In this paper we consider the modified wave equation associated with a class of radial Laplacians generalizing the radial part of the Laplace-Beltrami operator on hyperbolic spaces or Damek-Ricci spaces. We show that the Huygens’ principle and the equipartition of energy hold if the inverse of the Harish-Chandra -function is a polynomial and that these two properties hold asymptotically otherwise. Similar results were established previously by Branson, Olafsson and Schlichtkrull in the case of noncompact symmetric spaces.
@article{AMBP_2005__12_1_147_0, author = {Jamel El Kamel and Chokri Yacoub}, title = {Huygens{\textquoteright} principle and equipartition of energy for the modified wave equation associated to a generalized radial {Laplacian}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {147--160}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {12}, number = {1}, year = {2005}, doi = {10.5802/ambp.199}, mrnumber = {2126445}, zbl = {1088.35036}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/} }
TY - JOUR AU - Jamel El Kamel AU - Chokri Yacoub TI - Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian JO - Annales mathématiques Blaise Pascal PY - 2005 SP - 147 EP - 160 VL - 12 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/ DO - 10.5802/ambp.199 LA - en ID - AMBP_2005__12_1_147_0 ER -
%0 Journal Article %A Jamel El Kamel %A Chokri Yacoub %T Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian %J Annales mathématiques Blaise Pascal %D 2005 %P 147-160 %V 12 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/ %R 10.5802/ambp.199 %G en %F AMBP_2005__12_1_147_0
Jamel El Kamel; Chokri Yacoub. Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 147-160. doi : 10.5802/ambp.199. https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/
[1] Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa, Volume XXIII (1996), pp. 643-679 | Numdam | MR | Zbl
[2] Fourier transforms of Schwartz functions on Chébli-Triméche hypergroups, Mh. Math., Volume 125 (1998), pp. 89-109 | DOI | MR | Zbl
[3] Huygens’ principle in Riemannian symmetric spaces, Math. Ann., Volume 301 (1995), pp. 445-462 | DOI | Zbl
[4] Equipartition of energy for waves in symmetric spaces, J. Funct. Anal., Volume 97 (1991), pp. 403-416 | DOI | MR | Zbl
[5] Eventual partition of conserved quantities in wave motion, J. Math. Anal. Appl., Volume 96 (1983), pp. 54-62 | DOI | MR | Zbl
[6] Théorème de Paley-Wiener associé à un opérateur singulier sur , J. Math. Pures Appl., Volume 58 (1979), pp. 1-19 | MR | Zbl
[7] Equipartition of energy in wave motion, J. Math. Anal. Appl., Volume 32 (1970), pp. 386-391 | DOI | MR | Zbl
[8] Huygens’ principle for wave equation on symmetric spaces, J. Funct. Anal., Volume 107 (1992), pp. 279-288 | DOI | Zbl
[9] Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions : Group theoretical aspects and applications, Reidel, 1984, pp. 1-85 | MR | Zbl
[10] Scattering theory, Academic Press, New York, 1967 | MR | Zbl
[11] Translation representations for the solution of the non-euclidean wave equation, Comm. Pure Appl. Math., Volume 32 (1979), pp. 617-667 | DOI | MR | Zbl
[12] Wave propagation on Riemannian symmetric spaces, J. Funct. Anal., Volume 107 (1992), pp. 270-278 | DOI | MR | Zbl
[13] Transformation intégrale de Weyl et thóréme de Paley-Wiener associés à un opérateur différentiel singulier sur , J. Math. Pures. Appl., Volume 60 (1981), pp. 51-98 | MR | Zbl
[14] Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comp. Harm. Anal., Volume 4 (1997), pp. 97-112 | DOI | MR | Zbl
[15]
, 1994 (Thèse, Université Paris-Sud)Cité par Sources :