Notes on prequantization of moduli of -bundles with connection on Riemann surfaces
Annales mathématiques Blaise Pascal, Tome 11 (2004) no. 2, pp. 181-186
Let be a smooth proper family of complex curves (i.e. family of Riemann surfaces), and a -bundle over with connection along the fibres . We construct a line bundle with connection on (also in cases when the connection on has regular singularities). We discuss the resulting mainly in the case . For instance when is the moduli space of line bundles with connection over a Riemann surface , , and is the Poincaré bundle over , we show that provides a prequantization of .
@article{AMBP_2004__11_2_181_0,
author = {Andres Rodriguez},
title = {Notes on prequantization of moduli of $G$-bundles with connection on {Riemann} surfaces},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {181--186},
year = {2004},
publisher = {Annales math\'ematiques Blaise Pascal},
volume = {11},
number = {2},
doi = {10.5802/ambp.191},
mrnumber = {2109606},
zbl = {1078.53095},
language = {en},
url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.191/}
}
TY - JOUR AU - Andres Rodriguez TI - Notes on prequantization of moduli of $G$-bundles with connection on Riemann surfaces JO - Annales mathématiques Blaise Pascal PY - 2004 SP - 181 EP - 186 VL - 11 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.191/ DO - 10.5802/ambp.191 LA - en ID - AMBP_2004__11_2_181_0 ER -
%0 Journal Article %A Andres Rodriguez %T Notes on prequantization of moduli of $G$-bundles with connection on Riemann surfaces %J Annales mathématiques Blaise Pascal %D 2004 %P 181-186 %V 11 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.191/ %R 10.5802/ambp.191 %G en %F AMBP_2004__11_2_181_0
Andres Rodriguez. Notes on prequantization of moduli of $G$-bundles with connection on Riemann surfaces. Annales mathématiques Blaise Pascal, Tome 11 (2004) no. 2, pp. 181-186. doi: 10.5802/ambp.191
