Null-controllability of cascade reaction-diffusion systems with odd coupling terms
Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 2, pp. 239-271.

In this paper, we consider a nonlinear system of two parabolic equations, with a distributed control in the first equation and an odd coupling term in the second one. We prove that the nonlinear system is locally null-controllable for any arbitrary small time. The main difficulty is that the linearized system is not null-controllable. To overcome this obstacle, we extend in a nonlinear setting the strategy introduced in [18] that consists in constructing odd controls for the linear heat equation. The proof relies on three main steps. First, we obtain from the classical L 2 parabolic Carleman estimate, conjugated with maximal regularity results, a weighted L p observability inequality for the nonhomogeneous heat equation. Secondly, we perform a duality argument, close to the well-known Hilbert Uniqueness Method in a reflexive Banach setting, to prove that the heat equation perturbed by a source term is null-controllable thanks to odd controls. Finally, the nonlinearity is handled with a Schauder fixed-point argument.

Publié le :
DOI : 10.5802/ambp.430
Classification : 35K45, 35K58, 93B05, 93C10
Mots-clés : Null-controllability, parabolic system, nonlinear coupling, Carleman estimate

Kevin Le Balc’h 1 ; Takéo Takahashi 2

1 Sorbonne Université, CNRS, Inria, Laboratoire Jacques-Louis Lions, Paris, France
2 Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2024__31_2_239_0,
     author = {Kevin Le Balc{\textquoteright}h and Tak\'eo Takahashi},
     title = {Null-controllability of cascade reaction-diffusion systems with odd coupling terms},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {239--271},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {31},
     number = {2},
     year = {2024},
     doi = {10.5802/ambp.430},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.430/}
}
TY  - JOUR
AU  - Kevin Le Balc’h
AU  - Takéo Takahashi
TI  - Null-controllability of cascade reaction-diffusion systems with odd coupling terms
JO  - Annales mathématiques Blaise Pascal
PY  - 2024
SP  - 239
EP  - 271
VL  - 31
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.430/
DO  - 10.5802/ambp.430
LA  - en
ID  - AMBP_2024__31_2_239_0
ER  - 
%0 Journal Article
%A Kevin Le Balc’h
%A Takéo Takahashi
%T Null-controllability of cascade reaction-diffusion systems with odd coupling terms
%J Annales mathématiques Blaise Pascal
%D 2024
%P 239-271
%V 31
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.430/
%R 10.5802/ambp.430
%G en
%F AMBP_2024__31_2_239_0
Kevin Le Balc’h; Takéo Takahashi. Null-controllability of cascade reaction-diffusion systems with odd coupling terms. Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 2, pp. 239-271. doi : 10.5802/ambp.430. https://ambp.centre-mersenne.org/articles/10.5802/ambp.430/

[1] Farid Ammar-Khodja; Assia Benabdallah; Cédric Dupaix Null-controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006) no. 2, pp. 928-943 | DOI | MR | Zbl

[2] Farid Ammar-Khodja; Assia Benabdallah; Cédric Dupaix; Manuel González-Burgos A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., Volume 1 (2009) no. 3, pp. 427-457 | DOI | MR | Zbl

[3] Farid Ammar-Khodja; Assia Benabdallah; Manuel González-Burgos; Luz de Teresa Recent results on the controllability of linear coupled parabolic problems: a survey, Math. Control Relat. Fields, Volume 1 (2011) no. 3, pp. 267-306 | DOI | MR | Zbl

[4] Sebastian Anita; Daniel Tataru Null controllability for the dissipative semilinear heat equation, Appl. Math. Optim., Volume 46 (2002) no. 2-3, pp. 97-105 (Special issue dedicated to the memory of Jacques-Louis Lions) | DOI | MR | Zbl

[5] Felipe Wallison Chaves-Silva; Sergio Guerrero A uniform controllability result for the Keller–Segel system, Asymptotic Anal., Volume 92 (2015) no. 3-4, pp. 313-338 | DOI | MR | Zbl

[6] Jean-Michel Coron Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007 | DOI | MR | Zbl

[7] Jean-Michel Coron; Sergio Guerrero; Lionel Rosier Null controllability of a parabolic system with a cubic coupling term, SIAM J. Control Optim., Volume 48 (2010) no. 8, pp. 5629-5653 | DOI | MR | Zbl

[8] Jean-Michel Coron; Jean-Philippe Guilleron Control of three heat equations coupled with two cubic nonlinearities, SIAM J. Control Optim., Volume 55 (2017) no. 2, pp. 989-1019 | DOI | MR | Zbl

[9] Luz de Teresa Insensitizing controls for a semilinear heat equation, Commun. Partial Differ. Equations, Volume 25 (2000) no. 1-2, pp. 39-72 | DOI | MR | Zbl

[10] Françoise Demengel; Gilbert Demengel Functional spaces for the theory of elliptic partial differential equations, Universitext, Springer; EDP Sciences, 2012 (Translated from the 2007 French original by Reinie Erné) | DOI | MR | Zbl

[11] Lawrence C. Evans Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010 | DOI | MR | Zbl

[12] Hector O. Fattorini; David L. Russell Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292 | DOI | MR | Zbl

[13] Enrique Fernández-Cara; Sergio Guerrero Global Carleman inequalities for parabolic systems and applications to controllability, SIAM J. Control Optim., Volume 45 (2006) no. 4, pp. 1399-1446 | DOI | MR | Zbl

[14] Enrique Fernández-Cara; Enrique Zuazua Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 583-616 | DOI | Numdam | MR | Zbl

[15] Andrei Fursikov; Oleg Imanuvilov Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1996 | MR | Zbl

[16] Manuel González-Burgos; Rosario Pérez-García Controllability results for some nonlinear coupled parabolic systems by one control force, Asymptotic Anal., Volume 46 (2006) no. 2, pp. 123-162 | DOI | MR | Zbl

[17] Olga A. Ladyženskaja; Vsevolod A. Solonnikov; Nina N. Uralceva Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968 (Translated from the Russian by S. Smith) | DOI | MR | Zbl

[18] Kévin Le Balc’h Null-controllability of two species reaction-diffusion system with nonlinear coupling: a new duality method, SIAM J. Control Optim., Volume 57 (2019) no. 4, pp. 2541-2573 | DOI | MR | Zbl

[19] Gilles Lebeau; Luc Robbiano Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 335-356 | DOI | MR | Zbl

[20] Yuning Liu; Takéo Takahashi; Marius Tucsnak Single input controllability of a simplified fluid-structure interaction model, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 1, pp. 20-42 | DOI | Numdam | MR | Zbl

[21] Jacques Simon Compact sets in the space L p (0,T;B), Ann. Mat. Pura Appl., Volume 146 (1987), pp. 65-96 | DOI | MR | Zbl

[22] Marius Tucsnak; George Weiss Observation and control for operator semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2009 | DOI | MR | Zbl

[23] Gensheng Wang; Liang Zhang Exact local controllability of a one-control reaction-diffusion system, J. Optim. Theory Appl., Volume 131 (2006) no. 3, pp. 453-467 | DOI | MR | Zbl

Cité par Sources :