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Biharmonic Steklov operator on differential forms

Fipa EL CHaMI
NicorLas GINOUX
GEORGES HABIB

OrLa MAKHOUL

Abstract

We introduce the biharmonic Steklov problem on differential forms by considering suitable boundary
conditions. We characterize its smallest eigenvalue and prove elementary properties of the spectrum. We
obtain various estimates for the first eigenvalue, some of which involve eigenvalues of other problems
such as the Dirichlet, Neumann, Robin and Steklov ones. Independently, new inequalities relating the
eigenvalues of the latter problems are proved.

Opérateur de Steklov biharmonique sur les formes différentielles

Résumé

Nous introduisons le probleéme de Steklov biharmonique sur les formes différentielles en considérant
des conditions de bord adaptées. Nous caractérisons sa plus petite valeur propre et établissons des
propriétés élémentaires de son spectre. Nous obtenons des estimations diverses de la premiere valeur
propre, dont certaines font intervenir des valeurs propres d’autres problemes tels que ceux de Dirichlet,
de Neumann, de Robin et de Steklov. Indépendamment, nous montrons de nouvelles inégalités reliant les
valeurs propres de ces derniers problémes.

1. Introduction

Let (M", g) be an n-dimensional compact Riemannian manifold with nonempty smooth
boundary d M. Denote by v the inward unit vector field normal to the boundary and
by Af := —tr(V2f) the Laplace operator applied to a smooth function f on M. The
following fourth order eigenvalue boundary problem

A’f=0 onM
f=0 ondM (1.1)
Af—q%L =0 onom,

This work is funded by Université Libanaise, Université de Lorraine, the Humboldt Foundation, the French
embassy in Beirut via the SAFAR programme, the Alfried Krupp Wissenschaftskolleg and the Agence
Universitaire de la Francophonie (AUF).
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also called biharmonic Steklov problem I, or biharmonic Steklov for simplicity, was first
introduced by Kuttler and Sigillito [16] and Payne [19]. Its physical interpretation in
terms of the deformation of an elastic plate under the action of transversal forces can
be found in e.g. [6, p. 316] and [25, p. 2637]. When M is a bounded domain in R", the
spectrum of this problem has been studied in [6] and proved to be discrete consisting of
positive eigenvalues of finite multiplicities (see also [2] for the case when the boundary is
not smooth). Variational characterizations of the first eigenvalue ¢; have been also given
in [6] (see also [15]). Moreover, in the case of a ball, the spectrum has been calculated
explicitly.

In the case of a compact n-dimensional Riemannian manifold M with smooth boundary
OM, sharp estimates for the first eigenvalue g, of the biharmonic Steklov operator are
given in [25] and [22]. It is shown that

Vol(0M)
= Norm)
In [22, Thm. 2], Raulot and Savo proved that, if M is a geodesic ball in a space form,
then (1.2) is an equality (see also [25, Thm. 1.3]). Under some assumptions on the Ricci
curvature of M and if the mean curvature of the boundary is bounded below by a positive
constant Hy, then the first eigenvalue g also satisfies

(1.2)

q1 = nHy.

Moreover, equality holds if and only if M is isometric to a ball of radius HLO inR" (see [25,
Thm. 1.2] and [22, Thm. 2]). For other recent results on the biharmonic Steklov eigenvalue
problem, we refer to [8, 10] and the references listed therein.

On the other hand, recall that a compact Riemannian manifold M with smooth
nonempty boundary d M is called a harmonic domain [21, p. 893] if and only if it supports

a (necessarily unique) solution f to the Serrin boundary value problem
Af=1 onM
f=0 onoM (1.3)
oyf=c ondM

for some constant ¢ € R. From [24, 26], we know that the only harmonic domains in R”
are the Euclidean balls of radius nc = '{,S;(Ela(%)) . Independently, it is not difficult to check
that a solution to the Serrin problem (1.3) is an eigenfunction of (1.1).

The aim of this paper is first to extend the biharmonic Steklov problem (1.1) to the
context of differential forms. As we mentioned above, there is a relationship between
problems (1.1) and (1.3), hence the idea is to also define the Serrin problem on differential
forms. For this purpose, we assume that the manifold M carries a non-trivial parallel

form and introduce the generalization of (1.3) (see (2.1)). In this case, we show that
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M is a harmonic domain if and only if there exists on M a solution to (2.1). Also in
Section 2, we provide a natural extension of problem (1.1) to the case of differential forms
(problem (2.2)). Applying the techniques used in [6] by Ferrero, Gazzola and Weth, we
show in Theorem 2.3 that problem (2.2) has a discrete spectrum consisting of a countable
number of positive eigenvalues of finite multiplicities. This involves proving the ellipticity
of problem (A.1) (see Lemma A.1 in the appendix). Moreover, we give two variational
characterizations of the first eigenvalue of this problem (Theorem 2.6) which will be
useful to establish inequalities in the sequel.

In Section 3, we obtain different estimates regarding the eigenvalues of problem (2.2).
As a preliminary step, we prove an interesting property of that problem, namely its
invariance by the Hodge star operator. On the other hand, under curvature assumptions,
using a previous result by Raulot and Savo [22, Thm. 10], we derive a lower bound (3.1)
for the first eigenvalue g1 ,, which generalizes the estimates [25, Thm. 1.2] and [22,
Thm. 2]. On the other hand, when the manifold M supports a non-trivial parallel p-form,
we show that

_ Vol(aMm)
r = Norm)

with equality if and only if M is a harmonic domain. Note that there is no reason for a
harmonic domain to admit a nontrivial parallel p-form for some p > 1. Surprisingly, when
M is a domain of R", the eigenvalues of the biharmonic Steklov problem on differential
forms are the same as those of the scalar problem, without taking into consideration their
multiplicities. It should be noted that the same type of result is true for the eigenvalues
of the Dirichlet problem. We end Section 3 with an inequality relating the eigenvalues
corresponding to degrees p — 1, p and p + 1 on the sphere. That inequality is established
by first proving a more general result when M is isometrically immersed in a Euclidean
space and by using the variational characterization (2.9) of the first eigenvalue. The
computations involved in these results being rather technical, we place the details in the
appendix (Lemma A.2 and Proposition A.3) to lighten the text.

In Sections 4 and 5, we establish several bounds concerning the eigenvalues of various
differential operators, again using variational characterizations. For example, we give
estimates involving the eigenvalues of the Robin eigenvalue problem (4.1) introduced
in [4] and those of Neumann (4.3), Dirichlet (4.4), biharmonic Steklov (2.2) eigenvalue
problems on differential forms (Theorems 4.1 and 5.1). Note that similar results are known
in the case of scalar problems (see [13, Thm. 1.17]). In Theorem 4.2, we also give an
estimate, under some curvature condition along the boundary, for the difference between
the first eigenvalues of the Robin problem on ¢ and (g — p)-forms, for some p and g such
that p < q.
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Other inequalities involving eigenvalues of the Steklov problem on forms (see Section 5)
are obtained using properties already established for the eigenvalues and eigenforms of
problem (2.2).
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2. Biharmonic Steklov operator on differential forms

2.1. Serrin problem

In this subsection, we extend the Serrin problem to differential forms. This extension will
motivate us to define the biharmonic Steklov problem on differential forms.

Recall that the Serrin problem is given by the following [24]: Let M c R be a bounded
domain and let f be a solution to the problem

Af=1 onM
f=0 ondM.

If the inner normal derivative of the function f is a constant ¢, then the domain M must
be a ball of radius nc and the function f has the form (n’c? — r?)/2n. Here ¢ is equal
to \X) ?1((61\;‘14)) The proof that the Euclidean ball is the unique domain in R" supporting a
solution to the Serrin problem was given in [24, Thm. 1] by using the method of moving
planes, which is based on Hopf’s maximum principle. In [26], H.F. Weinberger suggested
an elementary proof introducing so-called P-functions for the Laplacian. Since then, the
Serrin problem has been generalized to several contexts and when the ambient space is a
simply connected space form [3, 14, 18].

A natural question to ask in this set-up is whether the Serrin problem can be extended
to differential forms on a domain in R". For this purpose, we fix p € {0,...,n} and
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consider, on the set of differential p-forms QP (M), a solution to the system
Aw=wy onM
w=0 ondM,

where wy is a given parallel form on R" assumed to be of norm 1. We now set the
following question: If the conditions v 4 dw = ct*wg and (" (Sw) = —cv 1 wy are satisfied
on M for some constant ¢ and where v is the inner unit normal vector field to M, can
one deduce that the manifold M is a ball of radius nc? Here, ¢ : M — M denotes the
inclusion map. Notice that for p = 0, the problem that we propose reduces to the usual
one on functions. The answer of this question is given in Proposition 2.1 below. Note that,
in the whole article, we identify vectors and covectors via the musical isomorphism.

Proposition 2.1. Let M be a compact manifold with smooth nonempty boundary 0 M
and carrying a nontrivial parallel p-form wy.

(1) If M is a harmonic domain, then for the solution f to the Serrin problem on M
the p-form w := f - wy is the unique solution to the boundary value problem

Aw = wy on M
W, =0 on oM
lont ) Q.1
v adw = ¢t wy on oM

" (0w) = —cv awg ondM

for some constant ¢ € R.

(2) Conversely, if (2.1) has a solution w € QP (M), then assuming w.lo.g. that
|wo| =1 on M, we have that w = f - wo where f solves (1.3). As a consequence,
M must be a harmonic domain.

Proof. Before proving the proposition, we begin with the following fact. Given any
parallel form a and a smooth function 4 on M, we have that A(ha) = (Ah)a. To see this,
we first have d(ha) = dh A @ and § (ha) = —dh 1 @, as a is parallel. Therefore, if we take
{ei,..., ey} alocal orthonormal frame of TM, we compute

A(ha) = 6(dh A @) — d(dh 2 @)

n

n
= —Zei 4 (Ve,dh A a) — Ze,- A (Ve,dh 5 )
i=1

i=1

= (Ah)a + Z Ve dh A (e; 2 ) — Z ei A (Vo dh 1)
1

n

i=1 i

= (Ah)a,
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since Vdh is a symmetric 2-tensor field.

As a first consequence, if f solves (1.3), then for any parallel p-form wo on M the
p-form w := f-wp solves Aw = (Af) - wp = wo on M together with w,,,, = fi,,, -wo = 0.
As for the other two boundary conditions, note that, if wy,,, = 0, then by Vxw = 0 for all
X € TOM we have that dw = " A V,w and dw = —v 1V, w. Therefore,

yaidw=va (vb AVVw) =V,w - A (vaVyw)='Vyw =0, f - t"wo = ct*wy

and
F(6w)=—"(vaVyw)=-viV,w=-0,f v iwyg=—cv 1wy,

so that w solves (2.1). Note that, since the Dirichlet boundary condition w,,, = 0 forces
ker(A) = {0} [1, Thm. p. 445], the p-form w is necessarily the only solution to (2.1).
This proves (1).

Conversely, let w solve (2.1) for some nontrivial parallel p-form wq. Up to rescaling
wo we may assume that |wg| = 1 on M. We consider the function f := (w, wg) on M. By
the Bochner formula and Vwg = 0, we have that

Af =(V'Vw, wy) = (Aw, wy) — <W1[Vf]w, a)0> = |wol? = 1.

| —
0

Here, we use the fact that the Bochner operator Wlu’ lisa symmetric tensor. Recall that
WH] is defined by ka] = - Z?,j:l e; A(ej 1 RM(e;,e))), where {e;}i=1,...n denotes

.....

a local orthonormal frame of TM and RM is the Riemann curvature tensor of (M, g) that
is, R%Y = [Vx, Vy] — Vix yj for all X, Y tangent to M. Also, it is immediate to see that
fions = 0 since wy,,, = 0. Therefore, we deduce that

Alw = fwg) = wy = (Af)wy =0,

on M and (w — fwo)|om = 0. Hence by triviality of the Dirichlet kernel, we deduce
that w = f - wp on M. In order to finish the proof, we still have to compute the normal
derivative of f:

Oy f = (Vyw, wo)
={'Vyw, Fwo) +{v 2 V,w, v 1 wy)
={(v adw, "wy) — (" (6w), v 1 wy)
=c (*wy, Cwp) + c{v 1 wg, vV 1 wp)

= C|w0|2 =c.
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Here we used the identities
vaVew=8M(Fw) - ¢ (bw) = S'P U (v sw)+ (n- 1DHv s w,
CVyw =dM (v Jw)+v o dw + PN (Cw).

stated in [20, Lem. 18]. Therefore the function f is a solution to the Serrin problem on M.
This concludes the proof of (2) and of Proposition 2.1. O

Remark 2.2. We notice that if we impose that (*wq is nowhere vanishing along the
boundary, the last boundary condition in (2.1) can be dropped. Indeed, with the boundary
condition v 1 dw = ct*wq and the explicit form w = f - wg, we compute

c'wo=v adw=v 1d(fwo) = (8, fHwo —df A (v 1 wg) = (0y f)t"wy,

from which 9, f = ¢ along dM follows. However, the condition ¢*wq # 0 is not always
assured.

The Serrin problem on functions is closely related to the biharmonic Steklov operator,
that is the boundary problem (1.1). Indeed, as mentioned in the introduction, on a given
compact Riemannian manifold (M", g) (not necessarily a domain in R"), any solution
to the Serrin problem is a solution to (1.1) with g = % Conversely, it was shown in [21,
Thm. 10] that the first positive eigenvalue g of problem (1.1) is bounded from below by
the first eigenvalue of the Dirichlet-to-Neumann operator on n-forms (see Section 5 for
the definition) and, when equality occurs, the corresponding eigenfunction f of (1.1) is a
solution to the Serrin problem. Notice here that, by [6], problem (1.1) admits a discrete
spectrum that consists of a nondecreasing sequence of positive eigenvalues (g;); of finite
multiplicities.

In order to have a similar situation on differential forms, we come back to the Serrin
problem defined in (2.1) for domains in R". In fact, one can easily see that any solution to
the Serrin problem (2.1) gives rise to a solution to the following boundary problem

A*w=0 onM
w=0 ondM
VviAw+qi'éw=0 ondM
U'Aw—-¢gv odw=0 ondM,

2.2)

with g = % The equation A’w = 0 comes from taking the Laplacian of Aw = wq and
using the fact that wy is a parallel form. Note here that, because of w),,, = 0, the last two
boundary conditions in (2.2) are actually equivalent to

Aw =qV,w
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along M since v 1o dw = "V, w and *6w = —v 1 V,w as we have seen in the proof of
Proposition 2.1.

It is then natural to study problem (2.2) for compact Riemannian manifolds with
smooth boundary that are not necessarily domains in R”.

2.2. Biharmonic Steklov operator

In this section, we will show that the spectrum of problem (2.2) is discrete and it consists
entirely of eigenvalues of finite multiplicities. We mainly follow [6].

First, note that on a compact Riemannian manifold (M", g) with smooth boundary
OM, we have the following integration by parts, which is valid for any w, v’ € QP (M):

/ ((Aw, o' —{w, Aw')) dug = /a ((v sdw, "0’y = (Fw,v 1dw’)
M M

+{(viw, 0w’y - ("ow, v 2 w')) dug. (2.3)

Thus, replacing w by Aw in (2.3), we obtain:

/ <A2w, W'y dug = / (Aw, Aw") dug +/ ((v JdAw, W'y - (CFAw, v 1 dw’)
M M oM

+{(viAw, 6w’y — {"6Aw, v 1 ') ) dug. (2.4)
The main result of this section is the following:

Theorem 2.3. Let (M", g) be a compact Riemannian manifold with smooth boundary
OM and let v be the inward unit vector field normal to the boundary. Then the boundary

problem
ANw=0 onM

w=0 ondoM
VviAw+qr'éw=0 ondM
UAw—-gqgv adw=0 ondM,

on p-forms, has a discrete spectrum consisting of an unbounded monotonously nonde-
creasing sequence of positive eigenvalues of finite multiplicities (q; p)j>1.

Proof. Asin [6, Eq. (1.7)], we let
Z:={weQP(M)|A’w=0 on M and w),, =0}.

We define the following Hermitian sesquilinear forms on Q7 (M): for all w, w’ € QP (M),

(w, )y :=/ (Aw, Aw") dug
M
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and
(w, W)y = / (v adw,v 1dw) dug + / ("dw, "6w") dug.
oM oM
We split the proof of Theorem 2.3 into the following lemmas.

Lemma 2.4. For w € Z, we have
/ |Aw|? dug + / (<VJAw,L*5w> - (L*Aw,VJdu)))d,ug =0. (2.5)
M oM

The forms (-, - )y and (-, - )w are positive definite on Z. Moreover, there exists a positive
constant C such that || -|lw < C - ||-|ly on Z. As a consequence, if we denote by V
(resp. W) the completion of Z w.r.t. || - ||v (resp. || - ||w) as Hilbert spaces, then there is a
natural bounded linear map I,: V — W extending the identity map 1d .

Proof. To prove (2.5) for w € Z, we replace w’ in (2.4) by w and use the fact that A2w = 0
and 'w = v 2w = 0. Since, if Aw = 0on M and w,,, = 0, then w = 0 (see e.g. [1,
Thm. p. 445], the sesquilinear form (-, -)y is positive definite. For (-, )y, positive
definiteness is a consequence of (2.5). In fact, if (w,w)y = 0, then v 1 dw = 0 and
*6w = 0 on M and therefore, from equation (2.5), Aw = 0 on M, from which w = 0 on
M follows again by [1, Thm. p. 445] since w,,, = 0. We now show, as in [6, Sec. 2], the
existence of a positive constant C such that || - ||y < C - || - ||y on Z. First, both || - ||y and
Il - [l 72 (ar) are equivalent on Z. To see this, we have for any w € Z

lwlly = lAwllz2(ary < C - lwllg2(ar)
for some constant C depending only on M and n. On the other hand, by the elliptic
estimates and using the fact that, given any f € L*>(M), there exists a unique weak
solution w to the boundary value problem Aw = f on M with w|,,, = 0, we have, for any
w € Z that [|w]|;2pr) < C - [|Aw]| 2 (pr) Tor some constant C, so that

leollzary < € - (180l 2qan) + 19l 20an)) < € - 1Al 22a0) = € - lly

for some positive constant that we also denote by C and which again depends only on M
and n, see e.g. [5, Thm. 4 in Sec. 6.3]. Therefore, both || - [[v and || - || 2 (ps) are equivalent
on Z. Finally, using the fact that both d and ¢ are first-order linear differential operators,
we estimate, for any w € Z,

2 2

lwllfy = Iy 4 dol] + | S|

L2(OM) L2(0M)
< C ol )
< C [l iy
< Cllwll}
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for some positive constant that we also denote by C, which again depends only on M and
n. Here we have also used the boundedness of the trace map 7: H>(M) — H'(OM). O

Next we consider the linear operator K : V — V defined by
K = D‘_,1 o'y oDwol,
where Dy:V — V' and Dw: W — W’ are the natural duality isomorphisms, i.e.
Dy (w) := (+,w)y and Dy (w) := (-, w)yy for every w in V resp. W. As usual, I, () :=
0 oI, € V' forevery 6 € W’. Actually K can be defined via the identity
(Kw’ w/)V = (11&), Ilw’)W (= (w’ a)/)W)

for all w, w’ € V. By definition, the operator K is self-adjoint and positive semi-definite.
We need now to prove the following.

Lemma 2.5. The map I, defined in the previous lemma, is compact and injective.
Therefore K is also compact and injective.

Proof. Letl3: V — L?(0M) ® L*>(dM) be the composition of the following linear maps:

V — H(0M)eH*(0M) — L2(0M)® L*(0M)
w —> (v 2 dw, t*6w) — (v 2dw, t"6w).

Note that /3 is well-defined since the trace operator maps H'!(M) into (and onto)
H %(8M). Moreover, since the inclusion map H %(6M) — L?(0M) is compact by
the Rellich—-Kondrachov theorem, so is Is. Now (Z, (-, )w) — L*(dM) & L*(OM),
w — (v 1 dw,"éw), is a linear isometry, therefore it extends to a linear isometry
L: W — L>(0M) @ L>(dM) with I3 = I, o I;. Since I3 is compact and I, is a linear
isometry, /; must be compact.

We now prove that I3 is injective, so that I} must be injective as well. First, we show
the inclusion

V c {we H (M) nH)(M)|A?w =0 weakly on M},
where the concept of a weak solution is defined by the following: given f € L?(M), a
weak solution w to A’w = f on M is a form w € H> N Hé(M) =H*(M)n Hé(M) with
(Aw, Aw") 2 (apy = (2 @) p2a) Y @' € Hy(M), (2.6)

where H3(M) = {w € H*(M) | w),,, = 0 and (Vw),,,, = 0}. Note that the condition
(Vw)|;,, = 0 can be replaced by V,w = 0 along M because of w,,, = 0. Namely
V c H?*(M) already holds because of the equivalence of || - |y and || - |72 (pr) on
Z. Moreover V C H(l)(M) holds as well because of the continuous inclusion map
H?(M) c H'(M) and the continuity of the trace operator H' (M) — L*(dM). Thus
VcHN Hé(M). Furthermore, if w € V is given, then there exists a sequence (wy,)m
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in Z with ||w,, — w|ly —— 0. Because of V ¢ H?>(M) and the equivalence of || - ||y
m-—oo

and || - [[g2(ar)» the sequence (wpm)m goes to0 w in H?(M) and hence (Aw,,) goes
to Aw in L>(M). But since, as a consequence of (2.4), we have, for all m € N and
W' € {w € QP (M) |w,,, =0and (Vw)),,, =0}, 0 = (Awm, Aw’)2(pr, We can deduce
that (Aw, Aw’)2(p) = 0 for all @’ as above and therefore for all w’ € HS(M). This
shows that w € H? N H) (M) satisfies A>w = 0 weakly on M and therefore the inclusion is
proved. Now, we come back to the injectivity of I3. Consider w € V such that I3(w) =0,
that is v s dw = 0 and (*6w = 0 in L?>(dM). Then both dw and dw vanish along M
because of t*w = 0, v 1 w = 0 and the identities [d,¢*] = 0 and {d, v2} = 0. Again,
because of w,,, = 0, we have (dw)|,,, = v’ A V,w and (6w),,,, = —v 2 V,w, so that
W AV,w=0and v 1 V,w = 0along M, from which V,w = 0 on M follows. This
shows that w € HS(M). Taking w’ = w in (2.6), we deduce that Aw = 0 and therefore
w = 0on M. This shows I3 and hence I; to be injective. O

We end the proof of Theorem 2.3. Since K is compact, self-adjoint and positive definite
in the Hilbert space V, there is a countable Hilbert o.n.b. (w;);>1 of V for which a
monotonously nonincreasing positive real sequence (u;); > 1 going to 0 exists such that
Kw; = p;w; for all i > 1. We want to show that, for each i > 1, the eigenform w; lies in
Z and satisfies y;t*Aw; = v 1 dw; as well as ;v 1 Aw; = —*éw; along M. Hence, for
each 7, the form w; becomes a smooth eigenform for problem (2.2) associated with the
eigenvalue g; ,, = ;1% which is of finite multiplicity, since y; is.

For this purpose, fix i > 1. Since w; € V, we already know that A%w; = 0 holds weakly
on M with w;,,, = 0. It remains to show that w; is smooth and satisfies ¢*Aw; = #liv adw;

as well as v 1 Aw; = —I%_L*&ui along 0 M. By definition, for every w € Z,

Hi (Awi, Aw) 2(pp) = pi (Wi, w)y = (Kwi, 0)y = (Wi, 0)w

= (v adw;, v 1 dw) 12901y + (CF6w;, L 6W) 1201 - 2.7)
But by (2.4), we have, still for every w € Z,

_ 2, . _ . E
(Aa),-,Aa))Lz(M) = (A w,,w)Lz(M) (V 2dAw;, Cw )

0 0

L2(0M)

+(CAw;, v 1 dw) 290y = (v 2 Awi, F0w) 12(omr) 28

+ (L*(S(Aa)i), V2 w)
——
0
= (CAw;, v 1 dw) 2 (om) = (V 2 Awi, W) 12(omr) -

L2(0M)
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Here we see both t* Aw; and v 1 Aw; as elements in H: (0M). Comparing (2.7) and (2.8),
we deduce that

CAw; — lv 2dw;, v 2 da)) - (v 2 Aw; + iL*(Sa),-, ow =0
Hi L2(OM) Hi L2(OM)

for all w € Z. Note that the map Z — QP (M) & QP (M), w — (v 1 dw, 1*éw) is
continuous w.r.t. || - |y and || - || .2 (gas) @nd is injective since it is the restriction to Z of
the map /3 from above. Now, Lemma A.1 in the appendix shows that this map is onto.
Hence, it follows that (*Aw; — l%_v adw; = 0and v 1 Aw; + ﬂliL*(Swi = 0. Therefore,
w; is an eigenform for (2.2) associated to the eigenvalue ¢; , = i The smoothness
of w; follows from the fact that both boundary conditions ¢*Aw; — ﬂliv adw; =0 and
v iAw; + Li*6w; =0 together with w;|,,, = 0 define elliptic boundary conditions for A2,

In order io finish the proof of Theorem 2.3, it remains to show that there is a one-to-one
correspondence between solutions of (2.2) and eigenforms of K. We have already shown
that every eigenform w of K, associated to some eigenvalue u > 0, satisfies (2.2) with
q= ,ll Conversely, if g € R is given for which a nontrivial solution w to (2.2) exists, then
by (2.4), we have, for every w’ € Z,

(Aa), Au)’)Lz(M) =q- ((V a1 da), V4 dw’)LZ(aM) + (L*(Su), L*(Su)’)LZ(aM)) 5
that is, seeing both w, w’ as elements of V,
((,U, w,)V =q- ((A), w/)W .

Note that necessarily g > 0 holds, otherwise w = 0 would follow. By definition of K, we
then have (w, w")y = q - (Kw, w")y for all " € Z and hence in V, therefore Kw = éw.

This shows w to be an eigenform of K associated to the eigenvalue u = é. This shows the
correspondence to be one-to-one. This concludes the proof of Theorem 2.3. O

In the following, we give a characterization for the first eigenvalue g , on p-forms.
This will be used later in order to get estimates for the eigenvalues.

Theorem 2.6. The first eigenvalue q1,p, of the boundary problem (2.2) is characterized by

lAwll?,
. (M)
qi1,p = inf Wiy =0, Vyw £0 2.9)
P weQP(M){HV_Ida)Hsz(BM)+||L*5w||2Lz(aM) o Y
llwll;
= inf — O I Aw=00n M} . (2.10)
wear N0} { [|wll7,
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Both infima are indeed minima, (2.9) is attained by an eigenform of (2.2), associated to
q1,p and (2.10) is attained by Aw, where w is an eigenform of (2.2), associated to q p.
Moreover, for every w € QP (M) with w|,,, = 0, the inequality

% 2
a1+ (117 40122 ) + 1060132 o) < 1801 )
holds.

Proof. As mentioned above, it follows from (2.5) that, given any nonzero eigenform w
associated to a positive eigenvalue g of (2.2), we have

/ |Aa)|2d;1g = q/ |v_|da)|2d,ug+q/ |L*(5w|2d,ug,
M oM oM

so that 5
o lAwIZ, )
P = *
v 5 4wl 5, + 106012, 0,

for every such eigenform, with equality for w associated to g1,,, of course. More generally,
forevery w € V, we can write w = }; (w, w;)y - w; because (w;); is a Hilbert orthonormal
basis of V. From this, we can express

1AwI132 5, = llly = 1@, @)y

on the one hand, and

v - d‘“”iZ(aM) + ||‘*5“’”12LZ(3M) = [lwlly
= (Kw,w)y
1
= — (@ w)y
i qi,p
1
<— ) lw w)yl
ql,p Z vV
1
< —1JAwlf;
qi,p L2(M)
on the other hand, therefore
IIAwIIZLz
. (M)
ql,p:mf{ e T weV\{0};.
[V - w||Lz(,9M) +le ‘””L2(3M)
Note that, for some nonzero w € V, the denominator ||v 2 dwlliz(aM) + ||L*6a)||iz(aM)

in the above quotient cannot vanish since if it did, then ||w|lw = 0 and therefore
w = 0 by Lemma 2.5. Now, we will show that this infimum can be taken over all
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we (H*N Hé)(M ) \ {0}, as well as over all smooth forms vanishing and whose normal
derivative does not vanish identically along d M. Recall that,

H2(M) = {a) c (H2 N H(‘)) (M)

L*&u:Oandv_ndw:O},

since, as we noticed above, if w € (H* N H})(M) is such that both .*6w and v 1 dw
vanish along d M, then so does V,w. As in [6, Thm. 1.2], we have the following lemma:

Lemma 2.7. The inner product (-, )y is well defined on (H> N Hé)(M) and we have
the following ( -, - )y-orthogonal splitting:

H>NH)(M) =V & Hj(M).

Proof. By its definition, ( -,-)y is well defined on (H? N Hé)(M ). Furthermore, (2.4)
already implies that, for all (w, w’) € Z x H* N Hé (M),

(W, ")y = ("Aw,v 1dw") 12901y = (V 2 Aw, C60") 12501 » 2.1
so that (w,w’)y = 0 as soon as w’ € H%(M). This shows that HS(M) czZ+t=vt
Conversely, let w’ € VY ¢ H> N Hé(M). Then (w;,w’)y = 0 for all i. By (2.11),
this is equivalent to (v 4 dw;, v 4 dw’) 2 (gpr) + (FOw;, " 0w’) 1290y = O for all i by
Aw; = i)uda)i and viAw; = —it*(éwi). Since themap Z — QP (AM)®QP~1 (M),
w — (v 1 dw,"6w) is bounded (w.r.t. || - ||y and [ - [ z2(ar)), Onto and the w;’s span
a dense subspace of V, we obtain that (w;,v 4 dw,)L2(6M) = 0 as well as (wy, v 4
dw’)2apm) = 0 for all (w1, w2) € QP (M) & QP~1(dM) and therefore v 1 dw’ = 0 and
t*6w’ = 0 hold along dM. This shows that w’ € H(z)(M). On the whole, H(%(M) =V
and the orthogonal splitting is proved. O

It remains to notice that, for any w € QP (M) with w,,, = 0, we can split (-, - )y-
orthogonally w = wy + @, where wy € V and @ € H}(M). Then
2 2 2 ~12
IAwll72 5y = l0lly = llovly + @y
on the one hand, and
”V - dw”iZ(aM) + ”L 6w|liZ(aM) = ”V < de”iZ((')M) + ”L 6wV||L2(,9M)

on the other hand, so that

* 2
2 q1,p - (“V - de“iZ(aM) + ”L 6('UV||L2(6M))

* 2
= g1+ (IV 20l ) + 16012 0
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which proves (2.9). Furthermore, the r.h.s. of (2.9) is actually a minimum attained exactly
by those eigenforms of the biharmonic Steklov problem that are associated to the smallest
positive eigenvalue g1, ,. And that same r.h.s. vanishes if and only if V,,w = 0 along dM
as we noticed above.

We now prove the following lemma:

Lemma 2.8. The infimum in (2.10), that we denote by g/, » is a positive minimum.

Proof. To prove this result, we apply the same argument as in [6, p. 318]. Namely the
standard Rellich—Kondrachov compactness theorem ensures the natural inclusion map
H> (M) — L?*(0M) to be compact. Hence its transpose map L?(dM) — H? (OM) is
compact, as a straightforward consequence. Moreover, the harmonic extension from oM
to M defines a bounded linear map H? (M) — L*(M), see e.g. [17, Thm. 6.6, Chap.
2]. Therefore the composition L?> (M) — H -3 (0M) — L*(M) of both maps defines a
compact linear map E : L?>(dM) — L*(M), which already shows that q’l,p to be positive
using only the boundedness of the map. Furthermore, because the image by E of the unit
sphere S := {w € L*(OM), |lwll12(apr) = 1} of L*(OM) is relatively compact in L*(M),
there exists @ € E(S) such that lwll2(ar) = sup{l|Ewll12(pr) | @ € S}. By definition of
the closure, there exists a sequence (W, ), in S such that Ew,, — @ in L*(M). But

then A(Ew,,) —— Aw in H2(M) = (Hg(M))’, so that necessarily Aw = 0 holds in

H™2(M). Note that, because Aw = 0 and A(Ew,,) = 0 for all m, we can also claim that
A(Ew,;) ——> A& in L*(M). By Gérding’s inequality and since both Ew,, —— @ and

m—o0

AEwy,) — A® in L*(M), we have that Ew,y, — @ in H*(M). As a consequence,
because o%nv ZoEwm =0 along M and v 1 Ew,, r% v 1@ in L*(OM), necessarily
v 2 @ = 0 holds along M. Now again Ew, —:% D(% in H>(M) also implies w,, =
(Ewm)|sm —2 W]y, IN L*(dM) (actually alsoniln H'(8M)), so that D 1one 22000y = 1.

This shows that @ € E(S) and hence [|@]|;2(p) = max{[|Ew]|2(pr) | @ € S} satisfies
loll2p) = q# This shows the positive r.h.s. g} » of (2.10) to be a minimum. O

i,p ’

In order to finish the proof of Theorem 2.6, we want to show that g1, = ¢} >
Pick any eigenform w associated to gi,,. Up to rescaling w, we may assume that
v 2 dw”iZ(aM) + ||L*5w||iz(6M) =1.Let @ € QP (M) be the unique solution to A& = 0
on M with *@y,,, = —q1,pv adwawellas v 1 @ = gy, p¢* 6w along M. By (2.3),

0= / (AW, w) dug = / (0, Aw) dug +q1,p / (lv sdwl? + |L*6a)|2) dug
M M oM

= / (0, Aw) dpg + q1,p»
M
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so that Cauchy-Schwarz inequality leads to g1, < [[Aw|lp2(p) - [|@]| 12(m)- Using

qip = ||Aw||iz(M), we obtain g , < ||&3||2LZ(M). Therefore,
~12 2
||w||L2(6M) ql’p
=12 BETAE < dLp>
1512, 0, 18122,

from which g} » S dup follows. Conversely, if w € QP (M) \ {0} satisfies Aw = 0
on M and ”w”2L2(aM) = q’l’p||w||i2(M), then let & be the solution to A& = w on M
with @),,, = 0. Then, again by (2.3), w|,,, = 'w + v A (v 1 w) and Cauchy—Schwarz

inequality, we have

||w||iZ(M) = (Aa’ Q))LZ(M)
= (a, Aw )LZ(M) + (V 4 dc’J, L*a))LZ(aM) - (L*(Sa, V4 a))LZ(aM)
0

= (v 2 do, w) 1290 = (Vb A LD, w)L2(6M)

= (V 2dd -V A 8D, w)

L2(8M)
—~ b S o~
<|{vadw-v’Aléw w2 .
H I 1 PR
But since (v 2dd, v A L*&@) =0, we have
L2(8M)
~ b 12 ~12 b 17
|V_ldu)—V N =V ad@ll72gpn ||V A oW
L2(OM) (M) L2(6M)

—~12 1|2
= ||V 4 dUJ”Lz(aM) + ”L*(sw”Lz(aM) ’

so that

~12 % c~p2 2
ol gy < (1Y 5 4132 ) + 1068132 o) Nl 2 omay -
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Therefore,
1AG1125 4, B ol
v 2 @132 gy + 10BN, g0y 1Y 2 BT, ) + 196G T2 )
[ P 21 Ay
4
ol 0,
lwll;
@l onry
- 2
19122 0,
=q,1,p’

from which q’l’p > q1,p follows. On the whole, we deduce that g1 , = q’l’p, as we
claimed. Moreover, the p-form @ defined above, because it now minimizes g, p» must
be an eigenform of the biharmonic Steklov operator associated to the eigenvalue g1 .
As a consequence, w = AW where @ is an eigenform of the biharmonic Steklov operator
associated to the eigenvalue g1 _p. O

3. Eigenvalues of the biharmonic Steklov operator

In this section, we will establish some eigenvalue estimates for the first eigenvalue of the
biharmonic Steklov operator defined in the previous section.

As before, we will consider a compact Riemannian manifold (M", g) with smooth
boundary d M. Notice first the following fact:

Lemma 3.1. The biharmonic Steklov operator is preserved by the Hodge star operator
s on M.

Proof. We only need to check that the last two boundary conditions in (2.2) are preserved.
For this purpose, using the equality ¢* (*pra) = *apr (v 2 @) for any form @, we compute,
for any solution w of degree p to problem (2.2),

Vv 2 A(xpw) = v o (xpAw)
= (1) xom ' (Aw)
= (=DPgq xom (v 2 dw)
= (~1)?q¢" (rarde)
= —qt" (6 *p w).

In the last equality, we use the fact that «y,d = (—1)? ~L1§%), on p-forms. For the other
boundary condition, we have t* (Axpy w) = " (xprAw) = #5p1 (V 2AW) = —qxgp (FOw) =
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(=1)Pqv 2 #p6w = qv 1 d(*pw). Also here we use the fact that dxp; = (—1)? #p; & on
p-forms. This finishes the proof. O

Remark 3.2. As a direct consequence of the invariance of the biharmonic Steklov operator
by the Hodge star operator is that g; , = g; ,—, foranyi > 1 and p < n.

In the following, we recall the estimate stated by S. Raulot and A. Savo in [22] for
subharmonic functions that we will use in order to get a lower bound of the first eigenvalue
q1,p- Let (M", g) be a compact Riemannian manifold with smooth boundary such that the
Ricci curvature of M satisfies Ricys > (n — 1)K and the mean curvature of the boundary
satisfies H > Hj for some real numbers K and Hj. Let R be the inner radius of the
manifold M, that is

R = max {dist(x,0M) |x € M},

and O(r) = (s%(r) - Hysk (r))"~! for all r, where the function sk is being given by

& sin (rVK) ifK >0,

sg(r):=4r ifK =0,

i sinh (rViKT) ifK <.
It was shown in [22, Prop. 14] (see also [12, Thm. A]) that the function ® is smooth and
positive on [0, R[ and ®(R) = 0 when M is a geodesic ball in Mk, the space form of
sectional curvature K. The following result was proved in [22]:

Theorem 3.3 ([22, Thm. 10]). Let (M", g) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature of M satisfies Ricpy > (n — 1)K and
the mean curvature of OM fulfils H > Hy for some real numbers K and Hy. If h is a
non-trivial, nonnegative subharmonic function on M (i.e. Ah < 0 on M), then

/(:9M hdﬂg > l
Juhdug — [Ro(r)ar

Using this result and the Bochner formula A = V*V + WI[V;’ Ion p-forms, we prove the
following:

Theorem 3.4. Let (M", g) be a compact Riemannian manifold with smooth boundary.
Assume that the Ricci curvature of M satisfies Ricyy > (n — 1)K and the mean curvature
H > Hy for some real numbers K and Hy. Assume also that the Bochner operator Wj[vf I
is nonnegative for some p. Then, the inequality

1
I — 3.0
T R eer dr
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holds.

Proof. Applying the Bochner formula to Aw where w is a p-eigenform of the biharmonic
Steklov operator associated with g1 ,, we get after taking the pointwise scalar product
with Aw that

1
0= (K0, A0) = VA6 + 5A (|Aw|2) + <W}V§’]Aw,Aw>.

Since WH Iis nonnegative, we deduce that A(JAw|?) is nonpositive or equivalently the
function /4 := |Aw|? is subharmonic. Therefore, by the previous theorem, we can say that

-/éM |Aw|2dﬂg 1
/M |Aw|?dug fOR O(r)dr

Now, Characterization (2.10) gives the result and finishes the proof of the theorem. O

Remark 3.5. Depending on the sign of K and Hj, we can estimate explicitly fOR O(r)dr
in terms of R and Hy, as in [22, Thms. 12 & 13]. Therefore, one can deduce several
estimates for g1, in terms of R and Hy.

We will now provide an estimate for the first eigenvalue of problem (2.2) on manifolds
carrying parallel forms and study the limiting case of the estimate. Recall that a harmonic
domain is a compact Riemannian manifold (M", g) with smooth boundary d M supporting
a solution to the Serrin problem (1.3). We have the following result:

Theorem 3.6. Let (M", g) be a compact Riemannian manifold with smooth boundary.
Assume that M supports a non-trivial parallel p-form w for some p =0, ...,n. Then
Vol(0M)
qi,p < -
Vol(M)
Moreover, if equality holds in (3.2), then f - wy is an eigenform associated to q,p, where
f is the solution of (1.3) and therefore M must be a harmonic domain (and hence a
Euclidean ball if M C R").
Conversely, if M is a harmonic domain, then \f,’il((a AI/\I/I)) is an eigenvalue — not necessarily
the first one — of the biharmonic Steklov problem (2.2).

(3.2)

Proof. As wy is a parallel form, we can assume that |wg| = 1. By using the variational
characterization (2.10), we obtain that

2
lwollz2 aar) _ Vol(dM)

qi1,p < = .
T ol gy, Vol

If equality occurs in (3.2), then wy = Aw for some eigenform w associated with gy,
by Theorem 2.6. Now Proposition 2.1 implies that M carries a solution f to the Serrin
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problem (1.3) and that w = f - wyp. To check the converse, we take a function f solution

to the Serrin problem (1.3), then using again Proposition 2.1 the p-form w := f - wy is an

eigenform of (2.2) associated with the eigenvalue g = %, where ¢ = \)(/)(;1((61\1/‘1/[)) O

Remark 3.7. If a compact Riemannian manifold M with smooth boundary carries a
nontrivial harmonic form of constant length wy, then (3.2) remains valid. Moreover,
if (3.2) is an equality, then there still exists an eigenform w to the biharmonic Steklov
operator on p-forms such that Aw = wo, nevertheless it is no more true in general that M
must be a harmonic domain and that w = f - wq for some solution f to the scalar Serrin
problem.

Next we compare the first eigenvalues of the biharmonic Steklov operator for successive
degrees, when the manifold M is a domain in R" or S”. We first notice that, if f is any
eigenfunction to the scalar biharmonic Steklov problem (1.1), then for any parallel p-form
wo on M the form f - wy is an eigenform to the biharmonic Steklov problems on p-forms
and associated to the same eigenvalue. Therefore, for every eigenvalue ¢ of the scalar
biharmonic Steklov operator, we have an embedding

ker (BSg — q) ® P, — ker (BS,, — ¢q),

where ker(BS; — ¢) denotes the eigenspace for the biharmonic Steklov operator on
Jj-forms and associated to the eigenvalue ¢, and P,, denotes the space of parallel p-forms
on M. When M c R", then conversely for any w € ker(BS, — ¢), there exists a parallel
p-form wy on M with |wg| = 1 and {(w, wg) # 0 (non identically vanishing) on M. But
then f can be easily shown to lie in ker(BSy — ¢). This shows that, when M c R", both
0- and p-biharmonic Steklov eigenvalues coincide, their multiplicities being ignored.
In what follows, we assume that (M", g) is isometrically immersed into the Euclidean
space R™" . For any given smooth normal vector field N to M, we denote by IIy the
associated Weingarten map, that is, the endomorphism field of 7M defined by

(IN(X),Y) =(N,II(X,Y))

for all X,Y tangent to M, where II is the second fundamental form of the immersion.
Recall that any endomorphism A of TM can be extended to the set of differential p-forms
on M as follows: For any p-form w on M, we define

p
AlPlo(X), .. Xp) = ) (X, AKX, -, Xp), (3.3)
i=1

for all Xy, ..., X, vector fields in TM. In particular, this applies to Iy for all N € TM.
The following lemma is technical but will be useful for the comparison.
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Lemma 3.8. Let (M", g) be a compact Riemannian manifold with smooth boundary O M.
Assume that M is isometrically immersed into the Euclidean space R, Let w be any
p-eigenform of the biharmonic Steklov operator. Then we have

parpr [ (1vsdoP +10 Go)P) dug
oM

<r§rf/ 211~ x,_)m+2211fa( l_)JII[]

a=1
n 2
2y (118; es) 2 (Ve,w) —n (d (<ﬁ a;>)) Jw+0T AW |dug. (34)
s=1
Here {ey,...,e } and {fi, ..., fm} are respectively orthonormal bases of TM and T*+M

and H is the mean curvature field of the immersion.

Proof. Let w be any eigenform of the biharmonic Steklov problem associated with
q1,p- For eachi = 1,...,n + m, the unit parallel vector field d,, on R™™ gplits into
Oy, = (0x,)T +(0yx,)* where (dy,)7 is the tangent part in TM and (dy,)* is the orthogonal
one in T+ M. We consider the (p — 1)-form (dx,)” 4 w on M which clearly vanishes on
O0M. By applying to it the variational characterization (2.9), we get, for each i,

q1,p-1- /6M (|v ¥ d((axi)T J w)|2+

"o ((GX[)T y w)|2) dug
< /M ’A ((ax,.)T s w))z dug. (3.5

Now we want to sum overi = 1, ..., n+m. We first begin with the Lh.s. Recall the Cartan
formula: Lyw = d(X 1 w) + X 2 dw, for any vector field X on M. Using this formula, we
have for each i,

d(ar Jw) = Lot w- 0l sdw

_VaTw+11[P]w o7 L dw. (3.6)

In the last equality, we used the splitting of the Lie derivative in terms of the connection
as follows: Lyrw = Vyrw + II Lp w for a parallel vector field X € R™™, proved in [9,
Eq. (4.3) p. 337]. Since w = 0 on 6M, we have that for any X € TdM [20, Eq. (23)]

v aVxw =V w) +S(X) 1 (Fw) =
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Here S denotes the second fundamental form of the boundary. Therefore, we deduce that
v d((axi)T J a)) =v. Vaz_w+6£ 2 (v adw)

= g((Bxi)T,v)v 2Vyo+ [); 2 (v adw)
=—g(Oy,, V)" (bw) + 6; 1 (v adw). (3.7
In the last equality, we use the identity [20, Lem. 18]
vaVyw ="M (Fw) - F(Sw) - SP (v sw)+ (n—1)Hy 2w = - (§w).

Independently, by a straightforward computation, we check that, for any p-form a,

n+m

Zc’);/\(();i_na):zn:ei/\(ei_na):pa.
i=1

i=1
As a consequence, we obtain for any p-forms @ and S on M

n+m

(0% s, 0% L B) = ple.B). (3.8)

i=1
We take the norm of (3.7) and sum over i to get

n+m

Z ‘v ad ((6xl.)T a w)‘2
i=1

n+m
oy [ (w) > + plv 2 dw|* =2 Z g(0x,,v) (L*(éw), 3)2 a(va dw))
i=1
= |"Sw|* + plv 2 dw)* -2 <L*6w, v a(va dw)>
= |*6w|* + plv 2 dw|*. (3.9)

Here we notice that by the GauB formula and the fact that dy, is parallel in R"*™, we have
Vxdl = ll5: (X), so that

n

(5(@){1 Ja)) Z—Zej JVeJ. (G)Z: Jw)
j=1
= _Zej | (Veja)z; _|u)+a£ a Ve_l.w)

Jj=1
n

n
:—Zej_llla;[(ej)_lw'l' Ble__n(ej_nVejw)
J=1 j=1
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n
=- Z <Ila¢_(ej),ek>ej aeg Jw—(’?; 20w

J k=1
_ T
= —ﬁxi 20w

because of the expression (/5. (e;),ex) = (ll(ej, ex),d5;) being symmetric in j, k.
Thus §(8! 4 w) = —4% L 6w for any i. Using also the fact that v 1 6(8% 1 w) =
—6M (v 1 0T L w) =0, we get that

n+m n+m

L*(s(a;J )| Z|5(aT )| E D rswl. (3.10)

i=

Hence adding Equations (3.9) and (3.10) allows to find the L.h.s. of Inequality (3.4). We
are now going to estimate the term Y./ |A(87, w)|? in (3.5). Taking the divergence
of (3.6) and the differential of the identlty 6(8; Jw) = —(9; 1 0w along with the Cartan
formula and the decomposition of the Lie derivative as in (3.6), we get that

A(a;_J ) [5 Var](w)+5(11[p )-11 U (6w) + 07 5 Aw. (3.11)

In the following, we will compute each term of (3.11) separately. First, take an
orthonormal frame {ey, ..., e,} of TM such that Ve; = 0 at some point. Then we have,
for any vector field X on M,

[5, Vx] (w) = 5(an)) - Vx(Sa)

= - Z €y 1 Vestw - Vx(;a)

s=1

=— Z e 1 (R(eS,X)a) +VxVe w+ V[es’x]a)) - Vxéw
= (3.12)

n n
=— Z es 1 R(eg, X)w+ Vxow — Z es 1 Vy, xw — Vxdw
s=1 s=1

n

n
=— Z es 1 R(eg, X)w — Z es 1 Vy, xw.
s=1

s=1

Now we use the fact that for any tensor field A, any vector field X and any p-form a on
M, VxAlPl = (VxA)IPl and AIP=11(X L @) = X 2 AlPla — A(X) 1 @, which both can
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be proved by a straightforward computation. Thus for any N € T+ M, we can write

5 (III[V"]M) — 1P (6w)

n
= Yle ave, (111[;’](,)) — 1P (6w)
s=1

n

n
== e s (Ve )PV (W) = 3 e s TN (Ve,0) = 7 (60)
s=1

s=1
== > Ve, )P N eg s w) = 3" (Ve n) (ey) 5 (3.13)
s=1 s=1

=Y g Ve w) = Y (lines) 1 (Ve,0) - ™ (sw)
s=1 s=1

== > (Ve P ey s w) +6(y) sw = Y (nes) 2 (Ve,0).
s=1 s=1

By taking X = 8;_ in (3.12) and N = ﬁjl_ in (3.13), Equation (3.11) reduces after using
the fact that VB; = ll5: as a consequence of the parallelism of the vector field dy,, to

n n

A (BXTI a w) = —Zex a2 R (es,[ile_) w— 22 (Ua;i@s) 1 (Ve )

s=1 s=1

1 [p-1]
= (Vesllﬁi_) (s sw)+6 (115;_) Jw+dl JAw. (3.14)
s=1

We proceed in the computation of (3.14) and compute X" (V,, Ilail)l”‘”(es 1 w).
Using the fact that AlP] = 211 €1 A (A(e) ) for any symmetric tensor A, we compute
with the help of Equation (A.2) in the appendix

Zn: (Ve.v”a;i)[P—l] (es a 0.)) = Zn: e N ((Ves”f)ii) (el) 1€¢ 1 a))
1

s=1 ,s5=1

= Zn: e N ((Vezﬂaii) (e5) aeg w)

1,s=1

n

_ Z e; N\ ((II(V§:+”,H;[)L) (e5) aeg 2 u))

l,s=1

(3.15)

n

+ Z e; N ((II(VR"“"BL )L) (el) J€g a w) .
1 e

l,s=
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The first two sums vanish identically, since ), A(es) 2 €5 o w = 0 for any symmetric
endomorphism A. Hence with the help of Equation (A.4), Equality (3.15) reduces to

n n

lp-1]
Z (Veslla)%i) (5 sw) =— Z e; N (II”(esﬂzc-,-)(el) J€g5 1 w)

s=1

I
|
-

M= %
NgE
—_——
~
—_—
o

1)
SN —
?s
=
2

>

~
~
=
—~
2
p—

L

o

1)

L

S
&

m
=Yl (nfu (f’f,-) Jw), (3.16)

a=1
where {f,.. fm} is an orthonormal frame of T+ M. In the last equality, we used again
the expression AP = 3, ¢; A (A(e;) 1) for any symmetric endomorphism A. Hence after

replacing Equations (A.3), proved in the appendix, and (3.16) into Equation (3.14), we
finally get

Aot o)
- _Zes R (e 0T ) =2 (Mg e4) 5 (Vo)
o Sy o 7)o
+(Z,,;a@;)_nd«g,%»_n,,ﬁ(a;))“,Ha;m,,,
Zesm(es, M- 22(1@ e) 3 (Vo0
S ) s (o () <y 62)) et 20 0

-1, (oF) Jw+211fa (of) s il - ZZ(]IBJ.E )+ (Ve,0)

s=1
m

+ 3l (00) s i+ (—nd (.05 )) - it (91 )) s+ 0% 5 Aw

a=1
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= 21,5 (0F) sw+2 Y iy, (9%) 5 M0 =2 (s e4) 5 (Vo)
a=1

s=1

—n(d (<I:Ivc');>)) _na)+6£ 1 Aw.

In the second equality, we used again the relation ALP~1(X sa) = X JAPla — A(X) L@
for any p-form @ and X € TM, and in the third equality, we used Proposition A.3 in
the appendix. Equation (3.17), along with (3.9) and (3.10), gives the result, by using
Inequality (3.5). O

In general, it is difficult to control all the terms in Inequality (3.4) in order to compare
q1,p—1 and g _p. Therefore, we shall restrict ourselves to the case when M is a domain in
S™. We have the following result:

Theorem 3.9. Let (M", g) be a compact Riemannian manifold with smooth boundary. If
M is a domain in S, then we have that

Pq1,p-1 + (n —P)CIl,p+1 < Cp,nql,p’ (318)

where C, , is some constant that depends on p and n and whose explicit expression is
given in (3.23).

Proof. We consider the isometric immersion M C S" «— R™! In this case, we have
that m = 1, the orthonormal basis of 7+ M reduces to the inward unit vector field
:’:* 1] x;0y,, the second fundamental form is given by Il = Id and H = v. Therefore,

Inequality (3.4) becomes

v=-

parp-r [ (1vsdoP +10 Go)) dug
oM
n+1

2
< Z'/M 2p —2n)6xTi 1w+ 2(0%, Vyow — nd ((v, 05 )) Jw+6£, 1 Aw| dpg.
i=1
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Now, an elementary computation shows that d({v, 6;,)) = —8;. Therefore, the above
inequality reduces to

Pq1,p-1 / (Iv adwl? + |L*(6w)|2) dug
oM
n+1

<2 [ Nep=mal swe 2008760+ o 2 a0
i=1
= / ((217 —n)?plwl* +4|6w|* + plAw|* + 2p(2p - n)(w, Aw))dug (3.19)
M
= / (4|6a)|2 +plAw+ (2p - n)w|2) dug.
M

Here, we use Identity (3.8) and that

n+l n+l
Z (6;,7) <(9£ Jw, 6w> = Z(ﬁxi,ﬂ (8; 1w, 6a)> = <VT Jw, 6w> =0.

i=1 i=1

The same argument applies to Z:‘:ll 8;, VY {dw, 6£, 1 Aw) = 0. Since Inequality (3.19) is
true for any p-eigenform w, we apply it to the (n — p)-eigenform =, w to get

(n = P)q1nep-1 / (1 G + Iy 2 dwl?) deg
oM
g/ (4|dw|2+(n—p)|Aw+(2n—2p—n)wlz)d,ug. (3.20)
M

Summing inequalities (3.19) and (3.20) and using the fact that g1 ,—p-1 = g1,p+1 yield
the following:

(parpe+ = Plarp) [ (Iv 3 dof + 16 G
oM
< / (4|da)|2 + 4|(5<u|2 +plAw+ (2p — n)a)|2 +(n-p)lAw+ (n- 2p)w|2) dug
M

- / (448 ) + plAw + 2p = P + (n - p)lAw + (1~ 2p)wl?) dug. (3.21)
M

Here, we used the fact that fM<Aw, wydug = fM(Ida)I2 +]0w|?)du, as a consequence of
the boundary condition w),,, = 0. Now, the Bochner formula applied to the eigenform w,

with the help of the pointwise inequality |Va|> > ﬁ [da|? + n_lp — |6a|* which is true
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for any p-form « [7, Lem. 6.8], gives that

/ (Aw, w)du,
M

1
:/ |V<u|2d/,tg+—/ A(|w|2)d/1g+/ <W1[Vf]w,w>d,ug
M 2Jm M

1
> [dw)? + [6w|?) du +/ (Vyw,w)du +/ p(n—p)lwl*du
/M a(p,n) ( ) § oM Y § M #

1
- [ v+ [ pn-plofau.
a(p.n) Ju M
Here, we have set a(p,n) = max(p + 1,n — p + 1) and used the fact that the Bochner
operator WMJJ is equal to p(n — p) Id on the round sphere S”, see e.g. [7, Cor. 2.6] and [7,

Rem. 6.15]. Thus, we deduce that

1
P =Pl < (1= 20 [ dworan

1
<|1- A ,
(1= 20 1tz oz

so that

a(p,n) -1
p(n—p)a(p,n)
Coming back to Inequality (3.21) and using again the Cauchy—Schwarz inequality as well

as the estimate ||« +ﬂ||iz(M) < 2(||a||iz(M) + ”’8”2LZ(M))’ we obtain

lollz2ay < lAwIl 2 a1y - (3.22)

P11+ 0= parp) [ (1v2doP +10 G di
M

< HlAwll 2 llwll L2 ar) + 2P||Aw||iz(M) +2p(2p - n)ZIIwIIZLz(M)

(32

22) 5
< C(p5 n)”Aw”LZ(M)’

where C(p, n) is the constant given by
a(p,n) -1
p(n—p)a(p,n)
2 2 Cl(p, I’l) -1 :
+ (217(217 -n)"+2(n-p)(n-2p) ) (m) (3.23)

a(p,n) -1 )2
p(n—p)a(p.n)|

C(p,n)=4

a(p,n)—1

_ 32
= p—(n—p)a(p,n)+2n+2n(2p n) (
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Finally Characterization (2.9) allows to get the result. Notice that, if (3.18) were an
equality, then by the limiting case in the Cauchy—Schwarz inequality, the form Aw would
be parallel to w. But by A’w = 0, this would imply that Aw = 0. Because of Wz =0,
we would deduce from [1] that w = 0 on M, which is a contradiction. Therefore, (3.18)
always remains strict. o

4. Robin vs. Dirichlet and Neumann eigenvalue problems

In this section, we will establish estimates for the Robin eigenvalue problem on differential
forms defined in [4]. We mainly generalize some results in [13] to differential forms.
For this purpose, we recall the Robin problem on forms. Let (M", g) be a compact
Riemannian manifold with smooth boundary d M. Fix a real number 7. Then the boundary
value problem [4]

Aw=Aw onM

F(vaidw-1tw)=0 ondM 4.1)
vaiw=0 on OM

is elliptic and self-adjoint. Note that, when 7 < 0 and A = 0, a nonzero p-form w on M
satisfying (4.1) is nothing but a Steklov-eigenform associated with the eigenvalue —7.
Problem (4.1) admits an increasing unbounded sequence of real eigenvalues with finite
multiplicities

/ll’p(T) < /lz’p(‘[') <...

where A1 ,(7) > 0 as soon as 7 > 0, which we assume from now on. The first eigenvalue
A1,p (1) of the Robin boundary problem (4.1) can be characterized as follows:

/(|dw|2+|6w|2)dyg+7/ I wlPdug
M oM

: ,
[ 1P,
M

where w runs over all non-identically vanishing p-forms on M such that v 1 w = 0. When
the parameter 7 tends to 0, the Robin problem (4.1) reduces to the Neumann boundary
problem, that is

A1,p(7) = inf

4.2)

Aw=Aw onM
vadw=0 on oM 4.3)
viw=0 on dM.

Notice that the first eigenvalue /111\7 » of (4.3) is nonnegative and the kernel of the
operator (4.3) is isomorphic to the so-called absolute de Rham cohomology, which is
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defined by
HY (M) ={w € Q" (M) |dw = 6w =0onM and v s w =0on dM} .

When 7 — oo, the Robin problem (4.1) reduces to the Dirichlet boundary problem

“4.4)

Aw=Aw onM
w=0 on OM.

By [1], the first eigenvalue A{)p of problem (4.4) is positive. We also have the estimate [4,
Prop. 5.4]

Ay, < p(n)<ap,.

In the following, we will establish another estimates for A1 , (7) in terms of the Neumann
and Dirichlet ones. We have:

Theorem 4.1. Let (M", g) be a compact Riemannian manifold with smooth boundary.
We have the following estimates for the first eigenvalue of the Robin boundary problem:

(1) Assume that the absolute de Rham cohomology Hi (M) does not vanish. We
denote by wp an eigenform of the Dirichlet boundary problem associated to /llD’p
and let wq be the orthogonal projection of wp on the space H g(M ), assumed to
be nonzero. Then

L el
/l]’P(T) B /llD’p T”wO”iZ(aM)

(2) Assume that the first eigenvalue /lf{p of the Neumann boundary problem is
positive, then

D N
1 1 TN (/ll,p b /ll,p)

- > _
=N
Ap(T) /l]’p ’ljlvp (TaN/lle + /livp (/l?p - ’ljlvp))

s

where

2
||(1)N ||L2((9M)

2
L2(M)

anN =
lonll

and wy is being an eigenform of the Neumann boundary problem associated
to /l{" .
P

218



Biharmonic Steklov operator on differential forms

Proof. We begin with the proof of the first point. Let wp be a p-eigenform associated
to the first eigenvalue /l?p that is assumed to be of L?-norm equal to 1. Let wq be the
orthogonal projection of wp to H f{ (M). For any real number ¢, we consider the p-form

Wy = wWp +1wg.

Clearly, we have that v 1 w,; = 0. Therefore, by the characterization of the first eigenvalue
A1,p (1), we have that

[ (1o +160,) aug 47 [ Pt
M oM

/ o P
M

By the definition of the form w, we have that

/ll,p(‘l') <

=20

2 2 2 2
||dwl‘” + ”(Swl 1,p’ ”wt”LZ(aM) =t ”U’)O”LZ(BM)'

2
LZ(M) ||L2(M)

Also, we have that
2 2 2 2
||wt||L2(M) = 1 +t ”wO“LZ(M) + 2t||w0”L2(M)

The last term comes from the fact that wy is the orthogonal projection of wp. Thus by
plugging in the above inequality, we get that

D 2 2
/l],P+t T”wO”LZ(aM)
/11’],(‘1') < 5 ) 3 .
L+ 2llwoll, ) +2llwolZ )

L*(M)

2

2
t
Tllonlls )

Now, we take the inverse of this last inequality, then add and subtract the term
Lp
in the numerator to find that

) R LY
| P ol - | 2l
- > —
— 3D D 2 2
/ll,p(T) /ll,p Al,p +t T”wO”LZ(aM)

Since this is true for any real number ¢, we deduce that ﬁ > /1% + supg (f), where
P Lp

f is the function given by

Tllwoll?, .
2 2 _ L2(0M) 2
t (“wO“LZ(M) /lle _) +2t“(1)0||L2(M) At2 +Bt
f@)= : =
D 2 2 2
/11,[7 +1 T||w0||L2<aM) Ct?’+D
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with

7100123 g,

2 2
A= ol ) = =5 B =2lwol2: ).
Lp
2 D
C:T”wO”LZ(aM)’ D :/ll,p'
. NAZDZ+B2CD .
The supremum of f can be checked to be attained at 7y = W and is equal to

2C
to(Atg + B) _ to(Atg + B) _ Bty _ A+ VA2+ BT

sup f = f(ty) = = Y
RPf ) CZ+D  MDu,p.p 2D 2C

Now, by replacing A, B, C and D by their values, we estimate

B*C
AT
2 2 4 2
(”w ”2 T”wOHLZ(BM) + 4||w0||L2(M)T||wO||L2(BM)
= 0llz2 M) - D D
( ap, ap,
2
Tllwoll?,
2 L*(0M) 4 8 6
= (“wOHLZ(M) - T - 2”(")0”L2(M) - 4“0')0”L2(M) +4“w0”L2(M)
Lp
2
llwoll?,
2 L>(0M) 4
> (”wOHLZ(M) - T - 2||w0||L2(M) 5
Lp
since ”‘”0”2LZ(M) < ”wDHZLZ(M) = 1. Then
5 Tllwollsz(aM) 2 Tllwol\ZLz(aM) 4
llwolly ) = vt llwolly sy = —w - 2llwolly 2 pp)
sup f > . .
Pz 2ellwoll?
R 01l 2 am)
lewoll?
= —2.
TleollZ: ar)

This shows the required estimate. To prove the second inequality, let wp (resp. wy)
an eigenform of the Dirichlet (resp. Neumann) boundary problem associated to /l?p

(resp. /111\,/,7) such that ||wp||z2(p) = lonl2(p) = 1. For any nonnegative number s, we
consider the p-form wy = swp + wy, which clearly satisfies v 1 ws = 0. In order to use
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the Rayleigh inequality for the eigenvalue A1 ,(7), we compute

[ (1P + 15, 7) ag
M
- s2/ (|de|2+ |5<UD|2) dug +/ (|dwN|2+ léwNIz) dug
M M

+2s/ (da)D,da)N>d,ug+2s/ (dwp,dwy)dug
M M

_ 23D N N
=574, + A1, +2s/ll’p(wD,wN)Lz(M).

In the last equality, we use the Stokes formula. Also, we have

2 2

”wS”LZ(aM) = ||wN||L2(aM)

and ||cus||i2 =5’ +1 +25(wp, WN)2(M)-

(M)

Therefore, after replacing we get that

2,D N N 2
s /ll’p +/11’p + 2s/11’p(wD,wN)L2(M) + T”(‘)N”U(aM)
/11,,17(7) < .

52+ 1+2s(wp, wN) 2 (m)

As we did before, we take the inverse of this last inequality, then add and subtract the term

2

23D
K Al,p +T||w“L2(6M)

N
/ll,P

in the numerator to get that

ap
S2 1-— }\}p _ TZN
1 1 /11,]) 1

1L.p

+ )
=N 2D N N
A1,p(7) Ay, 27, AT 2540 +Tan

Here, we also use the fact that [(wp, wn) 2| < 1 by the Cauchy-Schwarz inequality
and the fact that s > 0. In order to get the lower bound, we need to compute the supremum
of the function g which is given by

As’+B
g(s) =
Cs*+Ds+E
with
/lD
1,p TN
A=1- B=-
N N °
/ll,p /11,17
D N N
C:l]’p, D:Z/ll,p, E:/ll’p+‘ra/N.
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A direct computation shows that the supremum of the function g is attained at s = - ~ ‘3‘1’ =

1,p L.p
and thus

D N
TN (/ll’p - /ll,p)
supg(g) = g(s2) = - N 5 ~ (D M
I (mNALp S (/11”, - ALP))

This finishes the proof of the Theorem 4.1. O

In the following result, we will give a gap inequality between the eigenvalues of the
Robin Laplacian under some curvature conditions. Let (M", g) be a Riemannian manifold
with smooth boundary and let n;(x),n2(x),...,n,-1(x) be the principal curvatures
at a point x of the boundary (i.e. eigenvalues of the second fundamental form of the
Weingarten tensor S). We assume that 171 (x) < n2(x) < --- < 17,—1(x). For any integer

p € {1,...,n—1},the p-curvatures o, (x) are defined as o, (x) = 171 (x)+- - -+1, (x). One
can easily check that for any integer p and ¢ with p < g, we have that J”T(x) < U"T(x) with
equality if and only if 51 (x) = n2(x) = - -- = 4 (x). Hence, we deduce that H > Zpl)
for any integer p € {1,...,n — 1}. In the next theorem, we set
= inf
7 = inf, 700
We state the result which generalizes [4, Thm. 5.8].
Theorem 4.2. Let M be a compact domain in R™. Fix an integer numberq € {1,...,n—1}

and Let w be a g-eigenform of the Robin Laplacian. If o, > 0 for some p < q, then we
have

Proof. We mainly follow the same computations as in [4, Thm. 5.8]. Let w be a g-
eigenform of the Robin Laplacian and, for any p < ¢, consider the (¢ — p)-form

Biy,.ip = axi] NERR Jﬁx,.p aw, forig =1,...,nwithk =1,..., p. Clearly, we have that
v 1 éiy,....i, = 0. Hence by the characterization (4.2) of the first eigenvalue, we get that
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Next we sum over iy, ...,i,. We begin with the 1.h.s. Applying successively (3.8), we
have

S il = S oy a0, a0
iy ieip 4.6)
— (= (p=1) g 0P = =Ll
(g -p)!
For the r.h.s., we first compute
238 (g-1)!

lswl>.  (4.7)

0xil_|~~-_|(9xip_l§a) = m

In order to compute the term 33; ip [dgi,.....i,, |2, we proceed as in Equation (3.6). Using
repeatedly the identity d(X 1 @) = Vxa — X 1 da, true for any parallel vector field X, we
get

P
d¢i1 .... il’ = (_l)anil A 6/\'1‘17 | d(l)+ Z(_l)l+laxil NI 6xil A1 6/\'1‘17 . Vax,-l w.
Thus, we find that the sum 3, ; 1d$i, cdors.iy, |? is equal to
2
> |ow, 4t de) Z( D10, 3. a8, 4. ady,, Vo, @
il ,,,,, ilJ ..... ll’

1+1 '’
+2(-1)? Z Z( 1) < iy 4 ._l(()x’.p adow, ax,.l a.. .Jaxi[ a.. ._l(()x’.p "Vaxi, w>

38) (q+1)- ldw?
(g+1-p)!

+ Z Z<axi14 xip - Jﬁxl JV@ w ax coad xil_l...Jaxip_lVaXila)>

.....

l+s
-2 Z (-1 < iy 4 .Jaxil J.. ._IBX,.p "Vaxil w, (9in a.. ._15)% a.. ._.axip "Vaxis w>

p
-2 Z Z <6in d... 6in d.. ._16x,.p J(@xil Jda)), 6in d e d0x A ._IOX,.I, JV[)XW a)>

[1s0nes ip I=1
(g+1-p)! (g=p+1D!
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=2 3 (@=D=(p=3)... (g~ {0y, +Va, @0y, Vs, )

i]nsip
l<s

rq! 2
“gpennel

In this lenghty computation, we used the fact that }};(dy, 1 @, dx, 1 B) = p{a, B) for any
p-forms @ and B. We also make use of the formula d = }}; dx, A Vaxl, Now, one can
easily check by using the expression of d and V that the sum term in the above equality is
equal to

Z. Z <0xis a Vaxl', w, 6in a Vax,_s w> = (127) (|Vw|2 _ |da)|2) .

[]yeees ip I<s

Hence, after simplifying, we find that

- 1! - 1!
. Z dei,.....i, ’2 = %W(DP + %MMZ- 4.8)

Plugging Equalities (4.6), (4.7) and (4.8) into Inequality (4.5) yields after simplifying by
(g=1)!
(g-p)!

Ag-p(D)d f P dug
M

< p/ |Vu)|2d,ug + (g —p)/ (lda)l2 + |6a)|2) dug +Tq/ |a)|2dug. 4.9)
M M oM

Now the Bochner formula A = V*V + WzEj ] applied to the form w gives after integrating
that

A14(7) / lw|*dug = / (Aw, wydug = / [Vl dug + / (Vyw, wydug.
M M M oM

By using (V,w, w) = (S191 (i w), *w) + T|w|* as proved in [9], we get that

[ 1vobaug = aug0) [ 1oPaue - [ ({5000 00) 4 tiof) du.
M M oM
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Plugging this last equality into Inequality (4.9), we get after using the pointwise inequality
(Slal(rw), Fw) > 0'q|a)|2 that

Agep(D)d / o Pdug
M

<A@ [ JoPdu=p [ (o loPdng
M oM

+<q—p)(al,q<r> / 2w - 7 / |w|2dﬂg)+rq f l2dug
M oM oM

~g14(0) [ loPdug - poy [ JoPaug
M oM

I e

In the last inequality, we used the fact that % < % This finishes the proof of the

Theorem 4.2. O

5. Robin and Steklov operators vs. biharmonic Steklov

In this section, we relate the eigenvalues of the Robin problem to those of the biharmonic
Steklov operator. This extends the result stated in [13, Thm. 1.17] for functions.

Theorem 5.1. Let (M", g) be a compact Riemannian manifold with smooth boundary.
We have for any T > 0 the estimate

1 - 1 N 1
A1,p(7) /11D’p Tq1,p

where /11D » is the first eigenvalue of the Dirichlet boundary problem (4.4).

Proof. We mainly follow the computations done in [13, Thm. 1.17]. Let w be an eigenform
of the Robin boundary problem (4.1) associated to 1;_, (7). We denote by w; a solution

to the problem
Aw; =0 on M

fwr=Cw ondM 5.1
vaiw; =0 on oM.

Notice that such a problem admits a unique solution by [23]. Now, let us consider the
p-form w; := w — w. It clearly satisfies

{sz =Aw onM

5.2)
wy; =0 on oM.
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By using the triangle inequality, the characterization (2.10) and the one of the first
eigenvalue /l?p of the Dirichlet problem (corresponding to T — oo in (4.2)), we have

lollz2ary < llwillzzary + llw2llz2ar)

-1 %
aiblorllzomn + 4 (0,) (1d02la )+ 160202000 ) T (53

1
2

arlolzonn + (12,) (190120 + 16612 )

Indeed, ||w1llr2(am) = llwll 12 (am) since wz =0 on M and

w132y, + 161l

L2(M) L2(M)

- ”d(/.)1||L2(M) + ”d(l.)2||L2(M) + 2(da)1, dw2)LZ(M) + ”6(’-)1”%2(1\4)

+ ||6w2|| +2(6a)],6u)2)Lz(M)

L*(M)

- ”deHLZ(M) + I|6w1||L2(M) + ”dw2||L2(M) + ”(50.)2“%2(1‘4)

+2/ (6da)1,w2)d/1g—2/ (v adwy, Cwr)dpug
M M

2/ (déwl,wz)dug+2/ (("6w1,v 1 wr)dug

2
= 1dwill7 2 gy + 16011172 5, + I1d2ll72 ) + 1602117

(M) (M) (M) (M)

> ||ldw2l72 p, + 160217

L2(M) LX(M)"

Now, we square both sides of Inequality (5.3) to write

11122 (0p) < a1 10122 0 + (A?,,,) (140l ) + 1501122 )

1

+2 (q1 L (2,) 101 g, (106012 g, + ||6w||L2(M)))2
< g 10 g+ (10,) (1012 g, + ||6w||L2(M))
)7, (190112 g, + 10122000 ) + 7 (22,) 1003 0
= (r-lq;,; +(®,) ) (1401122 3 + 1601122 0+ TIIE 2 01 ) -

In the second above inequality, we use the fact that 2Vab < £ + b for any real positive 7.
The characterization (4.2) allows to deduce the inequality in the broad sense. Moreover,
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if that inequality were an equality, then w, would be a /l? p—Dirichlet—eigenform. But then

A, = Ap(T)
wp = Ta)
Lp
would hold on M, which with Aw; = 0 would imply that Aw = 0 and hence w = 0,
contradiction. Therefore, the inequality must be strict. O

Now, we come back to the Serrin problem on forms. We will use the existence of
solution to this problem in harmonic domains carrying parallel forms to get an estimate
for the eigenvalues of the absolute Dirichlet-to-Neumann operator introduced in [21] (see
also [11]). Recall the definition of this operator. Let (M", g) be a compact Riemannian
manifold with smooth boundary M. Let p € {0,...,n — 1}. Given any p-form w on
OM, there exists a unique p-form @ on M such that [23]

Ab=0 onM
fo=w ondM (5.4)
vaw=0 ondM.
The form @ is usually called the harmonic tangential extension of w. The Dirichlet-
to-Neumann operator is then defined as TP1 : AP (M) — AP (OM), w — —v 1 d.
When p = 0, this operator reduces to the classical Dirichlet-to-Neumann operator on

functions, known as Steklov operator. It is shown in [21] that 717 is an elliptic self-adjoint
pseudo-differential operator with discrete spectrum consisting of eigenvalues

0<vip(M) <vyp,(M)<....

The kernel of this operator is isomorphic to the absolute de Rham cohomology H Z (M)
introduced in Section 4. The dual problem to (5.4) (w.r.t. the Hodge star operator) is called
the relative Dirichlet-to-Neumann operator and is defined by Tl[)p = (=1)P=1=P) s 50

TIn=1=pPly s, If vf’p (M) is the first eigenvalue of Tl , we have
VP, (M) =i poi-p(M).
Also, we have the following characterization [22] for the first eigenvalue Vle (M):

Sy (14617 +16¢1%) dug
/;9M |¢|2d:ug

Theorem 5.2. Let (M", g) be a compact Riemannian manifold with smooth boundary.
Assume that M is a harmonic domain and carries a parallel p-form for some p =

VP, (M) = inf{ ¢ e QP (M), ¢ = 0} ) (5.5)
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1,...,n— 1. If moreover op > 0 or oy_p > 0, then

Vol(0M)

min (vi p-1(M), vin-1-p(M)) < Vol(M)

Proof. Let w be any p-eigenform of the biharmonic Steklov operator associated to some
eigenvalue, say g. We let the (p + 1)-form ¢ := dw. Clearly, we have that ¢*¢ = 0. Hence,
by Characterization (5.5), we get that

vf”p(M)/a lv o dw|*dug s/ |6dw|*dpg. (5.6)
M M

Now, applying the same characterization (5.5) to d(*psw), since #psw is also an eigenform
of the biharmonic Steklov operator, yields the inequality

VP p (M) /6 . " 6w|*dug < /M |dSw|*dug. (5.7)

Summing Inequalities (5.6) and (5.7) yields

min(v?p(M),v{’n_p(M))/ (|v_|dw|2+|L*6a)|2) d,ugS/ (|6dw|2+|d5a)|2)d,ug.
’ ’ oM M

Now a direct computation using the Stokes formula and the boundary conditions on w
gives that

2
/ |Aw|*dpg = / (|d6a)|2 + |6dw|2) dug — —2/ (v 3 Aw, 6™ (0 Aw) ) dug.
M M q° Jom
Hence after plugging this equality into the above inequality, we deduce that

) 2 f <v 1 Aw, 6‘9M(L*Aw)> dug
min (VEP(M),VEH_,,(M)) <q+— oM 5 5 . (5.8)
q faM (Iv 5 dowl? + |t*6w|?) dug
Notice that this inequality is true for any eigenform w of the biharmonic Steklov operator.
From Theorem (3.6), we know that when M is a harmonic domain carrying a parallel
_ . . . . _ Vol(6M)
p-form wy, the form w = f - wy is an eigenform associated to the eigenvalue g = on
Hence, we will apply Inequality (5.8) to the particular form w = f - wy. For this purpose,

we will check the sign of the integral. Assume first that o,_,, > 0. We estimate

f <v 1 Aw, 66M(L*Aw)> dug = / (v 1 wo, (56M(t*w0)> dptg
oM oM

= /6M <v 1w, (S[p_” —(n-1H)v w0)>dyg

2 2
S‘/' ((O-nfl _O-nfp)|v—‘a)0| = On-1|v 2 wol )d,ng
oM

0.

IA
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In the second equality, we use the identity [20, Lem. 18]
M (Fwo) = v 2 Vywo + 1 (Swo) + S (v 5 wy) = (n = 1)Hy 2 wy.
Also, we use the pointwise estimate (SI”le, @) < (01 — cJ',,_p_])lal2 for any p-form
a. Hence, we deduce that
Vol(OM)
Vol(M)
Finally, the fact that vf)p(M) = Vi n-1-p(M) and v?n_p(M) = v1,p—1(M) finishes the
proof of the statement when oy,_, > 0. If o, > 0, then replacing p by n — p and by

invariance of parallel forms under the Hodge star operator on M, we obtain the same
inequality. This concludes the proof. O

min (v2, (M),v0,_, (1)) <

Remark 5.3. Notice that a similar estimate has been established in [21, Cor. 15] for
compact manifolds carrying parallel forms with the assumption Hﬁ (M) =HP(M)=0.
The inequality is
Vol(oM)
n-1-p (M) + M) £ ————=.
Vin-1-p(M) +v1 p-1(M) Vol (M)

Appendix A.

Lemma A.1. Let (M", g) be a compact Riemannian manifold with smooth boundary O M
and let v be the inward unit normal vector field to the boundary. Consider the following
boundary value problem

ANMw=f onM

Biw=w; ondoM

(A.1)
Byw=ws ondM

Biw =w3; onoM
for given f € QP (M), w1 € T(APT*M,,,,), wr € QP (OM) and w3 € QP (M) and
where if Ey == APT*M,,,,, E; = AP7IT*OM and Ez = APT*OM, By: QP (M) —
I'(Ey) such that Biw = w),,,, B2: QP (M) — T'(E») and B3: QP (M) — T'(E3) are
either:

(1) B, = "6w and Bz = v 1 dw. In this case, (A.1) is elliptic in the sense of
Lopatinskii—Shapiro (see [23, Def. 1.6.1]), self-adjoint and its kernel is reduced
to {0}. Or

(2) Byw :=v 1 Aw + qt* (dw) and B3w = *Aw — qv 1 dw for some real constant q.
In this case, problem (A.1) is elliptic in the sense of Lopatinskii-Shapiro.
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Proof. We denote by o2 and o, the principal symbols of the operators A? and B i
respectively, for j = 1,2,3. Given any v € T,dM \ {0} for a fixed x € M, we consider
the space

M := {bounded solutions y = y(¢) on R, to the ODE o2 ((—iv, d;))y = 0} .
A direct computation shows that
M = Span (e*‘vl’(at+ b)-woyla,beR, wy € APT;M|6M),

which is hence a space of dimension N := 2( ;). We look at the pointwise map

y = (o5, ((=iv,0,)y, o8, ((=iv,8))y, o5, ((=iv, 8,))y) (0)

which we want to show to be an isomorphism. Note already that space dimensions are
equal on both sides. Since o, ((—iv, d;)) =1d, o, ((=iv,0;)) = —=0; - v 1 - +iv 2"+ and
0B, ((=iv,0t)) = 0 - * +iv A (v 1 -), we obtain that, for any fixed wg € APTy M, the
element e~ "1 - wy of M (corresponding to @ = 0 and b = 1) is sent to (wo, |v|v 1w +
iv 2 wo, —|v|t*wo+iv A (v 1wp)); and that the element te~ V17 - wgy of M (corresponding
toa =1and b =0) is sent to (0, —v 1 wg, t*wp). Choosing a basis (a)(()l), cee w(()N)) of
APT:M, the basis (e vl -w(()l), e vl -w(()N),te‘|"|’ -w(()l), L te vl -a)(()N)) of
M will therefore be sent to a basis of @;:1 E ;. This shows the map M} — @3&1 E;
to be an isomorphism. Therefore the boundary value problem (A.1) is elliptic (see [23,
Def. 1.6.1]).

Using (2.3), it is easy to see that (A.1) is also self-adjoint. Moreover, the kernel
of (A.1) is reduced to {0}: namely, if w € QP (M) solves (A.1) with f = 0 as well as
w1 = wy = w3 = 0, then (2.4) implies that [|Aw||;2(p) = 0, from which w = 0 on M
follows using w),,, = 0.

As a consequence, fixing f = 0 as well as w; = 0, for any given (w;,w3) €
QP (OM) ® QP (OM), there exists a unique w € QP (M) solving (A.1). In particular,
w € Z, where, as in the proof of Theorem 2.3,

Z:={weQ”(M)|A*w=0 on M and wy,, =0}.

This shows the map Z — QP (M) @ QP (M), w — (v 1 dw, 1*6w), to be onto. This
proves 1.

Changing the boundary operators B, and B3z via Byw = v 1 Aw + qt*(dw) and
B3w := "Aw — qv 1 dw for some real contant ¢ (which actually plays no role since it
is only involved in the first-order-terms of the b.c. and not in their principal symbols),
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we still get elliptic boundary conditions for A%: for any v € T;0M \ {0}, the pointwise
map M} — @j.:] E; from above sends e~ "I" - wy to (wp, 0,0) and sends e~V - wy
to (0,2|v|v 1 wp, 2|v|t*wp), which shows that map to be an isomorphism. Therefore
B1, B>, B3 define elliptic boundary conditions for A2, this proves 2. |

Lemma A.2. Let M" — R™™ be an isometric immersion and let Il be the second
Sfundamental form of the immersion. For all X,Y € TM and N € T*M, we have

(VxIIN)(Y) = (VylIN)(X) = Hyon (X) + vy (Y), (A2)

where VyN := (V;R}mm N)* defines the normal connection on T+ M. As a consequence,
by writing 0y, = (9; + 0y foralli=1,...,n+m, the divergence of the endomorphism
lly: is equal to

m
5(llse,) = —nd ((ﬁ o >) —nllg(d) + > 1% (dT). (A3)
a=1
Here {f1, ..., fm} is a local orthonormal frame of T*M and H is the mean curvature

field of the immersion.

Proof. Let X, Y, Z be vector fields in T M that we assume to be parallel at some point in
M and let N € TM. We compute

(VxIIn)(Y,Z) = X(lIN(Y, Z))
= X(II(Y,Z),N)

Rnd—m

= <VX

= (V"X 2)N) + (11, 2), VW)

Rm

ny,z), N> + <II(Y, 7). V% N>

—Y(IIn(X,Z)) - <II(X, 2), VD§"+MN> + <II(Y, 2), V%‘}"””N>
= (VylIN)(X,Z) = llyin (X, Z) + lIyin (Y, Z).

In the fourth equality, we use the Codazzi equation for submanifolds in R"*™. Hence
we get Equality (A.2). To find Equation (A.3), we decompose 0y, = 6; + 05, for all
i =1,...,n+ m. Then from the parallelism of the vector dy, and the Gauss formula, we
get that

Vi ok = -V "ol = Vol - 11 (X.4%),

where V is the Levi-Civita connection on 7M. Thus, we deduce that

VLol = (VD;}"WB;)L = -1 (x.0%). (A4)
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The divergence of the endomorphism /l5: can be computed using Equation (A.2) with
N = (9;. For X € TM, we have

(11,% ) (X)

Mo ) (e5, X)

M= EM=

(v
(Ve\nal ) (X, es)

s=1
A2) n n
= - Z (VXH[ij;i) (em es) - Z HH(X,(?Z;[) (es, es) + Z IIII(eS,{)I[) (X’ ex)
s s=1 s=1
=X ((H.0%)) ~nitg (X.0% ) + > > (1 (0. 0L) . fu) CH(X. ), f)
a=1 s=1
= -nX ((,0%)) - nitg (01, %) + > ¢ (1, (0F) . 11, (0)
a=1
This ends the proof of the Lemma A.2. O

Proposition A.3. For any p-form w, the curvature term 3}\_, es 1 R(es, X)w is equal to
n m
Z es 2 R(es, X)w = — Z my,(X) o Ilj[cf]w + 11 5(X) 5w,

s=1 a=1

where {ei,...,e,} and {fi,..., fm} are respectively orthonormal basis of TM and
T+M.

Proof. In order to compute the curvature term, we use the Gauf} equation. Indeed, for any
X,Y,Z,T € TM we have

R(X,Y,Z,T)=-{l(X,Z),H(Y,T)) +I(X,T),lI(Y, Z)),

which can be equivalently written as

RX.Y)Z == gy, (X), 2) 5, (Y) + ) g5, (V) 2) 1, (X).

a=1 a=1
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Now, due to linearity, we can consider that w of the forme;, A---Ae ip- Then, we compute

n

Zes JR(es, X)w
s=1
n p
= Zes_u(eil/\--~/\R(eS,X)eij/\---/\e,-p)
s=1 j=1
m n 14
= _Z Zg(llfa(es),e[j)es 1 e; /\"-/\IIfH(X)/\~~~/\e,~P
a=1 s=1 j=1 —
jrh
m n 2
+Z Zg(]lfa(X),eij)es aleig ANy, (e) A--- Ney,
a=1 s=1 j=1 ——

jth

3

.M@

(-DFg ([Ifa(es)3eij)5sikeil NesoNeg N AN (X) A2 A €ip
1

s

Q
Il
n
o
1l
i
s
5

J

BN

M‘

(=1)/*g ([]fa(es),e,-j)g (Hp,(X),es) e A= A&, A Aej,

>,
a=1 s=1 j=1
m n p
T =D U, (X), er)bsien A AT A Mg (e5) A A,
a=1 s=1 k,j=1
k%)
m n P .
+ Z Z(—I)J”g (IIfa(X), eij) g Uy, (es),es) e A Nei, A-- Nej,.
a=1 s=1 j=1

By using the symmetry of the second fundamental form, the above computation reduces
to

n

Zes JR(eg, X)w

s=1
m )4
==y Z (—1)k+g (Ilfa(eik), eij) en N AT A AL (X) A Ae,
a=1 ]=1

J

Ms
M“ i

(-1)/*'g (II%H(X),e,-j) ey N ANei, Ao Nej,

Q
]
~.
Il
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+ (—1)k+1g (Ilfu(X),eij)e,-] Ao Nejg Ao N g (eg,) AN,

1

1l
—

M=
'M“

a

k,j
k#

~.

m P
NN (nnﬁ(X),eij) e N AT A Ay,

a=1 j=1

Now, we prove that the first sum vanishes. Indeed, by decomposing with respect to k < j
and k > j, itis equal to

Z(—l)k+1g (Ilfa(eik),el-j)e,-l AN NG Ao N (X) N+ Nej,
k<j

+ Z (-1)*1g (nfa(el-k),eij) ei, Ao NI (X) N Ny A+ Nej,

k>j
= Z(—l)k+j_lg (Ilfa(eik),eij)llfa(X) ANey A== Nej N A N+ Aej,
k<j
+ Z(—l)k+jg (Ilfu(e,-k),eij)Ilfa(X) Neiy N Nejg Ao Nej Ao- Nej,
k>j

=0.

a=

In the same way, we prove that the third sum is to — 3, II][CP -1 (¢, (X) 1 w). Indeed,
it is equal to

Z(—l)k”g (Ilfa(X),el-j) (eil Ao Neg Ao Ny, (e4,) /\-~~/\e,~P)
k<j

+ Z(—l)"“g (Ilfa(X),eij) (e[] AN (e ) N+ Neg, /\"-/\el-p)

k>j
— Z(_l)k+1+j—k—1g (IIfG(X)7€ij) (eil /\"’/\Hfa(eik) Ao A a.j A A ei,,)
k<j
# Y (DEIHET e (11 (X), 1, ) (e e Iy (e :
g\ s, (X),ei;) \eiy Aoo-Nej, A N g, (e ) N+ Nej,
k>j
= Z(—l)fg (IIfa(X),el'j) (el-] Ao Ng, (e ) A Ae, /\---/\el-p)
k<j

+ Z(—l)fg (Ilfa(X),el‘j) (ei1 Ao Neg A N, (eqy) /\---/\e,-p)
k>j

=P (1, (X) s w).
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In the last equality, AIP1(X; A --- A Xp) = 5):1 Xt Ao NA(X;) Ao+ A X is used
again for any tangent vector fields X, ... X, on M. Therefore, we deduce that

m
Z es 1 R(es, X)w = — Z 13 (X) aw - Z 11}5‘” (s, (X) sw)+ 1, 7(X) 5w

n m
=1

—_

s=1

Q

a

Mz

g, (X) 2 Ij[f’]w +11,5(X) 5 w.

1l
—_

a

In the last equality, we used the identity AlP~11(X Ja) =X s AlPla —A(X) . O
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