A marked surface is a compact oriented surface equipped with some pairwise disjoint arcs embedded in its boundary. In this paper, we extend the notion of character varieties to marked surfaces, in such a way that they have a nice behaviour for the operation of gluing two boundary arcs together. These stated character varieties are affine Poisson varieties which coincide with the Culler–Shalen character varieties when the surface is unmarked and are closely related to the Fock–Rosly and Alekseev–Kosmann–Malkin–Meinrenken constructions in the marked case. These Poisson varieties are the classical moduli spaces underlying stated skein algebras and share similar properties. In particular, stated character varieties admit triangular decompositions, associated to triangulations of the surface. We identify the Zariski tangent spaces of these varieties with some twisted groupoid cohomological groups and provide a generalization of Goldman’s formula for the Poisson bracket of curve functions in terms of intersection form in homology.
Keywords: Character varieties, stated skein algebras, TQFTs.
Julien Korinman  1
CC-BY 4.0
@article{AMBP_2025__32_2_281_0,
author = {Julien Korinman},
title = {Triangular decomposition of character varieties},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {281--356},
year = {2025},
publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
volume = {32},
number = {2},
doi = {10.5802/ambp.439},
language = {en},
url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.439/}
}
TY - JOUR AU - Julien Korinman TI - Triangular decomposition of character varieties JO - Annales mathématiques Blaise Pascal PY - 2025 SP - 281 EP - 356 VL - 32 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.439/ DO - 10.5802/ambp.439 LA - en ID - AMBP_2025__32_2_281_0 ER -
%0 Journal Article %A Julien Korinman %T Triangular decomposition of character varieties %J Annales mathématiques Blaise Pascal %D 2025 %P 281-356 %V 32 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.439/ %R 10.5802/ambp.439 %G en %F AMBP_2025__32_2_281_0
Julien Korinman. Triangular decomposition of character varieties. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 2, pp. 281-356. doi: 10.5802/ambp.439
[1] Combinatorial quantization of the Hamiltonian Chern–Simons theory I, Commun. Math. Phys., Volume 172 (1995) no. 2, pp. 317-358 | Zbl | DOI | MR
[2] Combinatorial quantization of the Hamiltonian Chern–Simons theory II, Commun. Math. Phys., Volume 174 (1996) no. 3, pp. 561-604 | DOI | Zbl
[3] Quasi-Poisson manifolds, Can. J. Math., Volume 54 (2002), pp. 3-29 | DOI | Zbl | MR
[4] Symplectic structures associated to Lie-Poisson groups, Commun. Math. Phys., Volume 162 (1994) no. 1, pp. 147-173 | DOI | Zbl | MR
[5] Symplectic structure of the moduli space of flat connection on a Riemann surface, Commun. Math. Phys., Volume 169 (1995), pp. 99-119 | DOI | Zbl | MR
[6] Representation theory of Chern–Simons observables, Duke Math. J., Volume 85 (1996) no. 2, pp. 447-510 | Zbl | MR
[7] The Yang–Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Ser. A, Volume 308 (1983) no. 1505, pp. 523-615 | DOI | MR | Zbl
[8] Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 488, Kluwer Academic Publishers, 1997, pp. 1-48 | Zbl
[9] Geometric quantization of Chern–Simons gauge theory, J. Differ. Geom., Volume 33 (1991) no. 3, pp. 787-902 | MR | Zbl
[10] Unrestricted quantum moduli algebras, I: the case of punctured spheres, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), 25, 78 pages | Zbl | MR
[11] Integrating quantum groups over surfaces, J. Topol., Volume 11 (2018) no. 4, pp. 873-916 | Zbl | MR
[12] Symplectic manifolds and isomonodromic deformations, Adv. Math., Volume 163 (2001), pp. 137-205 | Zbl | DOI | MR
[13] Quantum traces for representations of surface groups in , Geom. Topol., Volume 15 (2011), pp. 1569-1615 | DOI | Zbl | MR
[14] Representations of Finitely Presented Groups, Contemporary Mathematics, 187, American Mathematical Society, 1995 | Zbl | MR
[15] Two-dimensional lattice gauge theory based on a quantum group, Commun. Math. Phys., Volume 170 (1995) no. 3, pp. 669-698 | DOI | Zbl | MR
[16] Link invariants and combinatorial quantization of Hamiltonian Chern–Simons theory, Commun. Math. Phys., Volume 181 (1996) no. 2, pp. 331-365 | Zbl | MR | DOI
[17] Rings of -characters and the Kauffman bracket skein module, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 521-542 | MR | DOI | Zbl
[18] A Guide to Quantum Groups, Cambridge University Press, 1995, 667 pages | MR | Zbl
[19] Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv., Volume 87 (2009) no. 2, pp. 409-431 | Zbl | MR | DOI
[20] Stated skein algebras of surfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 12, pp. 4063-4142 | MR | DOI | Zbl
[21] Varieties of group representations and splittings of -manifolds, Ann. Math., Volume 117 (1983) no. 2, pp. 109-146 | DOI
[22] Luna’s slice theorem and applications, Algebraic group actions and quotients (Jaroslaw A. Wisniewski, ed.), Hindawi Publishing Corporation, 2004, pp. 39-90 | HAL | Zbl
[23] On constant quasiclassical solutions of the Yang–Baxter quantum equation, Sov. Math., Dokl., Volume 28 (1983), pp. 667-671 | Zbl
[24] Holonomy and (stated) skein algebras in combinatorial quantization (2020) | arXiv
[25] Projective representations of mapping class groups in combinatorial quantization, Commun. Math. Phys., Volume 377 (2020) no. 1, pp. 161-198 | Zbl | DOI | MR
[26] Singularities of free group character varieties (2009) | arXiv
[27] Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix, Moscow Seminar in mathematical physics (Translations. Series 2. American Mathematical Society. Advances in the Mathematical Sciences), Volume 191, American Mathematical Society, 1999, pp. 67-86 | Zbl
[28] Representation varieties detect essential surfaces, Math. Res. Lett., Volume 25 (2018) no. 3, pp. 803-817 | Zbl | DOI | MR
[29] Almost-commuting variety, -modules, and Cherednik Algebras, IMRP, Int. Math. Res. Pap., Volume 2006 (2006) no. 2, 26439, 54 pages | Zbl | MR
[30] The symplectic nature of fundamental groups of surfaces, Adv. Math., Volume 54 (1984) no. 2, pp. 200-225 | Zbl | DOI
[31] Invariant functions on Lie groups and Hamiltonian flows of surface groups representations, Invent. Math., Volume 85 (1986), pp. 263-302 | DOI | Zbl | MR
[32] The finiteness conjecture for skein modules, Invent. Math., Volume 232 (2023) no. 1, pp. 301-363 | Zbl | DOI | MR
[33] Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J., Volume 89 (1997) no. 2, pp. 377-412 | Zbl | MR
[34] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl | DOI
[35] Algebraic topology, Cambridge University Press, 2002 | Zbl | MR
[36] Classification of semi-weight representations of reduced stated skein algebras (2023) | arXiv | Zbl
[37] Mapping class group representations derived from stated skein algebras, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), 64, 35 pages | Zbl | MR
[38] Finite presentations for stated skein algebras and lattice gauge field theory, Algebr. Geom. Topol., Volume 23 (2023) no. 3, pp. 1249-1302 | Zbl | DOI | MR
[39] The quantum trace map as a quantum non-abelianization, J. Knot Theory Ramifications, Volume 31 (2022) no. 6, 2250032, 49 pages | Zbl
[40] Classical shadows of stated skein representations at roots of unity, Algebr. Geom. Topol., Volume 24 (2024) no. 4, pp. 2091-2148 | Zbl | DOI | MR
[41] Lectures on representations of surface groups, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2014, vii+138 pages | Zbl | MR
[42] Poisson structures, Grundlehren der Mathematischen Wissenschaften, Springer, 2012, xxiv+461 pages | DOI | Zbl | MR
[43] Poisson geometry of character varieties relative to a surface with boundary, Trans. Am. Math. Soc., Volume 361 (2009) no. 5, pp. 2397-2429 | Zbl | DOI | MR
[44] Varieties of characters, Algebr. Represent. Theory, Volume 20 (2017) no. 5, pp. 1133-1141 | Zbl | DOI | MR
[45] Triangular decomposition of skein algebras, Quantum Topol., Volume 9 (2018) no. 3, pp. 591-632 | Zbl | MR
[46] Moduli spaces for quilted surfaces and Poisson structures, Doc. Math., Volume 20 (2015), pp. 1071-1135 | DOI | Zbl | MR
[47] Slices étalés, Bull. Soc. Math. Fr., Suppl., Mém., Volume 33 (1973), pp. 81-105 | Zbl | Numdam
[48] Geometry of representation spaces in , Strasbourg master class on geometry (IRMA Lectures in Mathematics and Theoretical Physics), Volume 18, European Mathematical Society, 2012, pp. 333-370 | Zbl | DOI
[49] Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not., Volume 2014 (2014) no. 1, pp. 1-64 | Zbl | DOI | MR
[50] Two-dimensional Yang–Mills theory and topological field theory, Proceedings of the International Congress of Mathematicians (S. D. Chatterji, ed.), Birkhäuser (1995), pp. 1292-1303 | Zbl | DOI
[51] The Fock–Rosly Poisson Structure as Defined by a Quasi-Triangular r-Matrix, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 13 (2017), 063, 13 pages | Zbl | MR
[52] The quasi-Poisson Goldman formula, J. Geom. Phys., Volume 74 (2013), pp. 1-17 | Zbl | MR
[53] A formal inverse to the Cayley–Hamilton Theorem, J. Algebra, Volume 107 (1987), pp. 63-74 | Zbl | DOI | MR
[54] On skein algebras and -character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | Zbl | DOI | MR
[55] Trace functionals on non-commutative deformations of moduli spaces of flat connections, Adv. Math., Volume 168 (2002) no. 2, pp. 133-192 | DOI | Zbl | MR
[56] Character Varieties, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5173-5208 | Zbl | DOI | MR
[57] G-Character varieties for and other not simply connected groups, J. Algebra, Volume 429 (2013), pp. 324-341 | Zbl | DOI | MR
[58] Generating sets for coordinate rings of character varieties, J. Pure Appl. Algebra, Volume 211 (2013) no. 11, pp. 2076-2087 | Zbl | DOI | MR
[59] Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math., Inst. Hautes Étud. Sci., Volume 80 (1994), pp. 5-79 | Numdam | DOI | Zbl
[60] Derived algebraic geometry and quantization deformation, Proceedings of the international congress of mathematicians (ICM 2014), KM Kyung Moon Sa, 2014, pp. 769-792 | Zbl | MR
[61] Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 24 (1991) no. 6, pp. 635-704 | Zbl | MR | Numdam | DOI
[62] Global geometry on moduli of local systems for surfaces with boundary, Compos. Math., Volume 156 (2020) no. 8, pp. 1517-1559 | Zbl | DOI | MR
[63] Topological quantum field theory, Commun. Math. Phys., Volume 117 (1988) no. 3, pp. 353-386 | MR | Zbl | DOI
[64] Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | MR | Zbl | DOI
Cité par Sources :
