Triangular decomposition of character varieties
Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 2, pp. 281-356

A marked surface is a compact oriented surface equipped with some pairwise disjoint arcs embedded in its boundary. In this paper, we extend the notion of character varieties to marked surfaces, in such a way that they have a nice behaviour for the operation of gluing two boundary arcs together. These stated character varieties are affine Poisson varieties which coincide with the Culler–Shalen character varieties when the surface is unmarked and are closely related to the Fock–Rosly and Alekseev–Kosmann–Malkin–Meinrenken constructions in the marked case. These Poisson varieties are the classical moduli spaces underlying stated skein algebras and share similar properties. In particular, stated character varieties admit triangular decompositions, associated to triangulations of the surface. We identify the Zariski tangent spaces of these varieties with some twisted groupoid cohomological groups and provide a generalization of Goldman’s formula for the Poisson bracket of curve functions in terms of intersection form in homology.

Publié le :
DOI : 10.5802/ambp.439
Classification : 14D20
Keywords: Character varieties, stated skein algebras, TQFTs.

Julien Korinman  1

1 Institut Montpelliérain Alexander Grothendieck, UMR 5149 Université de Montpellier, Place Eugéne Bataillon, 34090 Montpellier, FRANCE
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2025__32_2_281_0,
     author = {Julien Korinman},
     title = {Triangular decomposition of character varieties},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {281--356},
     year = {2025},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {32},
     number = {2},
     doi = {10.5802/ambp.439},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.439/}
}
TY  - JOUR
AU  - Julien Korinman
TI  - Triangular decomposition of character varieties
JO  - Annales mathématiques Blaise Pascal
PY  - 2025
SP  - 281
EP  - 356
VL  - 32
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.439/
DO  - 10.5802/ambp.439
LA  - en
ID  - AMBP_2025__32_2_281_0
ER  - 
%0 Journal Article
%A Julien Korinman
%T Triangular decomposition of character varieties
%J Annales mathématiques Blaise Pascal
%D 2025
%P 281-356
%V 32
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.439/
%R 10.5802/ambp.439
%G en
%F AMBP_2025__32_2_281_0
Julien Korinman. Triangular decomposition of character varieties. Annales mathématiques Blaise Pascal, Tome 32 (2025) no. 2, pp. 281-356. doi: 10.5802/ambp.439

[1] Anton Yu. Alekseev; Harald Grosse; Volker Schomerus Combinatorial quantization of the Hamiltonian Chern–Simons theory I, Commun. Math. Phys., Volume 172 (1995) no. 2, pp. 317-358 | Zbl | DOI | MR

[2] Anton Yu. Alekseev; Harald Grosse; Volker Schomerus Combinatorial quantization of the Hamiltonian Chern–Simons theory II, Commun. Math. Phys., Volume 174 (1996) no. 3, pp. 561-604 | DOI | Zbl

[3] Anton Yu. Alekseev; Yvette Kosmann-Schwarzbach; Eckhard Meinrenken Quasi-Poisson manifolds, Can. J. Math., Volume 54 (2002), pp. 3-29 | DOI | Zbl | MR

[4] Anton Yu. Alekseev; Anton Z. Malkin Symplectic structures associated to Lie-Poisson groups, Commun. Math. Phys., Volume 162 (1994) no. 1, pp. 147-173 | DOI | Zbl | MR

[5] Anton Yu. Alekseev; Anton Z. Malkin Symplectic structure of the moduli space of flat connection on a Riemann surface, Commun. Math. Phys., Volume 169 (1995), pp. 99-119 | DOI | Zbl | MR

[6] Anton Yu. Alekseev; Volker Schomerus Representation theory of Chern–Simons observables, Duke Math. J., Volume 85 (1996) no. 2, pp. 447-510 | Zbl | MR

[7] Michael F. Atiyah; Raoul Bott The Yang–Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond., Ser. A, Volume 308 (1983) no. 1505, pp. 523-615 | DOI | MR | Zbl

[8] Michèle Audin Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 488, Kluwer Academic Publishers, 1997, pp. 1-48 | Zbl

[9] Scott Axelrod; Steve Della Pietra; Edward Witten Geometric quantization of Chern–Simons gauge theory, J. Differ. Geom., Volume 33 (1991) no. 3, pp. 787-902 | MR | Zbl

[10] Stéphane Baseilhac; Philippe Roche Unrestricted quantum moduli algebras, I: the case of punctured spheres, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), 25, 78 pages | Zbl | MR

[11] David Ben-zvi; Adrien Brochier; David Jordan Integrating quantum groups over surfaces, J. Topol., Volume 11 (2018) no. 4, pp. 873-916 | Zbl | MR

[12] Philip Boalch Symplectic manifolds and isomonodromic deformations, Adv. Math., Volume 163 (2001), pp. 137-205 | Zbl | DOI | MR

[13] Francis Bonahon; Helen Wong Quantum traces for representations of surface groups in SL 2 (), Geom. Topol., Volume 15 (2011), pp. 1569-1615 | DOI | Zbl | MR

[14] Gregory W. Brumfield; Hugh M. Hilden SL(2) Representations of Finitely Presented Groups, Contemporary Mathematics, 187, American Mathematical Society, 1995 | Zbl | MR

[15] Eric Buffenoir; Philippe Roche Two-dimensional lattice gauge theory based on a quantum group, Commun. Math. Phys., Volume 170 (1995) no. 3, pp. 669-698 | DOI | Zbl | MR

[16] Eric Buffenoir; Philippe Roche Link invariants and combinatorial quantization of Hamiltonian Chern–Simons theory, Commun. Math. Phys., Volume 181 (1996) no. 2, pp. 331-365 | Zbl | MR | DOI

[17] Doug Bullock Rings of SL 2 ()-characters and the Kauffman bracket skein module, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 521-542 | MR | DOI | Zbl

[18] Vyjayanthi Chari; Andrew Pressley A Guide to Quantum Groups, Cambridge University Press, 1995, 667 pages | MR | Zbl

[19] Laurent Charles; Julien Marché Multicurves and regular functions on the representation variety of a surface in SU(2), Comment. Math. Helv., Volume 87 (2009) no. 2, pp. 409-431 | Zbl | MR | DOI

[20] Francesco Costantino; Thang T. Q. Lê Stated skein algebras of surfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 12, pp. 4063-4142 | MR | DOI | Zbl

[21] Marc Culler; Peter B. Shalen Varieties of group representations and splittings of 3-manifolds, Ann. Math., Volume 117 (1983) no. 2, pp. 109-146 | DOI

[22] Jean-Marc Drézet Luna’s slice theorem and applications, Algebraic group actions and quotients (Jaroslaw A. Wisniewski, ed.), Hindawi Publishing Corporation, 2004, pp. 39-90 | HAL | Zbl

[23] Vladimir G. Drinfelʼd On constant quasiclassical solutions of the Yang–Baxter quantum equation, Sov. Math., Dokl., Volume 28 (1983), pp. 667-671 | Zbl

[24] Matthieu Faitg Holonomy and (stated) skein algebras in combinatorial quantization (2020) | arXiv

[25] Matthieu Faitg Projective representations of mapping class groups in combinatorial quantization, Commun. Math. Phys., Volume 377 (2020) no. 1, pp. 161-198 | Zbl | DOI | MR

[26] Carlos Florentino; Sean Lawton Singularities of free group character varieties (2009) | arXiv

[27] Vladimir V. Fock; A. A. Rosly Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix, Moscow Seminar in mathematical physics (Translations. Series 2. American Mathematical Society. Advances in the Mathematical Sciences), Volume 191, American Mathematical Society, 1999, pp. 67-86 | Zbl

[28] Stefan Friedl; Takahiro Kitayama; Matthias Nagel Representation varieties detect essential surfaces, Math. Res. Lett., Volume 25 (2018) no. 3, pp. 803-817 | Zbl | DOI | MR

[29] Wee Liang Gan; Victor Ginzburg Almost-commuting variety, 𝒟-modules, and Cherednik Algebras, IMRP, Int. Math. Res. Pap., Volume 2006 (2006) no. 2, 26439, 54 pages | Zbl | MR

[30] William M. Goldman The symplectic nature of fundamental groups of surfaces, Adv. Math., Volume 54 (1984) no. 2, pp. 200-225 | Zbl | DOI

[31] William M. Goldman Invariant functions on Lie groups and Hamiltonian flows of surface groups representations, Invent. Math., Volume 85 (1986), pp. 263-302 | DOI | Zbl | MR

[32] Sam Gunningham; David Jordan; Pavel Safronov The finiteness conjecture for skein modules, Invent. Math., Volume 232 (2023) no. 1, pp. 301-363 | Zbl | DOI | MR

[33] Krishnamurthi Guruprasad; Johannes Huebschmann; Lisa Jeffrey; Alan Weinstein Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J., Volume 89 (1997) no. 2, pp. 377-412 | Zbl | MR

[34] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl | DOI

[35] Allen Hatcher Algebraic topology, Cambridge University Press, 2002 | Zbl | MR

[36] Hiroaki Karuo; Julien Korinman Classification of semi-weight representations of reduced stated skein algebras (2023) | arXiv | Zbl

[37] Julien Korinman Mapping class group representations derived from stated skein algebras, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), 64, 35 pages | Zbl | MR

[38] Julien Korinman Finite presentations for stated skein algebras and lattice gauge field theory, Algebr. Geom. Topol., Volume 23 (2023) no. 3, pp. 1249-1302 | Zbl | DOI | MR

[39] Julien Korinman; Alexandre Quesney The quantum trace map as a quantum non-abelianization, J. Knot Theory Ramifications, Volume 31 (2022) no. 6, 2250032, 49 pages | Zbl

[40] Julien Korinman; Alexandre Quesney Classical shadows of stated skein representations at roots of unity, Algebr. Geom. Topol., Volume 24 (2024) no. 4, pp. 2091-2148 | Zbl | DOI | MR

[41] François Labourie Lectures on representations of surface groups, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2014, vii+138 pages | Zbl | MR

[42] Camille Laurent-Gengoux; Anne Pichereau; Pol Vanhaecke Poisson structures, Grundlehren der Mathematischen Wissenschaften, Springer, 2012, xxiv+461 pages | DOI | Zbl | MR

[43] Sean Lawton Poisson geometry of SL(3,) character varieties relative to a surface with boundary, Trans. Am. Math. Soc., Volume 361 (2009) no. 5, pp. 2397-2429 | Zbl | DOI | MR

[44] Sean Lawton; Adam S. Sikora Varieties of characters, Algebr. Represent. Theory, Volume 20 (2017) no. 5, pp. 1133-1141 | Zbl | DOI | MR

[45] Thang T. Q. Lê Triangular decomposition of skein algebras, Quantum Topol., Volume 9 (2018) no. 3, pp. 591-632 | Zbl | MR

[46] David Li-Bland; Pavol Ševera Moduli spaces for quilted surfaces and Poisson structures, Doc. Math., Volume 20 (2015), pp. 1071-1135 | DOI | Zbl | MR

[47] Domingo Luna Slices étalés, Bull. Soc. Math. Fr., Suppl., Mém., Volume 33 (1973), pp. 81-105 | Zbl | Numdam

[48] Julien Marché Geometry of representation spaces in SU(2), Strasbourg master class on geometry (IRMA Lectures in Mathematics and Theoretical Physics), Volume 18, European Mathematical Society, 2012, pp. 333-370 | Zbl | DOI

[49] Gwénaël Massuyeau; Vladimir G. Turaev Quasi-Poisson structures on representation spaces of surfaces, Int. Math. Res. Not., Volume 2014 (2014) no. 1, pp. 1-64 | Zbl | DOI | MR

[50] Gregory Moore Two-dimensional Yang–Mills theory and topological field theory, Proceedings of the International Congress of Mathematicians (S. D. Chatterji, ed.), Birkhäuser (1995), pp. 1292-1303 | Zbl | DOI

[51] Victor Mouquin The Fock–Rosly Poisson Structure as Defined by a Quasi-Triangular r-Matrix, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 13 (2017), 063, 13 pages | Zbl | MR

[52] Xin Nie The quasi-Poisson Goldman formula, J. Geom. Phys., Volume 74 (2013), pp. 1-17 | Zbl | MR

[53] Claudio Procesi A formal inverse to the Cayley–Hamilton Theorem, J. Algebra, Volume 107 (1987), pp. 63-74 | Zbl | DOI | MR

[54] Józef H. Przytycki; Adam S. Sikora On skein algebras and SL 2 ()-character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | Zbl | DOI | MR

[55] Philippe Roche; András Szenes Trace functionals on non-commutative deformations of moduli spaces of flat connections, Adv. Math., Volume 168 (2002) no. 2, pp. 133-192 | DOI | Zbl | MR

[56] Adam S. Sikora Character Varieties, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5173-5208 | Zbl | DOI | MR

[57] Adam S. Sikora G-Character varieties for G=SO(n,C) and other not simply connected groups, J. Algebra, Volume 429 (2013), pp. 324-341 | Zbl | DOI | MR

[58] Adam S. Sikora Generating sets for coordinate rings of character varieties, J. Pure Appl. Algebra, Volume 211 (2013) no. 11, pp. 2076-2087 | Zbl | DOI | MR

[59] Carlos T. Simpson Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math., Inst. Hautes Étud. Sci., Volume 80 (1994), pp. 5-79 | Numdam | DOI | Zbl

[60] Bertrand Toën Derived algebraic geometry and quantization deformation, Proceedings of the international congress of mathematicians (ICM 2014), KM Kyung Moon Sa, 2014, pp. 769-792 | Zbl | MR

[61] Vladimir G. Turaev Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. Éc. Norm. Supér. (4), Volume 24 (1991) no. 6, pp. 635-704 | Zbl | MR | Numdam | DOI

[62] Junho Whang Global geometry on moduli of local systems for surfaces with boundary, Compos. Math., Volume 156 (2020) no. 8, pp. 1517-1559 | Zbl | DOI | MR

[63] Edward Witten Topological quantum field theory, Commun. Math. Phys., Volume 117 (1988) no. 3, pp. 353-386 | MR | Zbl | DOI

[64] Edward Witten Quantum field theory and the Jones polynomial, Commun. Math. Phys., Volume 121 (1989) no. 3, pp. 351-399 | MR | Zbl | DOI

Cité par Sources :