@article{AMBP_1994__1_2_85_0, author = {Raffaele Scapellato and Libero Verardi}, title = {Bases of certain finite groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {85--93}, publisher = {Universit\'e Blaise Pascal, D\'epartement de math\'ematiques}, address = {63177 Les C\'ezeaux, Aubi\`ere}, volume = {1}, number = {2}, year = {1994}, zbl = {0831.20039}, mrnumber = {1321678}, language = {en}, url = {https://ambp.centre-mersenne.org/item/AMBP_1994__1_2_85_0/} }
TY - JOUR AU - Raffaele Scapellato AU - Libero Verardi TI - Bases of certain finite groups JO - Annales mathématiques Blaise Pascal PY - 1994 SP - 85 EP - 93 VL - 1 IS - 2 PB - Université Blaise Pascal, Département de mathématiques PP - 63177 Les Cézeaux, Aubière UR - https://ambp.centre-mersenne.org/item/AMBP_1994__1_2_85_0/ LA - en ID - AMBP_1994__1_2_85_0 ER -
%0 Journal Article %A Raffaele Scapellato %A Libero Verardi %T Bases of certain finite groups %J Annales mathématiques Blaise Pascal %D 1994 %P 85-93 %V 1 %N 2 %I Université Blaise Pascal, Département de mathématiques %C 63177 Les Cézeaux, Aubière %U https://ambp.centre-mersenne.org/item/AMBP_1994__1_2_85_0/ %G en %F AMBP_1994__1_2_85_0
Raffaele Scapellato; Libero Verardi. Bases of certain finite groups. Annales mathématiques Blaise Pascal, Volume 1 (1994) no. 2, pp. 85-93. https://ambp.centre-mersenne.org/item/AMBP_1994__1_2_85_0/
[1] Une classe particulière de matroïdes parfaits, Ann. Discrete Math., 8 (1980), 229-232. | MR | Zbl
,[2] 2-generation of finite simple groups and some related topics, in: Generators and relations in groups and geometries. Barlotti et al. Kluwer Acad. Publ., Amsterdam 1991, pp.195-232. | MR | Zbl
and ,[3] Topological graph theory, Wiley-Interscience. New York, 1987. | MR | Zbl
and .[4] The connectivity of hierarchical Cayley digraphs, Discrete Appl. Math. 37/38 (1992), 275-280. | MR | Zbl
, and ,[5] Basis properties for inverse semigroups, J. Algebra 50 (1978), 132-152. | MR | Zbl
,[6] Matroid theory, Oxford University Press, London 1992. | MR | Zbl
,[7] Groupes finis qui jouissent d'une propriété analogue au théorème des bases de Burnside, Boll. Un. Mat. It. (7), 5-A (1991), 187-194. | MR | Zbl
and ,[8] Sur les ensembles générateurs minimaux d'un groupe fini, Ann. Sci. Univ. B. Pascal', Clermont II, Ser. Mat. 26 (1991), 51-60. | Numdam | MR | Zbl
and ,[9] Group theory, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1964. | MR | Zbl
,