@article{AMBP_1995__2_1_131_0, author = {Lucien van Hamme}, title = {The $p$-adic $Z$-transform}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {131--146}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {2}, number = {1}, year = {1995}, zbl = {0844.11074}, mrnumber = {1342810}, language = {en}, url = {https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_131_0/} }
TY - JOUR AU - Lucien van Hamme TI - The $p$-adic $Z$-transform JO - Annales mathématiques Blaise Pascal PY - 1995 SP - 131 EP - 146 VL - 2 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_131_0/ LA - en ID - AMBP_1995__2_1_131_0 ER -
%0 Journal Article %A Lucien van Hamme %T The $p$-adic $Z$-transform %J Annales mathématiques Blaise Pascal %D 1995 %P 131-146 %V 2 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_131_0/ %G en %F AMBP_1995__2_1_131_0
Lucien van Hamme. The $p$-adic $Z$-transform. Annales mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 131-146. https://ambp.centre-mersenne.org/item/AMBP_1995__2_1_131_0/
[1] Local Fields. Cambridge University Press, 1986. | MR | Zbl
:[2] Ultrametric Calculus. Cambridge University Press, 1984. | MR | Zbl
:[3] p-Adic Analysis : A Short Course on Recent Work. Cambridge University Press, 1980. | MR | Zbl
:[4] Fonctions zêta p-adiques des corps de nombres abéliens réels. Acta Arithmetica, vol 20 (1972) p. 355-385. | MR | Zbl
- :[5] Three generalizations of Mahler's expansion for continuous functions on Zp. in "p-adic analysis" - Lecture Notes on Mathematics vol 1454 (1990) p. 356-361, Springer Verlag. | MR | Zbl
:[6] Continuous operators which commute with translations on the space of continuous functions on Zp. in "p-adic Functional Analysis" J. Bayod, N. De Grande-De Kimpe, J. Martinez - Maurica p. 75-88, Marcel Dekker, New York (1992). | MR | Zbl
: