Properties of the so called -complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space of all continuous functions, from a zero-dimensional topological space to a non-Archimedean locally convex space , equipped with the topology of uniform convergence on the compact subsets of to be polarly barrelled or polarly quasi-barrelled.
Mots clés : Non-Archimedean fields, zero-dimensional spaces, locally convex spaces
Athanasios Katsaras 1
@article{AMBP_2008__15_1_109_0, author = {Athanasios Katsaras}, title = {P-adic {Spaces} of {Continuous} {Functions} {I}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {109--133}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {1}, year = {2008}, doi = {10.5802/ambp.242}, mrnumber = {2418016}, zbl = {1158.46050}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.242/} }
TY - JOUR AU - Athanasios Katsaras TI - P-adic Spaces of Continuous Functions I JO - Annales mathématiques Blaise Pascal PY - 2008 SP - 109 EP - 133 VL - 15 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.242/ DO - 10.5802/ambp.242 LA - en ID - AMBP_2008__15_1_109_0 ER -
%0 Journal Article %A Athanasios Katsaras %T P-adic Spaces of Continuous Functions I %J Annales mathématiques Blaise Pascal %D 2008 %P 109-133 %V 15 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.242/ %R 10.5802/ambp.242 %G en %F AMBP_2008__15_1_109_0
Athanasios Katsaras. P-adic Spaces of Continuous Functions I. Annales mathématiques Blaise Pascal, Tome 15 (2008) no. 1, pp. 109-133. doi : 10.5802/ambp.242. https://ambp.centre-mersenne.org/articles/10.5802/ambp.242/
[1] Zero-dimensional pseudocompact and ultraparacompact spaces, -adic functional analysis (Nijmegen, 1996) (Lecture Notes in Pure and Appl. Math.), Volume 192, Dekker, New York, 1997, pp. 11-17 | MR | Zbl
[2] On the dual space for the strict topology and the space in function space, Ultrametric functional analysis (Contemp. Math.), Volume 384, Amer. Math. Soc., Providence, RI, 2005, pp. 15-37 | MR | Zbl
[3] Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc., Volume 204 (1975), pp. 91-112 | DOI | MR | Zbl
[4] The strict topology in non-Archimedean vector-valued function spaces, Nederl. Akad. Wetensch. Indag. Math., Volume 46 (1984) no. 2, pp. 189-201 | MR | Zbl
[5] Bornological spaces of non-Archimedean valued functions, Nederl. Akad. Wetensch. Indag. Math., Volume 49 (1987) no. 1, pp. 41-50 | MR | Zbl
[6] On the strict topology in non-Archimedean spaces of continuous functions, Glas. Mat. Ser. III, Volume 35(55) (2000) no. 2, pp. 283-305 | MR | Zbl
[7] Separable measures and strict topologies on spaces of non-Archimedean valued functions, Bull. Belg. Math. Soc. Simon Stevin, Volume 9 (2002) no. suppl., pp. 117-139 | MR | Zbl
[8] Locally convex spaces over nonspherically complete valued fields. I, II, Bull. Soc. Math. Belg. Sér. B, Volume 38 (1986) no. 2, p. 187-207, 208–224 | MR | Zbl
[9] Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker Inc., New York, 1978 | MR | Zbl
Cité par Sources :