Biharmonic Steklov operator on differential forms
[Opérateur de Steklov biharmonique sur les formes différentielles]
Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 2, pp. 189-237.

Nous introduisons le problème de Steklov biharmonique sur les formes différentielles en considérant des conditions de bord adaptées. Nous caractérisons sa plus petite valeur propre et établissons des propriétés élémentaires de son spectre. Nous obtenons des estimations diverses de la première valeur propre, dont certaines font intervenir des valeurs propres d’autres problèmes tels que ceux de Dirichlet, de Neumann, de Robin et de Steklov. Indépendamment, nous montrons de nouvelles inégalités reliant les valeurs propres de ces derniers problèmes.

We introduce the biharmonic Steklov problem on differential forms by considering suitable boundary conditions. We characterize its smallest eigenvalue and prove elementary properties of the spectrum. We obtain various estimates for the first eigenvalue, some of which involve eigenvalues of other problems such as the Dirichlet, Neumann, Robin and Steklov ones. Independently, new inequalities relating the eigenvalues of the latter problems are proved.

Publié le :
DOI : 10.5802/ambp.429
Classification : 53C21, 58J32, 58C40, 58J50
Keywords: Manifolds with boundary, Steklov operator, biharmonic boundary value problem, Robin boundary value problem, eigenvalue estimates
Mots-clés : Variétés à bord, opérateur de Steklov, problème à bord biharmonique, problème à bord de Robin, estimations de valeurs propres

Fida El Chami 1 ; Nicolas Ginoux 2 ; Georges Habib 3 ; Ola Makhoul 1

1 Lebanese University, Faculty of Sciences II, Department of Mathematics, P.O. Box 90656 Fanar-Matn Lebanon
2 Université de Lorraine, CNRS, IECL, 57000 Metz, France
3 Lebanese University, Faculty of Sciences II, Department of Mathematics, P.O. Box 90656 Fanar-Matn Lebanon Université de Lorraine, CNRS, IECL, 57000 Metz, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2024__31_2_189_0,
     author = {Fida El Chami and Nicolas Ginoux and Georges Habib and Ola Makhoul},
     title = {Biharmonic {Steklov} operator on differential forms},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {189--237},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {31},
     number = {2},
     year = {2024},
     doi = {10.5802/ambp.429},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.429/}
}
TY  - JOUR
AU  - Fida El Chami
AU  - Nicolas Ginoux
AU  - Georges Habib
AU  - Ola Makhoul
TI  - Biharmonic Steklov operator on differential forms
JO  - Annales mathématiques Blaise Pascal
PY  - 2024
SP  - 189
EP  - 237
VL  - 31
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.429/
DO  - 10.5802/ambp.429
LA  - en
ID  - AMBP_2024__31_2_189_0
ER  - 
%0 Journal Article
%A Fida El Chami
%A Nicolas Ginoux
%A Georges Habib
%A Ola Makhoul
%T Biharmonic Steklov operator on differential forms
%J Annales mathématiques Blaise Pascal
%D 2024
%P 189-237
%V 31
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.429/
%R 10.5802/ambp.429
%G en
%F AMBP_2024__31_2_189_0
Fida El Chami; Nicolas Ginoux; Georges Habib; Ola Makhoul. Biharmonic Steklov operator on differential forms. Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 2, pp. 189-237. doi : 10.5802/ambp.429. https://ambp.centre-mersenne.org/articles/10.5802/ambp.429/

[1] C. Anné Principe de Dirichlet pour les formes différentielles, Bull. Soc. Math. Fr., Volume 117 (1989) no. 4, pp. 445-450 | DOI | Numdam | MR | Zbl

[2] D. Bucur; A. Ferrero; F. Gazzola On the first eigenvalue of a fourth order Steklov problem, Calc. Var. Partial Differ. Equ., Volume 35 (2009) no. 1, pp. 103-131 | DOI | MR | Zbl

[3] G. Ciraolo; L. Vezzoni On Serrin’s overdetermined problem in space forms, Manuscr. Math., Volume 159 (2019) no. 3-4, pp. 445-452 | DOI | MR | Zbl

[4] F. El Chami; N. Ginoux; G. Habib New eigenvalue estimates involving Bessel functions, Publ. Mat., Barc., Volume 65 (2021) no. 2, pp. 681-726 | DOI | MR | Zbl

[5] L. C. Evans Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010 | Zbl

[6] A. Ferrero; F. Gazzola; T. Weth On a fourth order Steklov eigenvalue problem, Analysis (München), Volume 25 (2005) no. 4, pp. 315-332 | DOI | Zbl

[7] S. Gallot; D. Meyer Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl., Volume 54 (1975), pp. 259-284 | MR | Zbl

[8] F. Gazzola; H.-C. Grunau; G. Sweers Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, 1991, Springer, 2010 | DOI | MR | Zbl

[9] P. Guerini; A. Savo Eigenvalue and gap estimates for the Laplacian acting on p-forms, Trans. Am. Math. Soc., Volume 356 (2004) no. 1, pp. 319-344 | DOI | MR | Zbl

[10] A. Hassannezhad; A. Siffert A note on Kuttler–Sigillito’s inequalities, Ann. Math. Qué., Volume 44 (2020), pp. 125-147 | DOI | Zbl

[11] M. H. Karpukhin The Steklov Problem on Differential Forms, Can. J. Math., Volume 71 (2019) no. 2, pp. 417-435 | DOI | MR | Zbl

[12] A. Kasue Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary, J. Math. Soc. Japan, Volume 35 (1983), pp. 117-131 | DOI | MR | Zbl

[13] S. Kouzayha Estimations géométriques de fonctionnelles spectrales pour le laplacien avec condition de Robin au bord, Ph. D. Thesis, Université de Tours, Tours, France (2019)

[14] S. Kumaresan; J. Prajapat Serrin’s result for hyperbolic space and sphere, Duke Math. J., Volume 91 (1998) no. 1, pp. 17-28 | DOI | MR | Zbl

[15] J. R. Kuttler Remarks on a Stekloff eigenvalue problem, SIAM J. Numer. Anal., Volume 9 (1972), pp. 1-5 | DOI | MR | Zbl

[16] J. R. Kuttler; V. G. Sigillito Inequalities for membrane and Stekloff eigenvalues, J. Math. Anal. Appl., Volume 23 (1968), pp. 148-160 | DOI | MR | Zbl

[17] J.-L. Lions; E. Magenes Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et recherches mathématiques, 17, Dunod, 1968 | Zbl

[18] R. Molzon Symmetry and overdetermined boundary value problems, Forum Math., Volume 3 (1991) no. 2, pp. 143-156 | DOI | MR | Zbl

[19] L. E. Payne Some isoperimetric inequalities for harmonic functions, SIAM J. Math. Anal., Volume 1 (1970), pp. 354-359 | DOI | MR | Zbl

[20] S. Raulot; A. Savo A Reilly formula and eigenvalue estimates for differential forms, J. Geom. Anal., Volume 21 (2011) no. 3, pp. 620-640 | DOI | MR | Zbl

[21] S. Raulot; A. Savo On the first eigenvalue of the Dirichlet-to-Neumann operator on forms, J. Funct. Anal., Volume 262 (2012) no. 3, pp. 889-914 | DOI | MR | Zbl

[22] S. Raulot; A. Savo Sharp bounds for the first eigenvalue of a fourth-order Steklov problem, J. Geom. Anal., Volume 25 (2015) no. 3, pp. 1602-1619 | DOI | MR | Zbl

[23] G. Schwarz Hodge decomposition. A method for solving boundary value problems, Lecture Notes in Mathematics, 1607, Springer, 1995 | DOI | MR | Zbl

[24] J. Serrin A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 304-318 | DOI | MR | Zbl

[25] Q. Wang; C. Xia Sharp bounds for the first non-zero Stekloff eigenvalues, J. Funct. Anal., Volume 257 (2009) no. 8, pp. 2635-2644 | DOI | MR | Zbl

[26] H. F. Weinberger Remark on the preceding paper of Serrin, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 319-320 | DOI | MR | Zbl

Cité par Sources :