sho Matsumoto},
     title = {Polynomiality of shifted {Plancherel} averages and content evaluations},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {55--82},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {24},
     number = {1},
     year = {2017},
     doi = {10.5802/ambp.364},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.364/}
}
TY  - JOUR
AU  - Sho Matsumoto
TI  - Polynomiality of shifted Plancherel averages and content evaluations
JO  - Annales mathématiques Blaise Pascal
PY  - 2017
DA  - 2017///
SP  - 55
EP  - 82
VL  - 24
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.364/
UR  - https://doi.org/10.5802/ambp.364
DO  - 10.5802/ambp.364
LA  - en
ID  - AMBP_2017__24_1_55_0
ER  - 
%0 Journal Article
%A Sho Matsumoto
%T Polynomiality of shifted Plancherel averages and content evaluations
%J Annales mathématiques Blaise Pascal
%D 2017
%P 55-82
%V 24
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.364
%R 10.5802/ambp.364
%G en
%F AMBP_2017__24_1_55_0
Sho Matsumoto. Polynomiality of shifted Plancherel averages and content evaluations. Annales mathématiques Blaise Pascal, Volume 24 (2017) no. 1, pp. 55-82. doi : 10.5802/ambp.364. https://ambp.centre-mersenne.org/articles/10.5802/ambp.364/

[1] A.M. Borodin Multiplicative central measures on the Schur graph, J. Math. Sci., Volume 96 (1999) no. 5, pp. 3472-3477 | DOI | Zbl

[2] Sylvie Corteel; Alain Goupil; Gilles Schaeffer Content evaluation and class symmetric functions, Adv. Math., Volume 188 (2004) no. 2, pp. 315-336 | DOI | Zbl

[3] Maciej Dołȩga; Valentin Féray Gaussian fluctuations of Young diagrams and structure constants of Jack characters, Duke Math. J., Volume 165 (2016) no. 7, pp. 1193-1282 | Zbl

[4] Valentin Féray Stanley’s formula for characters of the symmetric group, Ann. Comb., Volume 13 (2010) no. 4, pp. 453-461 | DOI | Zbl

[5] Valentin Féray On complete functions in Jucys–Murphy elements, Ann. Comb., Volume 16 (2012) no. 4, pp. 677-707 | DOI | Zbl

[6] Shigeyuki Fujii; Hiroaki Kanno; Sanefumi Moriyama; Soichi Okada Instanton calculus and chiral one-point functions in supersymmetric gauge theories, Adv. Theor. Math. Phys., Volume 12 (2008) no. 6, pp. 1401-1428 | DOI | Zbl

[7] Guo-Niu Han Some conjectures and open problems on partition hook lengths, Exp. Math., Volume 18 (2009) no. 1, pp. 97-106 | DOI | Zbl

[8] Guo-Niu Han; Huan Xiong New hook-content formulas for strict partitions, DMTCS proc. BC (FPSAC 2016) (2016), pp. 635-646

[9] Peter N. Hoffman; John F. Humphreys Projective Representations of the Symmetric Groups. Q-Functions and Shifted Tableaux, Oxford Mathematical monographs, Clarendon Press, 1992, xiii+304 pages | Zbl

[10] Vladimir Ivanov Dimensions of skew-shifted Young diagrams and projective characters of the infinite symmetric group, J. Math. Sci., Volume 96 (1999) no. 5, pp. 3517-3530 | DOI | Zbl

[11] Vladimir Ivanov Interpolation analogues of Schur Q-functions, J. Math. Sci., Volume 131 (2005) no. 2, pp. 5495-5507 | DOI | Zbl

[12] Vladimir Ivanov; Sergei V. Kerov The algebra of conjugacy classes in symmetric groups and partial permutations, J. Math. Sci., Volume 107 (2001) no. 5, pp. 4212-4230 | DOI | Zbl

[13] Vladimir Ivanov; Grigori Olshanski Kerov’s central limit theorem for the Plancherel measure on Young diagrams, Symmetric Functions 2001: Surveys of Developments and Perspectives (NATO Sci. Ser. II Math. Phys. Chem.), Volume 74 (2002), pp. 93-151 | Zbl

[14] Alain Lascoux; Jean-Yves Thibon Vertex operators and the class algebras of symmetric groups, J. Math. Sci., Volume 121 (2004) no. 3, pp. 2380-2392 | DOI | Zbl

[15] Michel Lassalle Class expansion of some symmetric functions in Jucys–Murphy elements, J. Algebra, Volume 394 (2013), pp. 397-443 | DOI | Zbl

[16] Ian Grant Macdonald Symmetric Functions and Hall Polynomials, Clarendon Press, 1995, x+475 pages | Zbl

[17] Sho Matsumoto Correlation functions of the shifted Schur measure, J. Math. Soc. Japan, Volume 57 (2005) no. 3, pp. 619-637 | DOI | Zbl

[18] Sho Matsumoto Jucys–Murphy elements, orthogonal matrix integrals, and Jack measures, Ramanujan J., Volume 26 (2011) no. 1, pp. 69-107 | DOI | Zbl

[19] Sho Matsumoto; Jonathan Novak Jucys–Murphy elements and unitary matrix integrals, Int. Math. Res. Not. (2013) no. 1, pp. 362-397 | DOI | Zbl

[20] Maxim Nazarov Young’s symmetrizers for projective representations of the symmetric group, Adv. Math., Volume 127 (1997) no. 2, pp. 190-257 | DOI | Zbl

[21] Grigori Olshanski Plancherel averages: Remarks on a paper by Stanley, Electron. J. Comb., Volume 17 (2010) no. 1 (#R43, 16 pages) | Zbl

[22] Greta Panova Polynomiality of some hook-length statistics, Ramanujan J., Volume 27 (2012) no. 3, pp. 349-356 | DOI | Zbl

[23] Alexander N. Sergeev The Howe duality and the projective representations of symmetric groups, Representation Theory, Volume 3 (1999), pp. 416-434 | DOI | Zbl

[24] Richard P. Stanley A conjectured combinatorial interpretation of the normalized irreducible character values of the symmetric group (2006) (https://arxiv.org/abs/math/0606467)

[25] Richard P. Stanley Some combinatorial properties of hook lengths, contents, and parts of partitions, Ramanujan J., Volume 23 (2010) no. 1-3, pp. 91-105 | DOI | Zbl

[26] Jill Tysse; Weiqiang Wang The centers of spin symmetric group algebras and Catalan numbers, J. Algebr. Comb., Volume 29 (2009) no. 2, pp. 175-193 | DOI | Zbl

[27] Anatoli Moiseevich Vershik; Alexander N. Sergeev A new approach to the representation theory of the symmetric groups IV. 2 -graded groups and algebras; projective representations of the group S n , Mosc. Math. J., Volume 8 (2008) no. 4, pp. 813-842 | Zbl

Cited by Sources: