On differences of self-adjoint semigroups
Annales mathématiques Blaise Pascal, Tome 3 (1996) no. 1, pp. 165-188.
@article{AMBP_1996__3_1_165_0,
     author = {Jan A. Van Casteren},
     title = {On differences of self-adjoint semigroups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {165--188},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {3},
     number = {1},
     year = {1996},
     zbl = {0857.47027},
     mrnumber = {1397331},
     language = {en},
     url = {https://ambp.centre-mersenne.org/item/AMBP_1996__3_1_165_0/}
}
TY  - JOUR
AU  - Jan A. Van Casteren
TI  - On differences of self-adjoint semigroups
JO  - Annales mathématiques Blaise Pascal
PY  - 1996
SP  - 165
EP  - 188
VL  - 3
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - https://ambp.centre-mersenne.org/item/AMBP_1996__3_1_165_0/
LA  - en
ID  - AMBP_1996__3_1_165_0
ER  - 
%0 Journal Article
%A Jan A. Van Casteren
%T On differences of self-adjoint semigroups
%J Annales mathématiques Blaise Pascal
%D 1996
%P 165-188
%V 3
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%U https://ambp.centre-mersenne.org/item/AMBP_1996__3_1_165_0/
%G en
%F AMBP_1996__3_1_165_0
Jan A. Van Casteren. On differences of self-adjoint semigroups. Annales mathématiques Blaise Pascal, Tome 3 (1996) no. 1, pp. 165-188. https://ambp.centre-mersenne.org/item/AMBP_1996__3_1_165_0/

1. M.Sh. Birmanand M.Z. Solomyak, Double Stieltjes operator integrals I, Problemy Mat. Fyz. 1 (1966), 33-67. | MR

2. M.Sh. Birmanand M.Z. Solomyak, Double Stieltjes operator integrals II, Problemy Mat. Fyz. 2 (1967), 26-60. | MR

3. M.Sh. Birmanand M.Z. Solomyak, Double Stieltjes operator integrals III, Problemy Mat. Fyz. 6 (1973), 27-53. | MR

4. M.Sh. Birmanand M.Z. Solomyak, Operator integration, perturbations, and commutators, Zap. Nauchn. sem. Leningrad, Otdel. Inst. Steklov (LOMI) 170 (1989), 34-66. | MR | Zbl

5. R.M. Blumenthal and R.K. Getoor, Markov processes and potential theory, Pure and Applied mathematics, vol. 29, Academic Press, New York, 1968, A series of monographs and textbooks. | MR | Zbl

6. E.B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. | MR | Zbl

7. M. Demuth and J.A. Van Casteren, On spectral theory for Feller generators, Reviews in Mathematical Physics 1, no. 4 (1989), 325-414. | MR | Zbl

8. M. Demuth and J.A. Van Casteren, Perturbations of generalized Schrödinger operators in stochastic spectral analysis, Schrödinger Operators, the quantum mechanical many-body problem, Proceedings Conference Aarhus, 1991, Springer-Verlag, Berlin, 1992, pp. 1-15. | MR | Zbl

9. M. Demuth and J.A. Van Casteren, Framework and results in stochastic spectral analysis, Operator Theory, Advances and Applications, vol. 70, Birkhäuser Verlag, Basel, 1994, pp. 123-132. | MR | Zbl

10. M. Demuth and J.A. Van Casteren, A Hilbert-Schmidt property of resolvent differences of singularly perturbed generalized Schrödinger semigroups (Han-sur-Lesse 1991), Evolution equations, control theory, and biomathematics, Lecture Notes in Pure and Appl. Math. vol. 155, Marcel Dekker, New York, 1994, pp. 117-144. | MR | Zbl

11. M. Demuth and J.A. Van Casteren, Stochastic spectral theory of Feller operators, book in preparation.

12. S.N. Ethier and T.G. Kurtz, Markov processes, Characterization and Convergence, Wiley Series in Probability and Statistics, John Wiley and Sons, New York, 1985. | MR | Zbl

13. M. Evans, N. Hastings and B. Peacock, Statistical distributions, A Wiley Interscience Publication, second edition, John Wiley and Sons, New York, 1993. | MR | Zbl

14. Farforovskaya Yu.B., On the difference f(B) - f(A) for unbounded self-adjoint operators in perturbation theory, Zap. Nauchn. sem. Leningrad, Otdel. Inst. Steklov (LOMI) 107 (1982), 169-177, 232. | MR | Zbl

15. Farforovskaya Yu.B. , Functions of operators and their commutators in perturbation theory, Functional analysis and operator theory, Banach Center Publications, vol. 30, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1994, Papers from the thirty-ninth Semester in Warsaw, March 2 - May 30, 1992, J. Zemánek (editor). | MR | Zbl

16. J. Gohberg and M. Krein, Theory and applications of Volterra operators in Hilbert space, Translations of Mathematical Monographs, vol. 24, Amer. Math. Soc., Providence R.I., 1970. | MR | Zbl

17. V.V. Peller, Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and partial differential equations, Lecture Notes in Mathematics, vol. 122, Marcel Dekker, New York, 1990. | MR | Zbl

18. B. Simon, Functional integration and quantum physics, Academic Press, New York, 1979. | MR | Zbl

19. B. Simon, Schrödinger semigroups, Bull. (New Series) Amer. Math. Soc. 7 no. 3 (1982), 447-526. | MR | Zbl

20. B. Simon, Erratum: Schrödinger semigroups, Bull. (New Series) Amer. Math. Soc. 11 (1984), 426. | MR

21. J.A. Van Casteren, Generators of strongly continuous semigroups, Research Notes in Mathematics, vol. 115, Pitman, London, 1985. | Zbl

22. J.A. Van Casteren, Cauchy semigroups and wave operators, Warwick Preprints 64/1995 (1995).

11. M. Demuth and J.A. Van Casteren, Stochastic spectral theory of Feller operators, book in preparation.

23. D.R. Yafaev, Mathematical Scattering Theory: general theory, Translations of Mathematical Monographs, vol. 105, Amer. Math. Soc., 1992. | MR | Zbl

24. K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1980. | MR | Zbl