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Biharmonic Steklov operator on differential forms
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Nicolas Ginoux
Georges Habib
Ola Makhoul

Abstract

We introduce the biharmonic Steklov problem on differential forms by considering suitable boundary
conditions. We characterize its smallest eigenvalue and prove elementary properties of the spectrum. We
obtain various estimates for the first eigenvalue, some of which involve eigenvalues of other problems
such as the Dirichlet, Neumann, Robin and Steklov ones. Independently, new inequalities relating the
eigenvalues of the latter problems are proved.

Opérateur de Steklov biharmonique sur les formes différentielles
Résumé

Nous introduisons le problème de Steklov biharmonique sur les formes différentielles en considérant
des conditions de bord adaptées. Nous caractérisons sa plus petite valeur propre et établissons des
propriétés élémentaires de son spectre. Nous obtenons des estimations diverses de la première valeur
propre, dont certaines font intervenir des valeurs propres d’autres problèmes tels que ceux de Dirichlet,
de Neumann, de Robin et de Steklov. Indépendamment, nous montrons de nouvelles inégalités reliant les
valeurs propres de ces derniers problèmes.

1. Introduction

Let (𝑀𝑛, 𝑔) be an 𝑛-dimensional compact Riemannian manifold with nonempty smooth
boundary 𝜕𝑀. Denote by 𝜈 the inward unit vector field normal to the boundary and
by Δ 𝑓 := − tr(∇2 𝑓 ) the Laplace operator applied to a smooth function 𝑓 on 𝑀. The
following fourth order eigenvalue boundary problem

Δ2 𝑓 = 0 on 𝑀

𝑓 = 0 on 𝜕𝑀

Δ 𝑓 − 𝑞 𝜕 𝑓
𝜕𝜈

= 0 on 𝜕𝑀,

(1.1)
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also called biharmonic Steklov problem I, or biharmonic Steklov for simplicity, was first
introduced by Kuttler and Sigillito [16] and Payne [19]. Its physical interpretation in
terms of the deformation of an elastic plate under the action of transversal forces can
be found in e.g. [6, p. 316] and [25, p. 2637]. When 𝑀 is a bounded domain in R𝑛, the
spectrum of this problem has been studied in [6] and proved to be discrete consisting of
positive eigenvalues of finite multiplicities (see also [2] for the case when the boundary is
not smooth). Variational characterizations of the first eigenvalue 𝑞1 have been also given
in [6] (see also [15]). Moreover, in the case of a ball, the spectrum has been calculated
explicitly.

In the case of a compact 𝑛-dimensional Riemannian manifold 𝑀 with smooth boundary
𝜕𝑀, sharp estimates for the first eigenvalue 𝑞1 of the biharmonic Steklov operator are
given in [25] and [22]. It is shown that

𝑞1 ≤ Vol(𝜕𝑀)
Vol(𝑀) . (1.2)

In [22, Thm. 2], Raulot and Savo proved that, if 𝑀 is a geodesic ball in a space form,
then (1.2) is an equality (see also [25, Thm. 1.3]). Under some assumptions on the Ricci
curvature of 𝑀 and if the mean curvature of the boundary is bounded below by a positive
constant 𝐻0, then the first eigenvalue 𝑞1 also satisfies

𝑞1 ≥ 𝑛𝐻0.

Moreover, equality holds if and only if 𝑀 is isometric to a ball of radius 1
𝐻0

in R𝑛 (see [25,
Thm. 1.2] and [22, Thm. 2]). For other recent results on the biharmonic Steklov eigenvalue
problem, we refer to [8, 10] and the references listed therein.

On the other hand, recall that a compact Riemannian manifold 𝑀 with smooth
nonempty boundary 𝜕𝑀 is called a harmonic domain [21, p. 893] if and only if it supports
a (necessarily unique) solution 𝑓 to the Serrin boundary value problem

Δ 𝑓 = 1 on 𝑀
𝑓 = 0 on 𝜕𝑀

𝜕𝜈 𝑓 = 𝑐 on 𝜕𝑀
(1.3)

for some constant 𝑐 ∈ R. From [24, 26], we know that the only harmonic domains in R𝑛

are the Euclidean balls of radius 𝑛𝑐 = 𝑛Vol(𝑀 )
Vol(𝜕𝑀 ) . Independently, it is not difficult to check

that a solution to the Serrin problem (1.3) is an eigenfunction of (1.1).
The aim of this paper is first to extend the biharmonic Steklov problem (1.1) to the

context of differential forms. As we mentioned above, there is a relationship between
problems (1.1) and (1.3), hence the idea is to also define the Serrin problem on differential
forms. For this purpose, we assume that the manifold 𝑀 carries a non-trivial parallel
form and introduce the generalization of (1.3) (see (2.1)). In this case, we show that
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𝑀 is a harmonic domain if and only if there exists on 𝑀 a solution to (2.1). Also in
Section 2, we provide a natural extension of problem (1.1) to the case of differential forms
(problem (2.2)). Applying the techniques used in [6] by Ferrero, Gazzola and Weth, we
show in Theorem 2.3 that problem (2.2) has a discrete spectrum consisting of a countable
number of positive eigenvalues of finite multiplicities. This involves proving the ellipticity
of problem (A.1) (see Lemma A.1 in the appendix). Moreover, we give two variational
characterizations of the first eigenvalue of this problem (Theorem 2.6) which will be
useful to establish inequalities in the sequel.

In Section 3, we obtain different estimates regarding the eigenvalues of problem (2.2).
As a preliminary step, we prove an interesting property of that problem, namely its
invariance by the Hodge star operator. On the other hand, under curvature assumptions,
using a previous result by Raulot and Savo [22, Thm. 10], we derive a lower bound (3.1)
for the first eigenvalue 𝑞1, 𝑝, which generalizes the estimates [25, Thm. 1.2] and [22,
Thm. 2]. On the other hand, when the manifold 𝑀 supports a non-trivial parallel 𝑝-form,
we show that

𝑞1, 𝑝 ≤ Vol(𝜕𝑀)
Vol(𝑀) ,

with equality if and only if 𝑀 is a harmonic domain. Note that there is no reason for a
harmonic domain to admit a nontrivial parallel 𝑝-form for some 𝑝 ≥ 1. Surprisingly, when
𝑀 is a domain of R𝑛, the eigenvalues of the biharmonic Steklov problem on differential
forms are the same as those of the scalar problem, without taking into consideration their
multiplicities. It should be noted that the same type of result is true for the eigenvalues
of the Dirichlet problem. We end Section 3 with an inequality relating the eigenvalues
corresponding to degrees 𝑝 − 1, 𝑝 and 𝑝 + 1 on the sphere. That inequality is established
by first proving a more general result when 𝑀 is isometrically immersed in a Euclidean
space and by using the variational characterization (2.9) of the first eigenvalue. The
computations involved in these results being rather technical, we place the details in the
appendix (Lemma A.2 and Proposition A.3) to lighten the text.

In Sections 4 and 5, we establish several bounds concerning the eigenvalues of various
differential operators, again using variational characterizations. For example, we give
estimates involving the eigenvalues of the Robin eigenvalue problem (4.1) introduced
in [4] and those of Neumann (4.3), Dirichlet (4.4), biharmonic Steklov (2.2) eigenvalue
problems on differential forms (Theorems 4.1 and 5.1). Note that similar results are known
in the case of scalar problems (see [13, Thm. 1.17]). In Theorem 4.2, we also give an
estimate, under some curvature condition along the boundary, for the difference between
the first eigenvalues of the Robin problem on 𝑞 and (𝑞 − 𝑝)-forms, for some 𝑝 and 𝑞 such
that 𝑝 ≤ 𝑞.
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Other inequalities involving eigenvalues of the Steklov problem on forms (see Section 5)
are obtained using properties already established for the eigenvalues and eigenforms of
problem (2.2).
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2. Biharmonic Steklov operator on differential forms

2.1. Serrin problem

In this subsection, we extend the Serrin problem to differential forms. This extension will
motivate us to define the biharmonic Steklov problem on differential forms.

Recall that the Serrin problem is given by the following [24]: Let 𝑀 ⊂ R𝑛 be a bounded
domain and let 𝑓 be a solution to the problem{

Δ 𝑓 = 1 on 𝑀
𝑓 = 0 on 𝜕𝑀.

If the inner normal derivative of the function 𝑓 is a constant 𝑐, then the domain 𝑀 must
be a ball of radius 𝑛𝑐 and the function 𝑓 has the form (𝑛2𝑐2 − 𝑟2)/2𝑛. Here 𝑐 is equal
to Vol(𝑀 )

Vol(𝜕𝑀 ) . The proof that the Euclidean ball is the unique domain in R𝑛 supporting a
solution to the Serrin problem was given in [24, Thm. 1] by using the method of moving
planes, which is based on Hopf’s maximum principle. In [26], H.F. Weinberger suggested
an elementary proof introducing so-called 𝑃-functions for the Laplacian. Since then, the
Serrin problem has been generalized to several contexts and when the ambient space is a
simply connected space form [3, 14, 18].

A natural question to ask in this set-up is whether the Serrin problem can be extended
to differential forms on a domain in R𝑛. For this purpose, we fix 𝑝 ∈ {0, . . . , 𝑛} and
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consider, on the set of differential 𝑝-forms Ω𝑝 (𝑀), a solution to the system{
Δ𝜔 = 𝜔0 on 𝑀
𝜔 = 0 on 𝜕𝑀,

where 𝜔0 is a given parallel form on R𝑛 assumed to be of norm 1. We now set the
following question: If the conditions 𝜈 ⌟ d𝜔 = 𝑐𝜄∗𝜔0 and 𝜄∗ (𝛿𝜔) = −𝑐𝜈 ⌟ 𝜔0 are satisfied
on 𝜕𝑀 for some constant 𝑐 and where 𝜈 is the inner unit normal vector field to 𝜕𝑀 , can
one deduce that the manifold 𝑀 is a ball of radius 𝑛𝑐? Here, 𝜄 : 𝜕𝑀 → 𝑀 denotes the
inclusion map. Notice that for 𝑝 = 0, the problem that we propose reduces to the usual
one on functions. The answer of this question is given in Proposition 2.1 below. Note that,
in the whole article, we identify vectors and covectors via the musical isomorphism.

Proposition 2.1. Let 𝑀 be a compact manifold with smooth nonempty boundary 𝜕𝑀
and carrying a nontrivial parallel 𝑝-form 𝜔0.

(1) If 𝑀 is a harmonic domain, then for the solution 𝑓 to the Serrin problem on 𝑀
the 𝑝-form 𝜔 := 𝑓 · 𝜔0 is the unique solution to the boundary value problem

Δ𝜔 = 𝜔0 on 𝑀
𝜔 |𝜕𝑀 = 0 on 𝜕𝑀
𝜈 ⌟ d𝜔 = 𝑐𝜄∗𝜔0 on 𝜕𝑀
𝜄∗ (𝛿𝜔) = −𝑐𝜈 ⌟ 𝜔0 on 𝜕𝑀

(2.1)

for some constant 𝑐 ∈ R.

(2) Conversely, if (2.1) has a solution 𝜔 ∈ Ω𝑝 (𝑀), then assuming w.l.o.g. that
|𝜔0 | = 1 on 𝑀 , we have that 𝜔 = 𝑓 · 𝜔0 where 𝑓 solves (1.3). As a consequence,
𝑀 must be a harmonic domain.

Proof. Before proving the proposition, we begin with the following fact. Given any
parallel form 𝛼 and a smooth function ℎ on 𝑀 , we have that Δ(ℎ𝛼) = (Δℎ)𝛼. To see this,
we first have d(ℎ𝛼) = dℎ ∧ 𝛼 and 𝛿(ℎ𝛼) = −dℎ ⌟ 𝛼, as 𝛼 is parallel. Therefore, if we take
{𝑒1, . . . , 𝑒𝑛} a local orthonormal frame of 𝑇𝑀 , we compute

Δ(ℎ𝛼) = 𝛿(dℎ ∧ 𝛼) − d(dℎ ⌟ 𝛼)

= −
𝑛∑︁
𝑖=1

𝑒𝑖 ⌟ (∇𝑒𝑖dℎ ∧ 𝛼) −
𝑛∑︁
𝑖=1

𝑒𝑖 ∧ (∇𝑒𝑖dℎ ⌟ 𝛼)

= (Δℎ)𝛼 +
𝑛∑︁
𝑖=1

∇𝑒𝑖dℎ ∧ (𝑒𝑖 ⌟ 𝛼) −
𝑛∑︁
𝑖=1

𝑒𝑖 ∧ (∇𝑒𝑖dℎ ⌟ 𝛼)

= (Δℎ)𝛼,
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since ∇dℎ is a symmetric 2-tensor field.
As a first consequence, if 𝑓 solves (1.3), then for any parallel 𝑝-form 𝜔0 on 𝑀 the

𝑝-form𝜔 := 𝑓 ·𝜔0 solves Δ𝜔 = (Δ 𝑓 ) ·𝜔0 = 𝜔0 on 𝑀 together with𝜔 |𝜕𝑀 = 𝑓 |𝜕𝑀 ·𝜔0 = 0.
As for the other two boundary conditions, note that, if 𝜔 |𝜕𝑀 = 0, then by ∇𝑋𝜔 = 0 for all
𝑋 ∈ 𝑇𝜕𝑀 we have that d𝜔 = 𝜈♭ ∧ ∇𝜈𝜔 and 𝛿𝜔 = −𝜈 ⌟ ∇𝜈𝜔. Therefore,

𝜈 ⌟ d𝜔 = 𝜈 ⌟
(
𝜈♭ ∧ ∇𝜈𝜔

)
= ∇𝜈𝜔 − 𝜈♭ ∧ (𝜈 ⌟ ∇𝜈𝜔) = 𝜄∗∇𝜈𝜔 = 𝜕𝜈 𝑓 · 𝜄∗𝜔0 = 𝑐𝜄∗𝜔0

and

𝜄∗ (𝛿𝜔) = −𝜄∗ (𝜈 ⌟ ∇𝜈𝜔) = −𝜈 ⌟ ∇𝜈𝜔 = −𝜕𝜈 𝑓 · 𝜈 ⌟ 𝜔0 = −𝑐𝜈 ⌟ 𝜔0,

so that 𝜔 solves (2.1). Note that, since the Dirichlet boundary condition 𝜔 |𝜕𝑀 = 0 forces
ker(Δ) = {0} [1, Thm. p. 445], the 𝑝-form 𝜔 is necessarily the only solution to (2.1).
This proves (1).

Conversely, let 𝜔 solve (2.1) for some nontrivial parallel 𝑝-form 𝜔0. Up to rescaling
𝜔0 we may assume that |𝜔0 | = 1 on 𝑀 . We consider the function 𝑓 := ⟨𝜔, 𝜔0⟩ on 𝑀 . By
the Bochner formula and ∇𝜔0 = 0, we have that

Δ 𝑓 = ⟨∇∗∇𝜔, 𝜔0⟩ = ⟨Δ𝜔, 𝜔0⟩ −
〈
𝑊

[𝑝]
𝑀
𝜔, 𝜔0

〉
︸          ︷︷          ︸

0

= |𝜔0 |2 = 1.

Here, we use the fact that the Bochner operator𝑊 [𝑝]
𝑀

is a symmetric tensor. Recall that
𝑊

[𝑝]
𝑀

is defined by𝑊 [𝑝]
𝑀

:= −∑𝑛
𝑖, 𝑗=1 𝑒𝑖 ∧ (𝑒 𝑗 ⌟ 𝑅𝑀 (𝑒𝑖 , 𝑒 𝑗 )), where {𝑒𝑖}𝑖=1,...,𝑛 denotes

a local orthonormal frame of 𝑇𝑀 and 𝑅𝑀 is the Riemann curvature tensor of (𝑀, 𝑔) that
is, 𝑅𝑀

𝑋,𝑌
= [∇𝑋,∇𝑌 ] − ∇[𝑋,𝑌 ] for all 𝑋,𝑌 tangent to 𝑀 . Also, it is immediate to see that

𝑓 |𝜕𝑀 = 0 since 𝜔 |𝜕𝑀 = 0. Therefore, we deduce that

Δ(𝜔 − 𝑓 𝜔0) = 𝜔0 − (Δ 𝑓 )𝜔0 = 0,

on 𝑀 and (𝜔 − 𝑓 𝜔0) |𝜕𝑀 = 0. Hence by triviality of the Dirichlet kernel, we deduce
that 𝜔 = 𝑓 · 𝜔0 on 𝑀. In order to finish the proof, we still have to compute the normal
derivative of 𝑓 :

𝜕𝜈 𝑓 = ⟨∇𝜈𝜔, 𝜔0⟩
= ⟨𝜄∗∇𝜈𝜔, 𝜄∗𝜔0⟩ + ⟨𝜈 ⌟ ∇𝜈𝜔, 𝜈 ⌟ 𝜔0⟩
= ⟨𝜈 ⌟ d𝜔, 𝜄∗𝜔0⟩ − ⟨𝜄∗ (𝛿𝜔), 𝜈 ⌟ 𝜔0⟩
= 𝑐 ⟨𝜄∗𝜔0, 𝜄

∗𝜔0⟩ + 𝑐⟨𝜈 ⌟ 𝜔0, 𝜈 ⌟ 𝜔0⟩

= 𝑐 |𝜔0 |2 = 𝑐.
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Here we used the identities{
𝜈 ⌟ ∇𝜈𝜔 = 𝛿𝜕𝑀 (𝜄∗𝜔) − 𝜄∗ (𝛿𝜔) − 𝑆 [𝑝−1] (𝜈 ⌟ 𝜔) + (𝑛 − 1)𝐻𝜈 ⌟ 𝜔,

𝜄∗∇𝜈𝜔 = 𝑑𝜕𝑀 (𝜈 ⌟ 𝜔) + 𝜈 ⌟ d𝜔 + 𝑆 [𝑝] (𝜄∗𝜔).

stated in [20, Lem. 18]. Therefore the function 𝑓 is a solution to the Serrin problem on 𝑀 .
This concludes the proof of (2) and of Proposition 2.1. □

Remark 2.2. We notice that if we impose that 𝜄∗𝜔0 is nowhere vanishing along the
boundary, the last boundary condition in (2.1) can be dropped. Indeed, with the boundary
condition 𝜈 ⌟ d𝜔 = 𝑐𝜄∗𝜔0 and the explicit form 𝜔 = 𝑓 · 𝜔0, we compute

𝑐𝜄∗𝜔0 = 𝜈 ⌟ d𝜔 = 𝜈 ⌟ d( 𝑓 𝜔0) = (𝜕𝜈 𝑓 )𝜔0 − d 𝑓 ∧ (𝜈 ⌟ 𝜔0) = (𝜕𝜈 𝑓 )𝜄∗𝜔0,

from which 𝜕𝜈 𝑓 = 𝑐 along 𝜕𝑀 follows. However, the condition 𝜄∗𝜔0 ≠ 0 is not always
assured.

The Serrin problem on functions is closely related to the biharmonic Steklov operator,
that is the boundary problem (1.1). Indeed, as mentioned in the introduction, on a given
compact Riemannian manifold (𝑀𝑛, 𝑔) (not necessarily a domain in R𝑛), any solution
to the Serrin problem is a solution to (1.1) with 𝑞 = 1

𝑐
. Conversely, it was shown in [21,

Thm. 10] that the first positive eigenvalue 𝑞1 of problem (1.1) is bounded from below by
the first eigenvalue of the Dirichlet-to-Neumann operator on 𝑛-forms (see Section 5 for
the definition) and, when equality occurs, the corresponding eigenfunction 𝑓 of (1.1) is a
solution to the Serrin problem. Notice here that, by [6], problem (1.1) admits a discrete
spectrum that consists of a nondecreasing sequence of positive eigenvalues (𝑞𝑖)𝑖 of finite
multiplicities.

In order to have a similar situation on differential forms, we come back to the Serrin
problem defined in (2.1) for domains in R𝑛. In fact, one can easily see that any solution to
the Serrin problem (2.1) gives rise to a solution to the following boundary problem

Δ2𝜔 = 0 on 𝑀
𝜔 = 0 on 𝜕𝑀

𝜈 ⌟ Δ𝜔 + 𝑞𝜄∗𝛿𝜔 = 0 on 𝜕𝑀
𝜄∗Δ𝜔 − 𝑞𝜈 ⌟ d𝜔 = 0 on 𝜕𝑀,

(2.2)

with 𝑞 = 1
𝑐
. The equation Δ2𝜔 = 0 comes from taking the Laplacian of Δ𝜔 = 𝜔0 and

using the fact that 𝜔0 is a parallel form. Note here that, because of 𝜔 |𝜕𝑀 = 0, the last two
boundary conditions in (2.2) are actually equivalent to

Δ𝜔 = 𝑞∇𝜈𝜔
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along 𝜕𝑀 since 𝜈 ⌟ d𝜔 = 𝜄∗∇𝜈𝜔 and 𝜄∗𝛿𝜔 = −𝜈 ⌟ ∇𝜈𝜔 as we have seen in the proof of
Proposition 2.1.

It is then natural to study problem (2.2) for compact Riemannian manifolds with
smooth boundary that are not necessarily domains in R𝑛.

2.2. Biharmonic Steklov operator

In this section, we will show that the spectrum of problem (2.2) is discrete and it consists
entirely of eigenvalues of finite multiplicities. We mainly follow [6].

First, note that on a compact Riemannian manifold (𝑀𝑛, 𝑔) with smooth boundary
𝜕𝑀 , we have the following integration by parts, which is valid for any 𝜔, 𝜔′ ∈ Ω𝑝 (𝑀):∫

𝑀

(
⟨Δ𝜔, 𝜔′⟩ − ⟨𝜔,Δ𝜔′⟩

)
d𝜇𝑔 =

∫
𝜕𝑀

(
⟨𝜈 ⌟ d𝜔, 𝜄∗𝜔′⟩ − ⟨𝜄∗𝜔, 𝜈 ⌟ d𝜔′⟩

+ ⟨𝜈 ⌟ 𝜔, 𝜄∗𝛿𝜔′⟩ − ⟨𝜄∗𝛿𝜔, 𝜈 ⌟ 𝜔′⟩
)

d𝜇𝑔 . (2.3)

Thus, replacing 𝜔 by Δ𝜔 in (2.3), we obtain:∫
𝑀

〈
Δ2𝜔, 𝜔′〉 d𝜇𝑔 =

∫
𝑀

⟨Δ𝜔,Δ𝜔′⟩ d𝜇𝑔 +
∫
𝜕𝑀

(
⟨𝜈 ⌟ dΔ𝜔, 𝜄∗𝜔′⟩ − ⟨𝜄∗Δ𝜔, 𝜈 ⌟ d𝜔′⟩

+ ⟨𝜈 ⌟ Δ𝜔, 𝜄∗𝛿𝜔′⟩ − ⟨𝜄∗𝛿Δ𝜔, 𝜈 ⌟ 𝜔′⟩
)

d𝜇𝑔 . (2.4)

The main result of this section is the following:

Theorem 2.3. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary
𝜕𝑀 and let 𝜈 be the inward unit vector field normal to the boundary. Then the boundary
problem 

Δ2𝜔 = 0 on 𝑀
𝜔 = 0 on 𝜕𝑀

𝜈 ⌟ Δ𝜔 + 𝑞𝜄∗𝛿𝜔 = 0 on 𝜕𝑀
𝜄∗Δ𝜔 − 𝑞𝜈 ⌟ d𝜔 = 0 on 𝜕𝑀,

on 𝑝-forms, has a discrete spectrum consisting of an unbounded monotonously nonde-
creasing sequence of positive eigenvalues of finite multiplicities (𝑞 𝑗 , 𝑝) 𝑗 ≥ 1.

Proof. As in [6, Eq. (1.7)], we let

𝑍 :=
{
𝜔 ∈ Ω𝑝 (𝑀)

��Δ2𝜔 = 0 on 𝑀 and 𝜔 |𝜕𝑀 = 0
}
.

We define the following Hermitian sesquilinear forms on Ω𝑝 (𝑀): for all 𝜔, 𝜔′ ∈ Ω𝑝 (𝑀),

(𝜔, 𝜔′)𝑉 :=
∫
𝑀

⟨Δ𝜔,Δ𝜔′⟩ d𝜇𝑔
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and

(𝜔, 𝜔′)𝑊 :=
∫
𝜕𝑀

⟨𝜈 ⌟ d𝜔, 𝜈 ⌟ d𝜔′⟩ d𝜇𝑔 +
∫
𝜕𝑀

⟨𝜄∗𝛿𝜔, 𝜄∗𝛿𝜔′⟩ d𝜇𝑔 .

We split the proof of Theorem 2.3 into the following lemmas.

Lemma 2.4. For 𝜔 ∈ 𝑍 , we have∫
𝑀

|Δ𝜔 |2 d𝜇𝑔 +
∫
𝜕𝑀

(
⟨𝜈 ⌟ Δ𝜔, 𝜄∗𝛿𝜔⟩ − ⟨𝜄∗Δ𝜔, 𝜈 ⌟ d𝜔⟩

)
d𝜇𝑔 = 0. (2.5)

The forms ( · , · )𝑉 and ( · , · )𝑊 are positive definite on 𝑍 . Moreover, there exists a positive
constant 𝐶 such that ∥ · ∥𝑊 ≤ 𝐶 · ∥ · ∥𝑉 on 𝑍 . As a consequence, if we denote by 𝑉
(resp.𝑊) the completion of 𝑍 w.r.t. ∥ · ∥𝑉 (resp. ∥ · ∥𝑊 ) as Hilbert spaces, then there is a
natural bounded linear map 𝐼1 : 𝑉 → 𝑊 extending the identity map Id𝑍 .

Proof. To prove (2.5) for 𝜔 ∈ 𝑍 , we replace 𝜔′ in (2.4) by 𝜔 and use the fact that Δ2𝜔 = 0
and 𝜄∗𝜔 = 𝜈 ⌟ 𝜔 = 0. Since, if Δ𝜔 = 0 on 𝑀 and 𝜔 |𝜕𝑀 = 0, then 𝜔 = 0 (see e.g. [1,
Thm. p. 445], the sesquilinear form ( · , · )𝑉 is positive definite. For ( · , · )𝑊 , positive
definiteness is a consequence of (2.5). In fact, if (𝜔, 𝜔)𝑊 = 0, then 𝜈 ⌟ d𝜔 = 0 and
𝜄∗𝛿𝜔 = 0 on 𝜕𝑀 and therefore, from equation (2.5), Δ𝜔 = 0 on 𝑀 , from which 𝜔 = 0 on
𝑀 follows again by [1, Thm. p. 445] since 𝜔 |𝜕𝑀 = 0. We now show, as in [6, Sec. 2], the
existence of a positive constant 𝐶 such that ∥ · ∥𝑊 ≤ 𝐶 · ∥ · ∥𝑉 on 𝑍 . First, both ∥ · ∥𝑉 and
∥ · ∥𝐻2 (𝑀 ) are equivalent on 𝑍 . To see this, we have for any 𝜔 ∈ 𝑍

∥𝜔∥𝑉 = ∥Δ𝜔∥𝐿2 (𝑀 ) ≤ 𝐶 · ∥𝜔∥𝐻2 (𝑀 )

for some constant 𝐶 depending only on 𝑀 and 𝑛. On the other hand, by the elliptic
estimates and using the fact that, given any 𝑓 ∈ 𝐿2 (𝑀), there exists a unique weak
solution 𝜔 to the boundary value problem Δ𝜔 = 𝑓 on 𝑀 with 𝜔 |𝜕𝑀 = 0, we have, for any
𝜔 ∈ 𝑍 that ∥𝜔∥𝐿2 (𝑀 ) ≤ 𝐶 · ∥Δ𝜔∥𝐿2 (𝑀 ) for some constant 𝐶, so that

∥𝜔∥𝐻2 (𝑀 ) ≤ 𝐶 ·
(
∥Δ𝜔∥𝐿2 (𝑀 ) + ∥𝜔∥𝐿2 (𝑀 )

)
≤ 𝐶 · ∥Δ𝜔∥𝐿2 (𝑀 ) = 𝐶 · ∥𝜔∥𝑉

for some positive constant that we also denote by 𝐶 and which again depends only on 𝑀
and 𝑛, see e.g. [5, Thm. 4 in Sec. 6.3]. Therefore, both ∥ · ∥𝑉 and ∥ · ∥𝐻2 (𝑀 ) are equivalent
on 𝑍 . Finally, using the fact that both 𝑑 and 𝛿 are first-order linear differential operators,
we estimate, for any 𝜔 ∈ 𝑍 ,

∥𝜔∥2
𝑊 = ∥𝜈 ⌟ d𝜔∥2

𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2
𝐿2 (𝜕𝑀 )

≤ 𝐶 · ∥𝜔∥2
𝐻1 (𝜕𝑀 )

≤ 𝐶 · ∥𝜔∥2
𝐻2 (𝑀 )

≤ 𝐶 · ∥𝜔∥2
𝑉
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for some positive constant that we also denote by 𝐶, which again depends only on 𝑀 and
𝑛. Here we have also used the boundedness of the trace map 𝑇 : 𝐻2 (𝑀) → 𝐻1 (𝜕𝑀). □

Next we consider the linear operator 𝐾 : 𝑉 → 𝑉 defined by

𝐾 := 𝐷−1
𝑉 ◦ 𝑡𝐼1 ◦ 𝐷𝑊 ◦ 𝐼1,

where 𝐷𝑉 : 𝑉 → 𝑉 ′ and 𝐷𝑊 : 𝑊 → 𝑊 ′ are the natural duality isomorphisms, i.e.
𝐷𝑉 (𝜔) := (·, 𝜔)𝑉 and 𝐷𝑊 (𝜔) := (·, 𝜔)𝑊 for every 𝜔 in 𝑉 resp.𝑊 . As usual, 𝑡𝐼1 (𝜃) :=
𝜃 ◦ 𝐼1 ∈ 𝑉 ′ for every 𝜃 ∈ 𝑊 ′. Actually 𝐾 can be defined via the identity

(𝐾𝜔, 𝜔′)𝑉 = (𝐼1𝜔, 𝐼1𝜔′)𝑊 (= (𝜔, 𝜔′)𝑊 )
for all 𝜔, 𝜔′ ∈ 𝑉 . By definition, the operator 𝐾 is self-adjoint and positive semi-definite.
We need now to prove the following.

Lemma 2.5. The map 𝐼1, defined in the previous lemma, is compact and injective.
Therefore 𝐾 is also compact and injective.

Proof. Let 𝐼3 : 𝑉 → 𝐿2 (𝜕𝑀) ⊕ 𝐿2 (𝜕𝑀) be the composition of the following linear maps:

𝑉 −→ 𝐻
1
2 (𝜕𝑀) ⊕ 𝐻 1

2 (𝜕𝑀) −→ 𝐿2 (𝜕𝑀) ⊕ 𝐿2 (𝜕𝑀)
𝜔 ↦−→ (𝜈 ⌟ d𝜔, 𝜄∗𝛿𝜔) ↦−→ (𝜈 ⌟ d𝜔, 𝜄∗𝛿𝜔).

Note that 𝐼3 is well-defined since the trace operator maps 𝐻1 (𝑀) into (and onto)
𝐻

1
2 (𝜕𝑀). Moreover, since the inclusion map 𝐻

1
2 (𝜕𝑀) → 𝐿2 (𝜕𝑀) is compact by

the Rellich–Kondrachov theorem, so is 𝐼3. Now (𝑍, ( · , · )𝑊 ) → 𝐿2 (𝜕𝑀) ⊕ 𝐿2 (𝜕𝑀),
𝜔 ↦→ (𝜈 ⌟ d𝜔, 𝜄∗𝛿𝜔), is a linear isometry, therefore it extends to a linear isometry
𝐼2 : 𝑊 → 𝐿2 (𝜕𝑀) ⊕ 𝐿2 (𝜕𝑀) with 𝐼3 = 𝐼2 ◦ 𝐼1. Since 𝐼3 is compact and 𝐼2 is a linear
isometry, 𝐼1 must be compact.

We now prove that 𝐼3 is injective, so that 𝐼1 must be injective as well. First, we show
the inclusion

𝑉 ⊂
{
𝜔 ∈ 𝐻2 (𝑀) ∩ 𝐻1

0 (𝑀)
��Δ2𝜔 = 0 weakly on 𝑀

}
,

where the concept of a weak solution is defined by the following: given 𝑓 ∈ 𝐿2 (𝑀), a
weak solution 𝜔 to Δ2𝜔 = 𝑓 on 𝑀 is a form 𝜔 ∈ 𝐻2 ∩ 𝐻1

0 (𝑀) := 𝐻2 (𝑀) ∩ 𝐻1
0 (𝑀) with

(Δ𝜔,Δ𝜔′)𝐿2 (𝑀 ) = ( 𝑓 , 𝜔′)𝐿2 (𝑀 ) ∀ 𝜔′ ∈ 𝐻2
0 (𝑀), (2.6)

where 𝐻2
0 (𝑀) := {𝜔 ∈ 𝐻2 (𝑀) |𝜔 |𝜕𝑀 = 0 and (∇𝜔) |𝜕𝑀 = 0}. Note that the condition

(∇𝜔) |𝜕𝑀 = 0 can be replaced by ∇𝜈𝜔 = 0 along 𝜕𝑀 because of 𝜔 |𝜕𝑀 = 0. Namely
𝑉 ⊂ 𝐻2 (𝑀) already holds because of the equivalence of ∥ · ∥𝑉 and ∥ · ∥𝐻2 (𝑀 ) on
𝑍 . Moreover 𝑉 ⊂ 𝐻1

0 (𝑀) holds as well because of the continuous inclusion map
𝐻2 (𝑀) ⊂ 𝐻1 (𝑀) and the continuity of the trace operator 𝐻1 (𝑀) → 𝐿2 (𝜕𝑀). Thus
𝑉 ⊂ 𝐻2 ∩ 𝐻1

0 (𝑀). Furthermore, if 𝜔 ∈ 𝑉 is given, then there exists a sequence (𝜔𝑚)𝑚
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in 𝑍 with ∥𝜔𝑚 − 𝜔∥𝑉 −−−−−→
𝑚→∞

0. Because of 𝑉 ⊂ 𝐻2 (𝑀) and the equivalence of ∥ · ∥𝑉
and ∥ · ∥𝐻2 (𝑀 ) , the sequence (𝜔𝑚)𝑚 goes to 𝜔 in 𝐻2 (𝑀) and hence (Δ𝜔𝑚)𝑚 goes
to Δ𝜔 in 𝐿2 (𝑀). But since, as a consequence of (2.4), we have, for all 𝑚 ∈ N and
𝜔′ ∈ {𝜔 ∈ Ω𝑝 (𝑀) |𝜔 |𝜕𝑀 = 0 and (∇𝜔) |𝜕𝑀 = 0}, 0 = (Δ𝜔𝑚,Δ𝜔′)𝐿2 (𝑀 ) , we can deduce
that (Δ𝜔,Δ𝜔′)𝐿2 (𝑀 ) = 0 for all 𝜔′ as above and therefore for all 𝜔′ ∈ 𝐻2

0 (𝑀). This
shows that 𝜔 ∈ 𝐻2 ∩𝐻1

0 (𝑀) satisfies Δ2𝜔 = 0 weakly on 𝑀 and therefore the inclusion is
proved. Now, we come back to the injectivity of 𝐼3. Consider 𝜔 ∈ 𝑉 such that 𝐼3 (𝜔) = 0,
that is 𝜈 ⌟ d𝜔 = 0 and 𝜄∗𝛿𝜔 = 0 in 𝐿2 (𝜕𝑀). Then both d𝜔 and 𝛿𝜔 vanish along 𝜕𝑀
because of 𝜄∗𝜔 = 0, 𝜈 ⌟ 𝜔 = 0 and the identities [𝑑, 𝜄∗] = 0 and {𝛿, 𝜈⌟} = 0. Again,
because of 𝜔 |𝜕𝑀 = 0, we have (d𝜔) |𝜕𝑀 = 𝜈♭ ∧ ∇𝜈𝜔 and (𝛿𝜔) |𝜕𝑀 = −𝜈 ⌟ ∇𝜈𝜔, so that
𝜈♭ ∧ ∇𝜈𝜔 = 0 and 𝜈 ⌟ ∇𝜈𝜔 = 0 along 𝜕𝑀, from which ∇𝜈𝜔 = 0 on 𝜕𝑀 follows. This
shows that 𝜔 ∈ 𝐻2

0 (𝑀). Taking 𝜔′ = 𝜔 in (2.6), we deduce that Δ𝜔 = 0 and therefore
𝜔 = 0 on 𝑀 . This shows 𝐼3 and hence 𝐼1 to be injective. □

We end the proof of Theorem 2.3. Since 𝐾 is compact, self-adjoint and positive definite
in the Hilbert space 𝑉 , there is a countable Hilbert o.n.b. (𝜔𝑖)𝑖 ≥ 1 of 𝑉 for which a
monotonously nonincreasing positive real sequence (𝜇𝑖)𝑖 ≥ 1 going to 0 exists such that
𝐾𝜔𝑖 = 𝜇𝑖𝜔𝑖 for all 𝑖 ≥ 1. We want to show that, for each 𝑖 ≥ 1, the eigenform 𝜔𝑖 lies in
𝑍 and satisfies 𝜇𝑖 𝜄∗Δ𝜔𝑖 = 𝜈 ⌟ d𝜔𝑖 as well as 𝜇𝑖𝜈 ⌟ Δ𝜔𝑖 = −𝜄∗𝛿𝜔𝑖 along 𝜕𝑀 . Hence, for
each 𝑖, the form 𝜔𝑖 becomes a smooth eigenform for problem (2.2) associated with the
eigenvalue 𝑞𝑖, 𝑝 = 1

𝜇𝑖
which is of finite multiplicity, since 𝜇𝑖 is.

For this purpose, fix 𝑖 ≥ 1. Since 𝜔𝑖 ∈ 𝑉 , we already know that Δ2𝜔𝑖 = 0 holds weakly
on 𝑀 with𝜔𝑖 |𝜕𝑀 = 0. It remains to show that𝜔𝑖 is smooth and satisfies 𝜄∗Δ𝜔𝑖 = 1

𝜇𝑖
𝜈 ⌟d𝜔𝑖

as well as 𝜈 ⌟ Δ𝜔𝑖 = − 1
𝜇𝑖
𝜄∗𝛿𝜔𝑖 along 𝜕𝑀 . By definition, for every 𝜔 ∈ 𝑍 ,

𝜇𝑖 (Δ𝜔𝑖 ,Δ𝜔)𝐿2 (𝑀 ) = 𝜇𝑖 (𝜔𝑖 , 𝜔)𝑉 = (𝐾𝜔𝑖 , 𝜔)𝑉 = (𝜔𝑖 , 𝜔)𝑊
= (𝜈 ⌟ d𝜔𝑖 , 𝜈 ⌟ d𝜔)𝐿2 (𝜕𝑀 ) + (𝜄∗𝛿𝜔𝑖 , 𝜄∗𝛿𝜔)𝐿2 (𝜕𝑀 ) . (2.7)

But by (2.4), we have, still for every 𝜔 ∈ 𝑍 ,

(Δ𝜔𝑖 ,Δ𝜔)𝐿2 (𝑀 ) =
(
Δ2𝜔𝑖︸︷︷︸

0

, 𝜔

)
𝐿2 (𝑀 )

−
(
𝜈 ⌟ dΔ𝜔𝑖 , 𝜄∗𝜔︸︷︷︸

0

)
𝐿2 (𝜕𝑀 )

+ (𝜄∗Δ𝜔𝑖 , 𝜈 ⌟ d𝜔)𝐿2 (𝜕𝑀 ) − (𝜈 ⌟ Δ𝜔𝑖 , 𝜄∗𝛿𝜔)𝐿2 (𝜕𝑀 )

+
(
𝜄∗𝛿(Δ𝜔𝑖), 𝜈 ⌟ 𝜔︸︷︷︸

0

)
𝐿2 (𝜕𝑀 )

= (𝜄∗Δ𝜔𝑖 , 𝜈 ⌟ d𝜔)𝐿2 (𝜕𝑀 ) − (𝜈 ⌟ Δ𝜔𝑖 , 𝜄∗𝛿𝜔)𝐿2 (𝜕𝑀 ) .

(2.8)
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Here we see both 𝜄∗Δ𝜔𝑖 and 𝜈 ⌟Δ𝜔𝑖 as elements in 𝐻− 1
2 (𝜕𝑀). Comparing (2.7) and (2.8),

we deduce that(
𝜄∗Δ𝜔𝑖 −

1
𝜇𝑖
𝜈 ⌟ d𝜔𝑖 , 𝜈 ⌟ d𝜔

)
𝐿2 (𝜕𝑀 )

−
(
𝜈 ⌟ Δ𝜔𝑖 +

1
𝜇𝑖
𝜄∗𝛿𝜔𝑖 , 𝜄

∗𝛿𝜔

)
𝐿2 (𝜕𝑀 )

= 0

for all 𝜔 ∈ 𝑍 . Note that the map 𝑍 → Ω𝑝 (𝜕𝑀) ⊕ Ω𝑝−1 (𝜕𝑀), 𝜔 ↦→ (𝜈 ⌟ d𝜔, 𝜄∗𝛿𝜔) is
continuous w.r.t. ∥ · ∥𝑉 and ∥ · ∥𝐿2 (𝜕𝑀 ) and is injective since it is the restriction to 𝑍 of
the map 𝐼3 from above. Now, Lemma A.1 in the appendix shows that this map is onto.
Hence, it follows that 𝜄∗Δ𝜔𝑖 − 1

𝜇𝑖
𝜈 ⌟ d𝜔𝑖 = 0 and 𝜈 ⌟ Δ𝜔𝑖 + 1

𝜇𝑖
𝜄∗𝛿𝜔𝑖 = 0. Therefore,

𝜔𝑖 is an eigenform for (2.2) associated to the eigenvalue 𝑞𝑖, 𝑝 = 1
𝜇𝑖

. The smoothness
of 𝜔𝑖 follows from the fact that both boundary conditions 𝜄∗Δ𝜔𝑖 − 1

𝜇𝑖
𝜈 ⌟ d𝜔𝑖 = 0 and

𝜈 ⌟ Δ𝜔𝑖 + 1
𝜇𝑖
𝜄∗𝛿𝜔𝑖 = 0 together with 𝜔𝑖 |𝜕𝑀 = 0 define elliptic boundary conditions for Δ2.

In order to finish the proof of Theorem 2.3, it remains to show that there is a one-to-one
correspondence between solutions of (2.2) and eigenforms of 𝐾 . We have already shown
that every eigenform 𝜔 of 𝐾, associated to some eigenvalue 𝜇 > 0, satisfies (2.2) with
𝑞 = 1

𝜇
. Conversely, if 𝑞 ∈ R is given for which a nontrivial solution 𝜔 to (2.2) exists, then

by (2.4), we have, for every 𝜔′ ∈ 𝑍 ,

(Δ𝜔,Δ𝜔′)𝐿2 (𝑀 ) = 𝑞 ·
(
(𝜈 ⌟ d𝜔, 𝜈 ⌟ d𝜔′)𝐿2 (𝜕𝑀 ) + (𝜄∗𝛿𝜔, 𝜄∗𝛿𝜔′)𝐿2 (𝜕𝑀 )

)
,

that is, seeing both 𝜔, 𝜔′ as elements of 𝑉 ,

(𝜔, 𝜔′)𝑉 = 𝑞 · (𝜔, 𝜔′)𝑊 .

Note that necessarily 𝑞 > 0 holds, otherwise 𝜔 = 0 would follow. By definition of 𝐾 , we
then have (𝜔, 𝜔′)𝑉 = 𝑞 · (𝐾𝜔, 𝜔′)𝑉 for all 𝜔′ ∈ 𝑍 and hence in 𝑉 , therefore 𝐾𝜔 = 1

𝑞
𝜔.

This shows 𝜔 to be an eigenform of 𝐾 associated to the eigenvalue 𝜇 = 1
𝑞

. This shows the
correspondence to be one-to-one. This concludes the proof of Theorem 2.3. □

In the following, we give a characterization for the first eigenvalue 𝑞1, 𝑝 on 𝑝-forms.
This will be used later in order to get estimates for the eigenvalues.

Theorem 2.6. The first eigenvalue 𝑞1, 𝑝 of the boundary problem (2.2) is characterized by

𝑞1, 𝑝 = inf
𝜔 ∈ Ω𝑝 (𝑀 )

{ ∥Δ𝜔∥2
𝐿2 (𝑀 )

∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 )

�����𝜔 |𝜕𝑀 = 0,∇𝜈𝜔 ≠ 0

}
(2.9)

= inf
𝜔 ∈ Ω𝑝 (𝑀 )\{0}

{ ∥𝜔∥2
𝐿2 (𝜕𝑀 )

∥𝜔∥2
𝐿2 (𝑀 )

�����Δ𝜔 = 0 on 𝑀

}
. (2.10)
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Both infima are indeed minima, (2.9) is attained by an eigenform of (2.2), associated to
𝑞1, 𝑝 and (2.10) is attained by Δ𝜔, where 𝜔 is an eigenform of (2.2), associated to 𝑞1, 𝑝 .
Moreover, for every 𝜔 ∈ Ω𝑝 (𝑀) with 𝜔 |𝜕𝑀 = 0, the inequality

𝑞1, 𝑝 ·
(
∥𝜈 ⌟ d𝜔∥2

𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2
𝐿2 (𝜕𝑀 )

)
≤ ∥Δ𝜔∥2

𝐿2 (𝑀 )

holds.

Proof. As mentioned above, it follows from (2.5) that, given any nonzero eigenform 𝜔

associated to a positive eigenvalue 𝑞 of (2.2), we have∫
𝑀

|Δ𝜔 |2 d𝜇𝑔 = 𝑞
∫
𝜕𝑀

|𝜈 ⌟ d𝜔 |2 d𝜇𝑔 + 𝑞
∫
𝜕𝑀

|𝜄∗𝛿𝜔|2 d𝜇𝑔,

so that

𝑞1, 𝑝 ≤
∥Δ𝜔∥2

𝐿2 (𝑀 )

∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 )
for every such eigenform, with equality for 𝜔 associated to 𝑞1, 𝑝 of course. More generally,
for every𝜔 ∈ 𝑉 , we can write𝜔 =

∑
𝑖 (𝜔, 𝜔𝑖)𝑉 ·𝜔𝑖 because (𝜔𝑖)𝑖 is a Hilbert orthonormal

basis of 𝑉 . From this, we can express

∥Δ𝜔∥2
𝐿2 (𝑀 ) = ∥𝜔∥2

𝑉 =
∑︁
𝑖

| (𝜔, 𝜔𝑖)𝑉 |2

on the one hand, and

∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 ) = ∥𝜔∥2
𝑊

= (𝐾𝜔, 𝜔)𝑉

=
∑︁
𝑖

1
𝑞𝑖, 𝑝

| (𝜔, 𝜔𝑖)𝑉 |2

≤ 1
𝑞1, 𝑝

∑︁
𝑖

| (𝜔, 𝜔𝑖)𝑉 |2

≤ 1
𝑞1, 𝑝

∥Δ𝜔∥2
𝐿2 (𝑀 )

on the other hand, therefore

𝑞1, 𝑝 = inf

{ ∥Δ𝜔∥2
𝐿2 (𝑀 )

∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 )

�����𝜔 ∈ 𝑉 \ {0}
}
.

Note that, for some nonzero 𝜔 ∈ 𝑉 , the denominator ∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 )
in the above quotient cannot vanish since if it did, then ∥𝜔∥𝑊 = 0 and therefore
𝜔 = 0 by Lemma 2.5. Now, we will show that this infimum can be taken over all
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𝜔 ∈ (𝐻2 ∩ 𝐻1
0) (𝑀) \ {0}, as well as over all smooth forms vanishing and whose normal

derivative does not vanish identically along 𝜕𝑀 . Recall that,

𝐻2
0 (𝑀) =

{
𝜔 ∈

(
𝐻2 ∩ 𝐻1

0

)
(𝑀)

��� 𝜄∗𝛿𝜔 = 0 and 𝜈 ⌟ d𝜔 = 0
}
,

since, as we noticed above, if 𝜔 ∈ (𝐻2 ∩ 𝐻1
0) (𝑀) is such that both 𝜄∗𝛿𝜔 and 𝜈 ⌟ d𝜔

vanish along 𝜕𝑀 , then so does ∇𝜈𝜔. As in [6, Thm. 1.2], we have the following lemma:

Lemma 2.7. The inner product ( · , · )𝑉 is well defined on (𝐻2 ∩ 𝐻1
0) (𝑀) and we have

the following ( · , · )𝑉 -orthogonal splitting:

𝐻2 ∩ 𝐻1
0 (𝑀) = 𝑉 ⊕ 𝐻2

0 (𝑀).

Proof. By its definition, ( · , · )𝑉 is well defined on (𝐻2 ∩ 𝐻1
0) (𝑀). Furthermore, (2.4)

already implies that, for all (𝜔, 𝜔′) ∈ 𝑍 × 𝐻2 ∩ 𝐻1
0 (𝑀),

(𝜔, 𝜔′)𝑉 = (𝜄∗Δ𝜔, 𝜈 ⌟ d𝜔′)𝐿2 (𝜕𝑀 ) − (𝜈 ⌟ Δ𝜔, 𝜄∗𝛿𝜔′)𝐿2 (𝜕𝑀 ) , (2.11)

so that (𝜔, 𝜔′)𝑉 = 0 as soon as 𝜔′ ∈ 𝐻2
0 (𝑀). This shows that 𝐻2

0 (𝑀) ⊂ 𝑍⊥ = 𝑉⊥.
Conversely, let 𝜔′ ∈ 𝑉⊥ ⊂ 𝐻2 ∩ 𝐻1

0 (𝑀). Then (𝜔𝑖 , 𝜔′)𝑉 = 0 for all 𝑖. By (2.11),
this is equivalent to (𝜈 ⌟ d𝜔𝑖 , 𝜈 ⌟ d𝜔′)𝐿2 (𝜕𝑀 ) + (𝜄∗𝛿𝜔𝑖 , 𝜄∗𝛿𝜔′)𝐿2 (𝜕𝑀 ) = 0 for all 𝑖 by
𝜄∗Δ𝜔𝑖 =

1
𝜇𝑖
𝜈⌟d𝜔𝑖 and 𝜈⌟Δ𝜔𝑖 = − 1

𝜇𝑖
𝜄∗ (𝛿𝜔𝑖). Since the map 𝑍 → Ω𝑝 (𝜕𝑀)⊕Ω𝑝−1 (𝜕𝑀),

𝜔 ↦→ (𝜈 ⌟ d𝜔, 𝜄∗𝛿𝜔) is bounded (w.r.t. ∥ · ∥𝑉 and ∥ · ∥𝐿2 (𝜕𝑀 ) ), onto and the 𝜔𝑖’s span
a dense subspace of 𝑉 , we obtain that (𝜔1, 𝜈 ⌟ d𝜔′)𝐿2 (𝜕𝑀 ) = 0 as well as (𝜔2, 𝜈 ⌟

d𝜔′)𝐿2 (𝜕𝑀 ) = 0 for all (𝜔1, 𝜔2) ∈ Ω𝑝 (𝜕𝑀) ⊕ Ω𝑝−1 (𝜕𝑀) and therefore 𝜈 ⌟ d𝜔′ = 0 and
𝜄∗𝛿𝜔′ = 0 hold along 𝜕𝑀. This shows that 𝜔′ ∈ 𝐻2

0 (𝑀). On the whole, 𝐻2
0 (𝑀) = 𝑉⊥

and the orthogonal splitting is proved. □

It remains to notice that, for any 𝜔 ∈ Ω𝑝 (𝑀) with 𝜔 |𝜕𝑀 = 0, we can split ( · , · )𝑉 -
orthogonally 𝜔 = 𝜔𝑉 + 𝜔, where 𝜔𝑉 ∈ 𝑉 and 𝜔 ∈ 𝐻2

0 (𝑀). Then

∥Δ𝜔∥2
𝐿2 (𝑀 ) = ∥𝜔∥2

𝑉 = ∥𝜔𝑉 ∥2
𝑉 + ∥𝜔∥2

𝑉

on the one hand, and

∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 ) = ∥𝜈 ⌟ d𝜔𝑉 ∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔𝑉 ∥2

𝐿2 (𝜕𝑀 )

on the other hand, so that

∥Δ𝜔∥2
𝐿2 (𝑀 ) = ∥Δ𝜔𝑉 ∥2

𝐿2 (𝑀 ) + ∥Δ𝜔∥2
𝐿2 (𝑀 )

≥ ∥Δ𝜔𝑉 ∥2
𝐿2 (𝑀 )

≥ 𝑞1, 𝑝 ·
(
∥𝜈 ⌟ d𝜔𝑉 ∥2

𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔𝑉 ∥2
𝐿2 (𝜕𝑀 )

)
= 𝑞1, 𝑝 ·

(
∥𝜈 ⌟ d𝜔∥2

𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2
𝐿2 (𝜕𝑀 )

)
,
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which proves (2.9). Furthermore, the r.h.s. of (2.9) is actually a minimum attained exactly
by those eigenforms of the biharmonic Steklov problem that are associated to the smallest
positive eigenvalue 𝑞1, 𝑝 . And that same r.h.s. vanishes if and only if ∇𝜈𝜔 = 0 along 𝜕𝑀
as we noticed above.

We now prove the following lemma:

Lemma 2.8. The infimum in (2.10), that we denote by 𝑞′1, 𝑝 , is a positive minimum.

Proof. To prove this result, we apply the same argument as in [6, p. 318]. Namely the
standard Rellich–Kondrachov compactness theorem ensures the natural inclusion map
𝐻

1
2 (𝜕𝑀) → 𝐿2 (𝜕𝑀) to be compact. Hence its transpose map 𝐿2 (𝜕𝑀) → 𝐻− 1

2 (𝜕𝑀) is
compact, as a straightforward consequence. Moreover, the harmonic extension from 𝜕𝑀

to 𝑀 defines a bounded linear map 𝐻− 1
2 (𝜕𝑀) → 𝐿2 (𝑀), see e.g. [17, Thm. 6.6, Chap.

2]. Therefore the composition 𝐿2 (𝜕𝑀) → 𝐻− 1
2 (𝜕𝑀) → 𝐿2 (𝑀) of both maps defines a

compact linear map 𝐸 : 𝐿2 (𝜕𝑀) → 𝐿2 (𝑀), which already shows that 𝑞′1, 𝑝 to be positive
using only the boundedness of the map. Furthermore, because the image by 𝐸 of the unit
sphere S := {𝜔 ∈ 𝐿2 (𝜕𝑀) , ∥𝜔∥𝐿2 (𝜕𝑀 ) = 1} of 𝐿2 (𝜕𝑀) is relatively compact in 𝐿2 (𝑀),
there exists 𝜔 ∈ 𝐸 (S) such that ∥𝜔∥𝐿2 (𝑀 ) = sup{∥𝐸𝜔∥𝐿2 (𝑀 ) |𝜔 ∈ S}. By definition of
the closure, there exists a sequence (𝜔𝑚)𝑚 in S such that 𝐸𝜔𝑚 −−−−−→

𝑚→∞
𝜔 in 𝐿2 (𝑀). But

then Δ(𝐸𝜔𝑚) −−−−−→
𝑚→∞

Δ𝜔 in 𝐻−2 (𝑀) = (𝐻2
0 (𝑀))′, so that necessarily Δ𝜔 = 0 holds in

𝐻−2 (𝑀). Note that, because Δ𝜔 = 0 and Δ(𝐸𝜔𝑚) = 0 for all 𝑚, we can also claim that
Δ(𝐸𝜔𝑚) −−−−−→

𝑚→∞
Δ𝜔 in 𝐿2 (𝑀). By Gårding’s inequality and since both 𝐸𝜔𝑚 −−−−−→

𝑚→∞
𝜔 and

Δ(𝐸𝜔𝑚) −−−−−→
𝑚→∞

Δ𝜔 in 𝐿2 (𝑀), we have that 𝐸𝜔𝑚 −−−−−→
𝑚→∞

𝜔 in 𝐻2 (𝑀). As a consequence,
because of 𝜈 ⌟ 𝐸𝜔𝑚 = 0 along 𝜕𝑀 and 𝜈 ⌟ 𝐸𝜔𝑚 −−−−−→

𝑚→∞
𝜈 ⌟ 𝜔 in 𝐿2 (𝜕𝑀), necessarily

𝜈 ⌟ 𝜔 = 0 holds along 𝜕𝑀. Now again 𝐸𝜔𝑚 −−−−−→
𝑚→∞

𝜔 in 𝐻2 (𝑀) also implies 𝜔𝑚 =

(𝐸𝜔𝑚) |𝜕𝑀 −−−−−→
𝑚→∞

𝜔 |𝜕𝑀 in 𝐿2 (𝜕𝑀) (actually also in𝐻1 (𝜕𝑀)), so that ∥𝜔 |𝜕𝑀 ∥𝐿2 (𝜕𝑀 ) = 1.
This shows that 𝜔 ∈ 𝐸 (S) and hence ∥𝜔∥𝐿2 (𝑀 ) = max{∥𝐸𝜔∥𝐿2 (𝑀 ) |𝜔 ∈ S} satisfies
∥𝜔∥𝐿2 (𝑀 ) =

1
𝑞′1, 𝑝

. This shows the positive r.h.s. 𝑞′1, 𝑝 of (2.10) to be a minimum. □

In order to finish the proof of Theorem 2.6, we want to show that 𝑞1, 𝑝 = 𝑞′1, 𝑝.
Pick any eigenform 𝜔 associated to 𝑞1, 𝑝. Up to rescaling 𝜔, we may assume that
∥𝜈 ⌟ d𝜔∥2

𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2
𝐿2 (𝜕𝑀 ) = 1. Let 𝜔 ∈ Ω𝑝 (𝑀) be the unique solution to Δ𝜔 = 0

on 𝑀 with 𝜄∗𝜔 |𝜕𝑀 = −𝑞1, 𝑝𝜈 ⌟ d𝜔 a well as 𝜈 ⌟ 𝜔 = 𝑞1, 𝑝 𝜄
∗𝛿𝜔 along 𝜕𝑀 . By (2.3),

0 =

∫
𝑀

⟨Δ𝜔, 𝜔⟩ d𝜇𝑔 =
∫
𝑀

⟨𝜔,Δ𝜔⟩ d𝜇𝑔 + 𝑞1, 𝑝

∫
𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗𝛿𝜔|2

)
d𝜇𝑔

=

∫
𝑀

⟨𝜔,Δ𝜔⟩ d𝜇𝑔 + 𝑞1, 𝑝 ,
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so that Cauchy–Schwarz inequality leads to 𝑞1, 𝑝 ≤ ∥Δ𝜔∥𝐿2 (𝑀 ) · ∥𝜔∥𝐿2 (𝑀 ) . Using
𝑞1, 𝑝 = ∥Δ𝜔∥2

𝐿2 (𝑀 ) , we obtain 𝑞1, 𝑝 ≤ ∥𝜔∥2
𝐿2 (𝑀 ) . Therefore,

∥𝜔∥2
𝐿2 (𝜕𝑀 )

∥𝜔∥2
𝐿2 (𝑀 )

=
𝑞2

1, 𝑝

∥𝜔∥2
𝐿2 (𝑀 )

≤ 𝑞1, 𝑝 ,

from which 𝑞′1, 𝑝 ≤ 𝑞1, 𝑝 follows. Conversely, if 𝜔 ∈ Ω𝑝 (𝑀) \ {0} satisfies Δ𝜔 = 0
on 𝑀 and ∥𝜔∥2

𝐿2 (𝜕𝑀 ) = 𝑞′1, 𝑝 ∥𝜔∥
2
𝐿2 (𝑀 ) , then let 𝜔 be the solution to Δ𝜔 = 𝜔 on 𝑀

with 𝜔 |𝜕𝑀 = 0. Then, again by (2.3), 𝜔 |𝜕𝑀 = 𝜄∗𝜔 + 𝜈♭ ∧ (𝜈 ⌟ 𝜔) and Cauchy–Schwarz
inequality, we have

∥𝜔∥2
𝐿2 (𝑀 ) = (Δ𝜔, 𝜔)𝐿2 (𝑀 )

=

(
𝜔, Δ𝜔︸︷︷︸

0

)
𝐿2 (𝑀 )

+ (𝜈 ⌟ d𝜔, 𝜄∗𝜔)𝐿2 (𝜕𝑀 ) − (𝜄∗𝛿𝜔, 𝜈 ⌟ 𝜔)𝐿2 (𝜕𝑀 )

= (𝜈 ⌟ d𝜔, 𝜔)𝐿2 (𝜕𝑀 ) −
(
𝜈♭ ∧ 𝜄∗𝛿𝜔, 𝜔

)
𝐿2 (𝜕𝑀 )

=

(
𝜈 ⌟ d𝜔 − 𝜈♭ ∧ 𝜄∗𝛿𝜔, 𝜔

)
𝐿2 (𝜕𝑀 )

≤



𝜈 ⌟ d𝜔 − 𝜈♭ ∧ 𝜄∗𝛿𝜔





𝐿2 (𝜕𝑀 )

· ∥𝜔∥𝐿2 (𝜕𝑀 ) .

But since
(
𝜈 ⌟ d𝜔, 𝜈♭ ∧ 𝜄∗𝛿𝜔

)
𝐿2 (𝜕𝑀 )

= 0, we have




𝜈 ⌟ d𝜔 − 𝜈♭ ∧ 𝜄∗𝛿𝜔



2

𝐿2 (𝜕𝑀 )
= ∥𝜈 ⌟ d𝜔∥2

𝐿2 (𝜕𝑀 ) +



𝜈♭ ∧ 𝜄∗𝛿𝜔


2

𝐿2 (𝜕𝑀 )

= ∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 ) ,

so that

∥𝜔∥2
𝐿2 (𝑀 ) ≤

(
∥𝜈 ⌟ d𝜔∥2

𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2
𝐿2 (𝜕𝑀 )

) 1
2 · ∥𝜔∥𝐿2 (𝜕𝑀 ) .
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Therefore,
∥Δ𝜔∥2

𝐿2 (𝑀 )

∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 )
=

∥𝜔∥2
𝐿2 (𝑀 )

∥𝜈 ⌟ d𝜔∥2
𝐿2 (𝜕𝑀 ) + ∥𝜄∗𝛿𝜔∥2

𝐿2 (𝜕𝑀 )

≤
∥𝜔∥2

𝐿2 (𝑀 ) · ∥𝜔∥
2
𝐿2 (𝜕𝑀 )

∥𝜔∥4
𝐿2 (𝑀 )

=
∥𝜔∥2

𝐿2 (𝜕𝑀 )

∥𝜔∥2
𝐿2 (𝑀 )

= 𝑞′1, 𝑝 ,

from which 𝑞′1, 𝑝 ≥ 𝑞1, 𝑝 follows. On the whole, we deduce that 𝑞1, 𝑝 = 𝑞′1, 𝑝, as we
claimed. Moreover, the 𝑝-form 𝜔 defined above, because it now minimizes 𝑞1, 𝑝, must
be an eigenform of the biharmonic Steklov operator associated to the eigenvalue 𝑞1, 𝑝.
As a consequence, 𝜔 = Δ𝜔 where 𝜔 is an eigenform of the biharmonic Steklov operator
associated to the eigenvalue 𝑞1, 𝑝 . □

3. Eigenvalues of the biharmonic Steklov operator

In this section, we will establish some eigenvalue estimates for the first eigenvalue of the
biharmonic Steklov operator defined in the previous section.

As before, we will consider a compact Riemannian manifold (𝑀𝑛, 𝑔) with smooth
boundary 𝜕𝑀 . Notice first the following fact:

Lemma 3.1. The biharmonic Steklov operator is preserved by the Hodge star operator
∗𝑀 on 𝑀 .

Proof. We only need to check that the last two boundary conditions in (2.2) are preserved.
For this purpose, using the equality 𝜄∗ (∗𝑀𝛼) = ∗𝜕𝑀 (𝜈 ⌟ 𝛼) for any form 𝛼, we compute,
for any solution 𝜔 of degree 𝑝 to problem (2.2),

𝜈 ⌟ Δ(∗𝑀𝜔) = 𝜈 ⌟ (∗𝑀Δ𝜔)
= (−1) 𝑝 ∗𝜕𝑀 𝜄∗ (Δ𝜔)
= (−1) 𝑝𝑞 ∗𝜕𝑀 (𝜈 ⌟ d𝜔)
= (−1) 𝑝𝑞𝜄∗ (∗𝑀d𝜔)
= −𝑞𝜄∗ (𝛿 ∗𝑀 𝜔).

In the last equality, we use the fact that ∗𝑀𝑑 = (−1) 𝑝−1𝛿∗𝑀 on 𝑝-forms. For the other
boundary condition, we have 𝜄∗ (Δ∗𝑀𝜔) = 𝜄∗ (∗𝑀Δ𝜔) = ∗𝜕𝑀 (𝜈⌟Δ𝜔) = −𝑞∗𝜕𝑀 (𝜄∗𝛿𝜔) =
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(−1) 𝑝𝑞𝜈 ⌟ ∗𝑀𝛿𝜔 = 𝑞𝜈 ⌟ d(∗𝑀𝜔). Also here we use the fact that 𝑑∗𝑀 = (−1) 𝑝 ∗𝑀 𝛿 on
𝑝-forms. This finishes the proof. □

Remark 3.2. As a direct consequence of the invariance of the biharmonic Steklov operator
by the Hodge star operator is that 𝑞𝑖, 𝑝 = 𝑞𝑖,𝑛−𝑝 for any 𝑖 ≥ 1 and 𝑝 ≤ 𝑛.

In the following, we recall the estimate stated by S. Raulot and A. Savo in [22] for
subharmonic functions that we will use in order to get a lower bound of the first eigenvalue
𝑞1, 𝑝 . Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary such that the
Ricci curvature of 𝑀 satisfies Ric𝑀 ≥ (𝑛 − 1)𝐾 and the mean curvature of the boundary
satisfies 𝐻 ≥ 𝐻0 for some real numbers 𝐾 and 𝐻0. Let 𝑅 be the inner radius of the
manifold 𝑀 , that is

𝑅 = max {dist(𝑥, 𝜕𝑀) | 𝑥 ∈ 𝑀} ,
and Θ(𝑟) = (𝑠′

𝐾
(𝑟) − 𝐻0𝑠𝐾 (𝑟))𝑛−1 for all 𝑟 , where the function 𝑠𝐾 is being given by

𝑠𝐾 (𝑟) :=


1√
𝐾

sin
(
𝑟
√
𝐾

)
if𝐾 > 0,

𝑟 if𝐾 = 0,
1√
|𝐾 |

sinh
(
𝑟
√︁
|𝐾 |

)
if𝐾 < 0.

It was shown in [22, Prop. 14] (see also [12, Thm. A]) that the function Θ is smooth and
positive on [0, 𝑅[ and Θ(𝑅) = 0 when 𝑀 is a geodesic ball in 𝑀𝐾 , the space form of
sectional curvature 𝐾 . The following result was proved in [22]:

Theorem 3.3 ([22, Thm. 10]). Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with
smooth boundary. Assume that the Ricci curvature of 𝑀 satisfies Ric𝑀 ≥ (𝑛 − 1)𝐾 and
the mean curvature of 𝜕𝑀 fulfils 𝐻 ≥ 𝐻0 for some real numbers 𝐾 and 𝐻0. If ℎ is a
non-trivial, nonnegative subharmonic function on 𝑀 (i.e. Δℎ ≤ 0 on 𝑀), then∫

𝜕𝑀
ℎd𝜇𝑔∫

𝑀
ℎd𝜇𝑔

≥ 1∫ 𝑅
0 Θ(𝑟) d𝑟

.

Using this result and the Bochner formula Δ = ∇∗∇ +𝑊 [𝑝]
𝑀

on 𝑝-forms, we prove the
following:

Theorem 3.4. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary.
Assume that the Ricci curvature of 𝑀 satisfies Ric𝑀 ≥ (𝑛 − 1)𝐾 and the mean curvature
𝐻 ≥ 𝐻0 for some real numbers 𝐾 and 𝐻0. Assume also that the Bochner operator𝑊 [𝑝]

𝑀

is nonnegative for some 𝑝. Then, the inequality

𝑞1, 𝑝 ≥ 1∫ 𝑅
0 Θ(𝑟) d𝑟

(3.1)
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holds.

Proof. Applying the Bochner formula to Δ𝜔 where 𝜔 is a 𝑝-eigenform of the biharmonic
Steklov operator associated with 𝑞1, 𝑝, we get after taking the pointwise scalar product
with Δ𝜔 that

0 =
〈
Δ2𝜔,Δ𝜔

〉
= |∇Δ𝜔 |2 + 1

2
Δ

(
|Δ𝜔 |2

)
+

〈
𝑊

[𝑝]
𝑀

Δ𝜔,Δ𝜔

〉
.

Since𝑊 [𝑝]
𝑀

is nonnegative, we deduce that Δ( |Δ𝜔 |2) is nonpositive or equivalently the
function ℎ := |Δ𝜔 |2 is subharmonic. Therefore, by the previous theorem, we can say that∫

𝜕𝑀
|Δ𝜔 |2d𝜇𝑔∫

𝑀
|Δ𝜔 |2d𝜇𝑔

≥ 1∫ 𝑅
0 Θ(𝑟) d𝑟

.

Now, Characterization (2.10) gives the result and finishes the proof of the theorem. □

Remark 3.5. Depending on the sign of 𝐾 and 𝐻0, we can estimate explicitly
∫ 𝑅
0 Θ(𝑟) d𝑟

in terms of 𝑅 and 𝐻0, as in [22, Thms. 12 & 13]. Therefore, one can deduce several
estimates for 𝑞1, 𝑝 in terms of 𝑅 and 𝐻0.

We will now provide an estimate for the first eigenvalue of problem (2.2) on manifolds
carrying parallel forms and study the limiting case of the estimate. Recall that a harmonic
domain is a compact Riemannian manifold (𝑀𝑛, 𝑔) with smooth boundary 𝜕𝑀 supporting
a solution to the Serrin problem (1.3). We have the following result:

Theorem 3.6. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary.
Assume that 𝑀 supports a non-trivial parallel 𝑝-form 𝜔0 for some 𝑝 = 0, . . . , 𝑛. Then

𝑞1, 𝑝 ≤ Vol(𝜕𝑀)
Vol(𝑀) . (3.2)

Moreover, if equality holds in (3.2), then 𝑓 · 𝜔0 is an eigenform associated to 𝑞1, 𝑝 , where
𝑓 is the solution of (1.3) and therefore 𝑀 must be a harmonic domain (and hence a
Euclidean ball if 𝑀 ⊂ R𝑛).

Conversely, if 𝑀 is a harmonic domain, then Vol(𝜕𝑀 )
Vol(𝑀 ) is an eigenvalue – not necessarily

the first one – of the biharmonic Steklov problem (2.2).

Proof. As 𝜔0 is a parallel form, we can assume that |𝜔0 | = 1. By using the variational
characterization (2.10), we obtain that

𝑞1, 𝑝 ≤
∥𝜔0∥2

𝐿2 (𝜕𝑀 )

∥𝜔0∥2
𝐿2 (𝑀 )

=
Vol(𝜕𝑀)
Vol(𝑀) .

If equality occurs in (3.2), then 𝜔0 = Δ𝜔 for some eigenform 𝜔 associated with 𝑞1, 𝑝
by Theorem 2.6. Now Proposition 2.1 implies that 𝑀 carries a solution 𝑓 to the Serrin

207



F. El Chami & N. Ginoux & G. Habib & O. Makhoul

problem (1.3) and that 𝜔 = 𝑓 · 𝜔0. To check the converse, we take a function 𝑓 solution
to the Serrin problem (1.3), then using again Proposition 2.1 the 𝑝-form 𝜔 := 𝑓 · 𝜔0 is an
eigenform of (2.2) associated with the eigenvalue 𝑞 = 1

𝑐
, where 𝑐 = Vol(𝑀 )

Vol(𝜕𝑀 ) . □

Remark 3.7. If a compact Riemannian manifold 𝑀 with smooth boundary carries a
nontrivial harmonic form of constant length 𝜔0, then (3.2) remains valid. Moreover,
if (3.2) is an equality, then there still exists an eigenform 𝜔 to the biharmonic Steklov
operator on 𝑝-forms such that Δ𝜔 = 𝜔0, nevertheless it is no more true in general that 𝑀
must be a harmonic domain and that 𝜔 = 𝑓 · 𝜔0 for some solution 𝑓 to the scalar Serrin
problem.

Next we compare the first eigenvalues of the biharmonic Steklov operator for successive
degrees, when the manifold 𝑀 is a domain in R𝑛 or S𝑛. We first notice that, if 𝑓 is any
eigenfunction to the scalar biharmonic Steklov problem (1.1), then for any parallel 𝑝-form
𝜔0 on 𝑀 the form 𝑓 · 𝜔0 is an eigenform to the biharmonic Steklov problems on 𝑝-forms
and associated to the same eigenvalue. Therefore, for every eigenvalue 𝑞 of the scalar
biharmonic Steklov operator, we have an embedding

ker (BS0 − 𝑞) ⊗ P𝑝 ↩−→ ker
(
BS𝑝 − 𝑞

)
,

where ker(BS 𝑗 − 𝑞) denotes the eigenspace for the biharmonic Steklov operator on
𝑗-forms and associated to the eigenvalue 𝑞, and P𝑝 denotes the space of parallel 𝑝-forms
on 𝑀 . When 𝑀 ⊂ R𝑛, then conversely for any 𝜔 ∈ ker(BS𝑝 − 𝑞), there exists a parallel
𝑝-form 𝜔0 on 𝑀 with |𝜔0 | = 1 and ⟨𝜔, 𝜔0⟩ ≠ 0 (non identically vanishing) on 𝑀. But
then 𝑓 can be easily shown to lie in ker(BS0 − 𝑞). This shows that, when 𝑀 ⊂ R𝑛, both
0- and 𝑝-biharmonic Steklov eigenvalues coincide, their multiplicities being ignored.

In what follows, we assume that (𝑀𝑛, 𝑔) is isometrically immersed into the Euclidean
space R𝑛+𝑚. For any given smooth normal vector field 𝑁 to 𝑀, we denote by 𝐼𝐼𝑁 the
associated Weingarten map, that is, the endomorphism field of 𝑇𝑀 defined by

⟨𝐼𝐼𝑁 (𝑋), 𝑌⟩ = ⟨𝑁, 𝐼𝐼 (𝑋,𝑌 )⟩

for all 𝑋,𝑌 tangent to 𝑀, where 𝐼𝐼 is the second fundamental form of the immersion.
Recall that any endomorphism 𝐴 of 𝑇𝑀 can be extended to the set of differential 𝑝-forms
on 𝑀 as follows: For any 𝑝-form 𝜔 on 𝑀 , we define

𝐴[𝑝]𝜔(𝑋1, . . . , 𝑋𝑝) =
𝑝∑︁
𝑖=1

𝜔(𝑋1, . . . , 𝐴(𝑋𝑖), . . . , 𝑋𝑝), (3.3)

for all 𝑋1, . . . , 𝑋𝑝 vector fields in 𝑇𝑀 . In particular, this applies to 𝐼𝐼𝑁 for all 𝑁 ∈ 𝑇⊥𝑀 .
The following lemma is technical but will be useful for the comparison.

208



Biharmonic Steklov operator on differential forms

Lemma 3.8. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary 𝜕𝑀 .
Assume that 𝑀 is isometrically immersed into the Euclidean space R𝑛+𝑚. Let 𝜔 be any
𝑝-eigenform of the biharmonic Steklov operator. Then we have

𝑝𝑞1, 𝑝−1

∫
𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗ (𝛿𝜔) |2

)
d𝜇𝑔

≤
𝑛+𝑚∑︁
𝑖=1

∫
𝑀

©­«
�����−2𝐼𝐼

𝑛𝐻

(
𝜕𝑇𝑥𝑖

)
⌟ 𝜔 + 2

𝑚∑︁
𝑎=1

𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝐼𝐼 [𝑝]

𝑓𝑎
𝜔

−2
𝑛∑︁
𝑠=1

(
𝐼𝐼𝜕⊥𝑥𝑖

𝑒𝑠

)
⌟

(
∇𝑒𝑠𝜔

)
− 𝑛

(
d
(〈
𝐻, 𝜕⊥𝑥𝑖

〉))
⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔

�����2ª®¬ d𝜇𝑔 . (3.4)

Here {𝑒1, . . . , 𝑒𝑛} and { 𝑓1, . . . , 𝑓𝑚} are respectively orthonormal bases of 𝑇𝑀 and 𝑇⊥𝑀

and 𝐻 is the mean curvature field of the immersion.

Proof. Let 𝜔 be any eigenform of the biharmonic Steklov problem associated with
𝑞1, 𝑝. For each 𝑖 = 1, . . . , 𝑛 + 𝑚, the unit parallel vector field 𝜕𝑥𝑖 on R𝑛+𝑚 splits into
𝜕𝑥𝑖 = (𝜕𝑥𝑖 )𝑇 + (𝜕𝑥𝑖 )⊥ where (𝜕𝑥𝑖 )𝑇 is the tangent part in 𝑇𝑀 and (𝜕𝑥𝑖 )⊥ is the orthogonal
one in 𝑇⊥𝑀 . We consider the (𝑝 − 1)-form (𝜕𝑥𝑖 )𝑇 ⌟ 𝜔 on 𝑀 which clearly vanishes on
𝜕𝑀 . By applying to it the variational characterization (2.9), we get, for each 𝑖,

𝑞1, 𝑝−1 ·
∫
𝜕𝑀

(���𝜈 ⌟ d
(
(𝜕𝑥𝑖 )𝑇 ⌟ 𝜔

)���2 + ���𝜄∗𝛿 (
(𝜕𝑥𝑖 )𝑇 ⌟ 𝜔

)���2) d𝜇𝑔

≤
∫
𝑀

���Δ (
(𝜕𝑥𝑖 )𝑇 ⌟ 𝜔

)���2 d𝜇𝑔 . (3.5)

Now we want to sum over 𝑖 = 1, . . . , 𝑛 +𝑚. We first begin with the l.h.s. Recall the Cartan
formula: L𝑋𝜔 = d(𝑋 ⌟ 𝜔) + 𝑋 ⌟ d𝜔, for any vector field 𝑋 on 𝑀 . Using this formula, we
have for each 𝑖,

d(𝜕𝑇𝑥𝑖 ⌟ 𝜔) = L𝜕𝑇𝑥𝑖𝜔 − 𝜕𝑇𝑥𝑖 ⌟ d𝜔

= ∇𝜕𝑇𝑥𝑖𝜔 + 𝐼𝐼 [𝑝]
𝜕⊥𝑥𝑖
𝜔 − 𝜕𝑇𝑥𝑖 ⌟ d𝜔. (3.6)

In the last equality, we used the splitting of the Lie derivative in terms of the connection
as follows: L𝑋𝑇𝜔 = ∇𝑋𝑇𝜔 + 𝐼𝐼 [𝑝]

𝑋⊥ 𝜔, for a parallel vector field 𝑋 ∈ R𝑛+𝑚, proved in [9,
Eq. (4.3) p. 337]. Since 𝜔 = 0 on 𝜕𝑀 , we have that for any 𝑋 ∈ 𝑇𝜕𝑀 [20, Eq. (23)]

𝜈 ⌟ ∇𝑋𝜔 = ∇𝜕𝑀𝑋 (𝜈 ⌟ 𝜔) + 𝑆(𝑋) ⌟ (𝜄∗𝜔) = 0.
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Here 𝑆 denotes the second fundamental form of the boundary. Therefore, we deduce that

𝜈 ⌟ d
(
(𝜕𝑥𝑖 )𝑇 ⌟ 𝜔

)
= 𝜈 ⌟ ∇𝜕𝑇𝑥𝑖𝜔 + 𝜕𝑇𝑥𝑖 ⌟ (𝜈 ⌟ d𝜔)

= 𝑔((𝜕𝑥𝑖 )𝑇 , 𝜈)𝜈 ⌟ ∇𝜈𝜔 + 𝜕𝑇𝑥𝑖 ⌟ (𝜈 ⌟ d𝜔)
= −𝑔(𝜕𝑥𝑖 , 𝜈)𝜄∗ (𝛿𝜔) + 𝜕𝑇𝑥𝑖 ⌟ (𝜈 ⌟ d𝜔). (3.7)

In the last equality, we use the identity [20, Lem. 18]

𝜈 ⌟ ∇𝜈𝜔 = 𝛿𝜕𝑀 (𝜄∗𝜔) − 𝜄∗ (𝛿𝜔) − 𝑆 [𝑝−1] (𝜈 ⌟ 𝜔) + (𝑛 − 1)𝐻𝜈 ⌟ 𝜔 = −𝜄∗ (𝛿𝜔).

Independently, by a straightforward computation, we check that, for any 𝑝-form 𝛼,
𝑛+𝑚∑︁
𝑖=1

𝜕𝑇𝑥𝑖 ∧
(
𝜕𝑇𝑥𝑖 ⌟ 𝛼

)
=

𝑛∑︁
𝑖=1

𝑒𝑖 ∧ (𝑒𝑖 ⌟ 𝛼) = 𝑝𝛼.

As a consequence, we obtain for any 𝑝-forms 𝛼 and 𝛽 on 𝑀
𝑛+𝑚∑︁
𝑖=1

〈
𝜕𝑇𝑥𝑖 ⌟ 𝛼, 𝜕

𝑇
𝑥𝑖
⌟ 𝛽⟩ = 𝑝⟨𝛼, 𝛽

〉
. (3.8)

We take the norm of (3.7) and sum over 𝑖 to get

𝑛+𝑚∑︁
𝑖=1

���𝜈 ⌟ d
(
(𝜕𝑥𝑖 )𝑇 ⌟ 𝜔

)���2
(3.8)
= |𝜄∗ (𝛿𝜔) |2 + 𝑝 |𝜈 ⌟ d𝜔 |2 − 2

𝑛+𝑚∑︁
𝑖=1

𝑔(𝜕𝑥𝑖 , 𝜈)
〈
𝜄∗ (𝛿𝜔), 𝜕𝑇𝑥𝑖 ⌟ (𝜈 ⌟ d𝜔)

〉
= |𝜄∗𝛿𝜔|2 + 𝑝 |𝜈 ⌟ d𝜔 |2 − 2

〈
𝜄∗𝛿𝜔, 𝜈𝑇 ⌟ (𝜈 ⌟ d𝜔)

〉
= |𝜄∗𝛿𝜔|2 + 𝑝 |𝜈 ⌟ d𝜔 |2. (3.9)

Here we notice that by the Gauß formula and the fact that 𝜕𝑥𝑖 is parallel in R𝑛+𝑚, we have
∇𝑋𝜕𝑇𝑥𝑖 = 𝐼𝐼𝜕⊥𝑥𝑖 (𝑋), so that

𝛿

(
𝜕𝑇𝑥𝑖 ⌟ 𝜔

)
= −

𝑛∑︁
𝑗=1
𝑒 𝑗 ⌟ ∇𝑒 𝑗

(
𝜕𝑇𝑥𝑖 ⌟ 𝜔

)
= −

𝑛∑︁
𝑗=1
𝑒 𝑗 ⌟

(
∇𝑒 𝑗 𝜕𝑇𝑥𝑖 ⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ ∇𝑒 𝑗𝜔

)
= −

𝑛∑︁
𝑗=1
𝑒 𝑗 ⌟ 𝐼𝐼𝜕⊥𝑥𝑖 (𝑒 𝑗 ) ⌟ 𝜔 +

𝑛∑︁
𝑗=1
𝜕𝑇𝑥𝑖 ⌟

(
𝑒 𝑗 ⌟ ∇𝑒 𝑗𝜔

)
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= −
𝑛∑︁

𝑗 ,𝑘=1

〈
𝐼𝐼𝜕⊥𝑥𝑖

(𝑒 𝑗 ), 𝑒𝑘
〉
𝑒 𝑗 ⌟ 𝑒𝑘 ⌟ 𝜔 − 𝜕𝑇𝑥𝑖 ⌟ 𝛿𝜔

= −𝜕𝑇𝑥𝑖 ⌟ 𝛿𝜔

because of the expression ⟨𝐼𝐼𝜕⊥𝑥𝑖 (𝑒 𝑗 ), 𝑒𝑘⟩ = ⟨𝐼𝐼 (𝑒 𝑗 , 𝑒𝑘), 𝜕⊥𝑥𝑖 ⟩ being symmetric in 𝑗 , 𝑘 .
Thus 𝛿(𝜕𝑇𝑥𝑖 ⌟ 𝜔) = −𝜕𝑇𝑥𝑖 ⌟ 𝛿𝜔 for any 𝑖. Using also the fact that 𝜈 ⌟ 𝛿(𝜕𝑇𝑥𝑖 ⌟ 𝜔) =

−𝛿𝜕𝑀 (𝜈 ⌟ 𝜕𝑇𝑥𝑖 ⌟ 𝜔) = 0, we get that

𝑛+𝑚∑︁
𝑖=1

���𝜄∗𝛿 (
𝜕𝑇𝑥𝑖 ⌟ 𝜔

)���2 =

𝑛+𝑚∑︁
𝑖=1

���𝛿 (
𝜕𝑇𝑥𝑖 ⌟ 𝜔

)���2 (3.8)
= (𝑝 − 1) |𝜄∗𝛿𝜔|2 . (3.10)

Hence adding Equations (3.9) and (3.10) allows to find the l.h.s. of Inequality (3.4). We
are now going to estimate the term

∑𝑛+𝑚
𝑖=1 |Δ(𝜕𝑇𝑥𝑖 ⌟ 𝜔) |

2 in (3.5). Taking the divergence
of (3.6) and the differential of the identity 𝛿(𝜕𝑇𝑥𝑖 ⌟ 𝜔) = −𝜕𝑇𝑥𝑖 ⌟ 𝛿𝜔 along with the Cartan
formula and the decomposition of the Lie derivative as in (3.6), we get that

Δ

(
𝜕𝑇𝑥𝑖 ⌟ 𝜔

)
=

[
𝛿,∇𝜕𝑇𝑥𝑖

]
(𝜔) + 𝛿

(
𝐼𝐼

[𝑝]
𝜕⊥𝑥𝑖
𝜔

)
− 𝐼𝐼 [𝑝−1]

𝜕⊥𝑥𝑖
(𝛿𝜔) + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔. (3.11)

In the following, we will compute each term of (3.11) separately. First, take an
orthonormal frame {𝑒1, . . . , 𝑒𝑛} of 𝑇𝑀 such that ∇𝑒𝑖 = 0 at some point. Then we have,
for any vector field 𝑋 on 𝑀 ,

[𝛿,∇𝑋] (𝜔) = 𝛿(∇𝑋𝜔) − ∇𝑋𝛿𝜔

= −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ ∇𝑒𝑠∇𝑋𝜔 − ∇𝑋𝛿𝜔

= −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟
(
𝑅(𝑒𝑠 , 𝑋)𝜔 + ∇𝑋∇𝑒𝑠𝜔 + ∇[𝑒𝑠 ,𝑋]𝜔

)
− ∇𝑋𝛿𝜔

= −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅(𝑒𝑠 , 𝑋)𝜔 + ∇𝑋𝛿𝜔 −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ ∇∇𝑒𝑠𝑋
𝜔 − ∇𝑋𝛿𝜔

= −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅(𝑒𝑠 , 𝑋)𝜔 −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ ∇∇𝑒𝑠𝑋
𝜔.

(3.12)

Now we use the fact that for any tensor field 𝐴, any vector field 𝑋 and any 𝑝-form 𝛼 on
𝑀, ∇𝑋𝐴[𝑝] = (∇𝑋𝐴) [𝑝] and 𝐴[𝑝−1] (𝑋 ⌟ 𝛼) = 𝑋 ⌟ 𝐴[𝑝]𝛼 − 𝐴(𝑋) ⌟ 𝛼, which both can
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be proved by a straightforward computation. Thus for any 𝑁 ∈ 𝑇⊥𝑀 , we can write

𝛿

(
𝐼𝐼

[𝑝]
𝑁
𝜔

)
− 𝐼𝐼 [𝑝−1]

𝑁
(𝛿𝜔)

= −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ ∇𝑒𝑠
(
𝐼𝐼

[𝑝]
𝑁
𝜔

)
− 𝐼𝐼 [𝑝−1]

𝑁
(𝛿𝜔)

= −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ (∇𝑒𝑠 𝐼𝐼𝑁 ) [𝑝] (𝜔) −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝐼𝐼
[𝑝]
𝑁

(∇𝑒𝑠𝜔) − 𝐼𝐼
[𝑝−1]
𝑁

(𝛿𝜔)

= −
𝑛∑︁
𝑠=1

(∇𝑒𝑠 𝐼𝐼𝑁 ) [𝑝−1] (𝑒𝑠 ⌟ 𝜔) −
𝑛∑︁
𝑠=1

(
(∇𝑒𝑠 𝐼𝐼𝑁 ) (𝑒𝑠)

)
⌟ 𝜔

−
𝑛∑︁
𝑠=1

𝐼𝐼
[𝑝−1]
𝑁

(𝑒𝑠 ⌟ ∇𝑒𝑠𝜔) −
𝑛∑︁
𝑠=1

(𝐼𝐼𝑁 𝑒𝑠) ⌟ (∇𝑒𝑠𝜔) − 𝐼𝐼
[𝑝−1]
𝑁

(𝛿𝜔)

= −
𝑛∑︁
𝑠=1

(∇𝑒𝑠 𝐼𝐼𝑁 ) [𝑝−1] (𝑒𝑠 ⌟ 𝜔) + 𝛿(𝐼𝐼𝑁 ) ⌟ 𝜔 −
𝑛∑︁
𝑠=1

(𝐼𝐼𝑁 𝑒𝑠) ⌟ (∇𝑒𝑠𝜔).

(3.13)

By taking 𝑋 = 𝜕𝑇𝑥𝑖 in (3.12) and 𝑁 = 𝜕⊥𝑥𝑖 in (3.13), Equation (3.11) reduces after using
the fact that ∇𝜕𝑇𝑥𝑖 = 𝐼𝐼𝜕⊥𝑥𝑖 as a consequence of the parallelism of the vector field 𝜕𝑥𝑖 , to

Δ

(
𝜕𝑇𝑥𝑖 ⌟ 𝜔

)
= −

𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅
(
𝑒𝑠 , 𝜕

𝑇
𝑥𝑖

)
𝜔 − 2

𝑛∑︁
𝑠=1

(
𝐼𝐼𝜕⊥𝑥𝑖

𝑒𝑠

)
⌟ (∇𝑒𝑠𝜔)

−
𝑛∑︁
𝑠=1

(
∇𝑒𝑠 𝐼𝐼𝜕⊥𝑥𝑖

) [𝑝−1]
(𝑒𝑠 ⌟ 𝜔) + 𝛿

(
𝐼𝐼𝜕⊥𝑥𝑖

)
⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔. (3.14)

We proceed in the computation of (3.14) and compute
∑𝑛
𝑠=1 (∇𝑒𝑠 𝐼𝐼𝜕⊥𝑥𝑖 )

[𝑝−1] (𝑒𝑠 ⌟ 𝜔).
Using the fact that 𝐴[𝑝] =

∑𝑛
𝑙=1 𝑒𝑙 ∧ (𝐴(𝑒𝑙)⌟) for any symmetric tensor 𝐴, we compute

with the help of Equation (A.2) in the appendix
𝑛∑︁
𝑠=1

(
∇𝑒𝑠 𝐼𝐼𝜕⊥𝑥𝑖

) [𝑝−1]
(𝑒𝑠 ⌟ 𝜔) =

𝑛∑︁
𝑙,𝑠=1

𝑒𝑙 ∧
((
∇𝑒𝑠 𝐼𝐼𝜕⊥𝑥𝑖

)
(𝑒𝑙) ⌟ 𝑒𝑠 ⌟ 𝜔

)
=

𝑛∑︁
𝑙,𝑠=1

𝑒𝑙 ∧
((
∇𝑒𝑙 𝐼𝐼𝜕⊥𝑥𝑖

)
(𝑒𝑠) ⌟ 𝑒𝑠 ⌟ 𝜔

)
−

𝑛∑︁
𝑙,𝑠=1

𝑒𝑙 ∧
((
𝐼𝐼(

∇R𝑛+𝑚𝑒𝑙
𝜕⊥𝑥𝑖

)⊥ ) (𝑒𝑠) ⌟ 𝑒𝑠 ⌟ 𝜔)
+

𝑛∑︁
𝑙,𝑠=1

𝑒𝑙 ∧
((
𝐼𝐼(

∇R𝑛+𝑚𝑒𝑠 𝜕⊥𝑥𝑖

)⊥ ) (𝑒𝑙) ⌟ 𝑒𝑠 ⌟ 𝜔)
.

(3.15)
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The first two sums vanish identically, since
∑
𝑠 𝐴(𝑒𝑠) ⌟ 𝑒𝑠 ⌟ 𝜔 = 0 for any symmetric

endomorphism 𝐴. Hence with the help of Equation (A.4), Equality (3.15) reduces to

𝑛∑︁
𝑠=1

(
∇𝑒𝑠 𝐼𝐼𝜕⊥𝑥𝑖

) [𝑝−1]
(𝑒𝑠 ⌟ 𝜔) = −

𝑛∑︁
𝑙,𝑠=1

𝑒𝑙 ∧
(
𝐼𝐼𝐼𝐼 (𝑒𝑠 ,𝜕𝑇𝑥𝑖 ) (𝑒𝑙) ⌟ 𝑒𝑠 ⌟ 𝜔

)
= −

𝑛∑︁
𝑙,𝑠=1

𝑚∑︁
𝑎=1

〈
𝐼𝐼

(
𝑒𝑠 , 𝜕

𝑇
𝑥𝑖

)
, 𝑓𝑎

〉
𝑒𝑙 ∧

(
𝐼𝐼 𝑓𝑎 (𝑒𝑙) ⌟ 𝑒𝑠 ⌟ 𝜔

)
= −

𝑛∑︁
𝑙=1

𝑚∑︁
𝑎=1

𝑒𝑙 ∧
(
𝐼𝐼 𝑓𝑎 (𝑒𝑙) ⌟ 𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝜔

)
= −

𝑚∑︁
𝑎=1

𝐼𝐼
[𝑝−1]
𝑓𝑎

(
𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝜔

)
, (3.16)

where { 𝑓1, . . . , 𝑓𝑚} is an orthonormal frame of 𝑇⊥𝑀 . In the last equality, we used again
the expression 𝐴[𝑝] =

∑
𝑙 𝑒𝑙 ∧ (𝐴(𝑒𝑙)⌟) for any symmetric endomorphism 𝐴. Hence after

replacing Equations (A.3), proved in the appendix, and (3.16) into Equation (3.14), we
finally get

Δ

(
𝜕𝑇𝑥𝑖 ⌟ 𝜔

)
= −

𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅
(
𝑒𝑠 , 𝜕

𝑇
𝑥𝑖

)
𝜔 − 2

𝑛∑︁
𝑠=1

(
𝐼𝐼𝜕⊥𝑥𝑖

𝑒𝑠

)
⌟ (∇𝑒𝑠𝜔)

+
𝑚∑︁
𝑎=1

𝐼𝐼
[𝑝−1]
𝑓𝑎

(
𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝜔

)
+

(
𝑚∑︁
𝑎=1

𝐼𝐼2𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
− 𝑛d

(〈
𝐻, 𝜕⊥𝑥𝑖

〉)
− 𝑛𝐼𝐼

𝐻

(
𝜕𝑇𝑥𝑖

))
⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔

= −
𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅
(
𝑒𝑠 , 𝜕

𝑇
𝑥𝑖

)
𝜔 − 2

𝑛∑︁
𝑠=1

(
𝐼𝐼𝜕⊥𝑥𝑖

𝑒𝑠

)
⌟ (∇𝑒𝑠𝜔)

+
𝑚∑︁
𝑎=1

𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝐼𝐼 [𝑝]

𝑓𝑎
𝜔 +

(
−𝑛d

(〈
𝐻, 𝜕⊥𝑥𝑖

〉)
− 𝑛𝐼𝐼

𝐻

(
𝜕𝑇𝑥𝑖

))
⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔 (3.17)

= −𝐼𝐼
𝑛𝐻

(
𝜕𝑇𝑥𝑖

)
⌟ 𝜔 +

𝑚∑︁
𝑎=1

𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝐼𝐼 [𝑝]

𝑓𝑎
𝜔 − 2

𝑛∑︁
𝑠=1

(
𝐼𝐼𝜕⊥𝑥𝑖

𝑒𝑠

)
⌟ (∇𝑒𝑠𝜔)

+
𝑚∑︁
𝑎=1

𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝐼𝐼 [𝑝]

𝑓𝑎
𝜔 +

(
−𝑛d

(〈
𝐻, 𝜕⊥𝑥𝑖

〉)
− 𝑛𝐼𝐼

𝐻

(
𝜕𝑇𝑥𝑖

))
⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔
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= −2𝐼𝐼
𝑛𝐻

(
𝜕𝑇𝑥𝑖

)
⌟ 𝜔 + 2

𝑚∑︁
𝑎=1

𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
⌟ 𝐼𝐼 [𝑝]

𝑓𝑎
𝜔 − 2

𝑛∑︁
𝑠=1

(
𝐼𝐼𝜕⊥𝑥𝑖

𝑒𝑠

)
⌟ (∇𝑒𝑠𝜔)

− 𝑛
(
d
(〈
𝐻, 𝜕⊥𝑥𝑖

〉))
⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔.

In the second equality, we used again the relation 𝐴[𝑝−1] (𝑋 ⌟ 𝛼) = 𝑋 ⌟ 𝐴[𝑝]𝛼− 𝐴(𝑋) ⌟ 𝛼
for any 𝑝-form 𝛼 and 𝑋 ∈ 𝑇𝑀, and in the third equality, we used Proposition A.3 in
the appendix. Equation (3.17), along with (3.9) and (3.10), gives the result, by using
Inequality (3.5). □

In general, it is difficult to control all the terms in Inequality (3.4) in order to compare
𝑞1, 𝑝−1 and 𝑞1, 𝑝 . Therefore, we shall restrict ourselves to the case when 𝑀 is a domain in
S𝑛. We have the following result:

Theorem 3.9. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary. If
𝑀 is a domain in S𝑛, then we have that

𝑝𝑞1, 𝑝−1 + (𝑛 − 𝑝)𝑞1, 𝑝+1 < 𝐶𝑝,𝑛𝑞1, 𝑝 , (3.18)

where 𝐶𝑝,𝑛 is some constant that depends on 𝑝 and 𝑛 and whose explicit expression is
given in (3.23).

Proof. We consider the isometric immersion 𝑀 ⊂ S𝑛 ↩→ R𝑛+1. In this case, we have
that 𝑚 = 1, the orthonormal basis of 𝑇⊥𝑀 reduces to the inward unit vector field
𝜈̃ = −∑𝑛+1

𝑖=1 𝑥𝑖𝜕𝑥𝑖 , the second fundamental form is given by 𝐼𝐼𝜈̃ = Id and 𝐻 = 𝜈̃. Therefore,
Inequality (3.4) becomes

𝑝𝑞1, 𝑝−1

∫
𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗ (𝛿𝜔) |2

)
d𝜇𝑔

≤
𝑛+1∑︁
𝑖=1

∫
𝑀

���(2𝑝 − 2𝑛)𝜕𝑇𝑥𝑖 ⌟ 𝜔 + 2⟨𝜕⊥𝑥𝑖 , 𝜈̃⟩𝛿𝜔 − 𝑛d
(〈
𝜈̃, 𝜕⊥𝑥𝑖

〉)
⌟ 𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔

���2d𝜇𝑔 .
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Now, an elementary computation shows that d(⟨𝜈̃, 𝜕⊥𝑥𝑖 ⟩) = −𝜕𝑇𝑥𝑖 . Therefore, the above
inequality reduces to

𝑝𝑞1, 𝑝−1

∫
𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗ (𝛿𝜔) |2

)
d𝜇𝑔

≤
𝑛+1∑︁
𝑖=1

∫
𝑀

��(2𝑝 − 𝑛)𝜕𝑇𝑥𝑖 ⌟ 𝜔 + 2
〈
𝜕⊥𝑥𝑖 , 𝜈̃

〉
𝛿𝜔 + 𝜕𝑇𝑥𝑖 ⌟ Δ𝜔

��2 d𝜇𝑔

=

∫
𝑀

(
(2𝑝 − 𝑛)2𝑝 |𝜔 |2 + 4|𝛿𝜔 |2 + 𝑝 |Δ𝜔|2 + 2𝑝(2𝑝 − 𝑛)⟨𝜔,Δ𝜔⟩

)
d𝜇𝑔

=

∫
𝑀

(
4|𝛿𝜔 |2 + 𝑝 |Δ𝜔 + (2𝑝 − 𝑛)𝜔 |2

)
d𝜇𝑔 .

(3.19)

Here, we use Identity (3.8) and that

𝑛+1∑︁
𝑖=1

〈
𝜕⊥𝑥𝑖 , 𝜈̃

〉 〈
𝜕𝑇𝑥𝑖 ⌟ 𝜔, 𝛿𝜔

〉
=

𝑛+1∑︁
𝑖=1

⟨𝜕𝑥𝑖 , 𝜈̃⟩
〈
𝜕𝑇𝑥𝑖 ⌟ 𝜔, 𝛿𝜔

〉
=

〈
𝜈̃𝑇 ⌟ 𝜔, 𝛿𝜔

〉
= 0.

The same argument applies to
∑𝑛+1
𝑖=1 ⟨𝜕⊥𝑥𝑖 , 𝜈̃⟩⟨𝛿𝜔, 𝜕

𝑇
𝑥𝑖
⌟ Δ𝜔⟩ = 0. Since Inequality (3.19) is

true for any 𝑝-eigenform 𝜔, we apply it to the (𝑛 − 𝑝)-eigenform ∗𝑀𝜔 to get

(𝑛 − 𝑝)𝑞1,𝑛−𝑝−1

∫
𝜕𝑀

(
|𝜄∗ (𝛿𝜔) |2 + |𝜈 ⌟ d𝜔 |2

)
d𝜇𝑔

≤
∫
𝑀

(
4|d𝜔 |2 + (𝑛 − 𝑝) |Δ𝜔 + (2𝑛 − 2𝑝 − 𝑛)𝜔 |2

)
d𝜇𝑔 . (3.20)

Summing inequalities (3.19) and (3.20) and using the fact that 𝑞1,𝑛−𝑝−1 = 𝑞1, 𝑝+1 yield
the following:

(
𝑝𝑞1, 𝑝−1 + (𝑛 − 𝑝)𝑞1, 𝑝+1

) ∫
𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗ (𝛿𝜔) |2

)
d𝜇𝑔

≤
∫
𝑀

(
4|d𝜔 |2 + 4|𝛿𝜔|2 + 𝑝 |Δ𝜔 + (2𝑝 − 𝑛)𝜔 |2 + (𝑛 − 𝑝) |Δ𝜔 + (𝑛 − 2𝑝)𝜔 |2

)
d𝜇𝑔

=

∫
𝑀

(
4⟨Δ𝜔, 𝜔⟩ + 𝑝 |Δ𝜔 + (2𝑝 − 𝑛)𝜔 |2 + (𝑛 − 𝑝) |Δ𝜔 + (𝑛 − 2𝑝)𝜔 |2

)
d𝜇𝑔 . (3.21)

Here, we used the fact that
∫
𝑀
⟨Δ𝜔, 𝜔⟩d𝜇𝑔 =

∫
𝑀
( |d𝜔 |2 + |𝛿𝜔|2)d𝜇𝑔 as a consequence of

the boundary condition 𝜔 |𝜕𝑀 = 0. Now, the Bochner formula applied to the eigenform 𝜔,
with the help of the pointwise inequality |∇𝛼 |2 ≥ 1

𝑝+1 |d𝛼 |
2 + 1

𝑛−𝑝+1 |𝛿𝛼 |
2 which is true
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for any 𝑝-form 𝛼 [7, Lem. 6.8], gives that∫
𝑀

⟨Δ𝜔, 𝜔⟩d𝜇𝑔

=

∫
𝑀

|∇𝜔 |2d𝜇𝑔 +
1
2

∫
𝑀

Δ

(
|𝜔 |2

)
d𝜇𝑔 +

∫
𝑀

〈
𝑊

[𝑝]
𝑀
𝜔, 𝜔

〉
d𝜇𝑔

≥
∫
𝑀

1
𝑎(𝑝, 𝑛)

(
|d𝜔 |2 + |𝛿𝜔 |2

)
d𝜇𝑔 +

∫
𝜕𝑀

⟨∇𝜈𝜔, 𝜔⟩d𝜇𝑔 +
∫
𝑀

𝑝(𝑛 − 𝑝) |𝜔 |2d𝜇𝑔

=
1

𝑎(𝑝, 𝑛)

∫
𝑀

⟨Δ𝜔, 𝜔⟩d𝜇𝑔 +
∫
𝑀

𝑝(𝑛 − 𝑝) |𝜔 |2d𝜇𝑔 .

Here, we have set 𝑎(𝑝, 𝑛) = max(𝑝 + 1, 𝑛 − 𝑝 + 1) and used the fact that the Bochner
operator𝑊 [𝑝]

𝑀
is equal to 𝑝(𝑛− 𝑝) Id on the round sphere S𝑛, see e.g. [7, Cor. 2.6] and [7,

Rem. 6.15]. Thus, we deduce that

𝑝(𝑛 − 𝑝)∥𝜔∥2
𝐿2 (𝑀 ) ≤

(
1 − 1

𝑎(𝑝, 𝑛)

) ∫
𝑀

⟨Δ𝜔, 𝜔⟩d𝜇𝑔

≤
(
1 − 1

𝑎(𝑝, 𝑛)

)
∥Δ𝜔∥𝐿2 (𝑀 ) ∥𝜔∥𝐿2 (𝑀 ) ,

so that
∥𝜔∥𝐿2 (𝑀 ) ≤

𝑎(𝑝, 𝑛) − 1
𝑝(𝑛 − 𝑝)𝑎(𝑝, 𝑛) ∥Δ𝜔∥𝐿2 (𝑀 ) . (3.22)

Coming back to Inequality (3.21) and using again the Cauchy–Schwarz inequality as well
as the estimate ∥𝛼 + 𝛽∥2

𝐿2 (𝑀 ) ≤ 2(∥𝛼∥2
𝐿2 (𝑀 ) + ∥𝛽∥2

𝐿2 (𝑀 ) ), we obtain(
𝑝𝑞1, 𝑝−1 + (𝑛 − 𝑝)𝑞1, 𝑝+1

) ∫
𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗ (𝛿𝜔) |2

)
d𝜇𝑔

≤ 4∥Δ𝜔∥𝐿2 (𝑀 ) ∥𝜔∥𝐿2 (𝑀 ) + 2𝑝∥Δ𝜔∥2
𝐿2 (𝑀 ) + 2𝑝(2𝑝 − 𝑛)2∥𝜔∥2

𝐿2 (𝑀 )

+ 2(𝑛 − 𝑝)∥Δ𝜔∥2
𝐿2 (𝑀 ) + 2(𝑛 − 𝑝) (𝑛 − 2𝑝)2∥𝜔∥2

𝐿2 (𝑀 )
(3.22)
≤ 𝐶 (𝑝, 𝑛)∥Δ𝜔∥2

𝐿2 (𝑀 ) ,

where 𝐶 (𝑝, 𝑛) is the constant given by

𝐶 (𝑝, 𝑛) = 4
𝑎(𝑝, 𝑛) − 1

𝑝(𝑛 − 𝑝)𝑎(𝑝, 𝑛) + 2𝑛

+
(
2𝑝(2𝑝 − 𝑛)2 + 2(𝑛 − 𝑝) (𝑛 − 2𝑝)2

) (
𝑎(𝑝, 𝑛) − 1

𝑝(𝑛 − 𝑝)𝑎(𝑝, 𝑛)

)2

= 4
𝑎(𝑝, 𝑛) − 1

𝑝(𝑛 − 𝑝)𝑎(𝑝, 𝑛) + 2𝑛 + 2𝑛(2𝑝 − 𝑛)2
(

𝑎(𝑝, 𝑛) − 1
𝑝(𝑛 − 𝑝)𝑎(𝑝, 𝑛)

)2
.

(3.23)
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Finally Characterization (2.9) allows to get the result. Notice that, if (3.18) were an
equality, then by the limiting case in the Cauchy–Schwarz inequality, the form Δ𝜔 would
be parallel to 𝜔. But by Δ2𝜔 = 0, this would imply that Δ𝜔 = 0. Because of 𝜔 |𝜕𝑀 = 0,
we would deduce from [1] that 𝜔 = 0 on 𝑀, which is a contradiction. Therefore, (3.18)
always remains strict. □

4. Robin vs. Dirichlet and Neumann eigenvalue problems

In this section, we will establish estimates for the Robin eigenvalue problem on differential
forms defined in [4]. We mainly generalize some results in [13] to differential forms.
For this purpose, we recall the Robin problem on forms. Let (𝑀𝑛, 𝑔) be a compact
Riemannian manifold with smooth boundary 𝜕𝑀 . Fix a real number 𝜏. Then the boundary
value problem [4] 

Δ𝜔 = 𝜆𝜔 on 𝑀
𝜄∗ (𝜈 ⌟ d𝜔 − 𝜏𝜔) = 0 on 𝜕𝑀

𝜈 ⌟ 𝜔 = 0 on 𝜕𝑀
(4.1)

is elliptic and self-adjoint. Note that, when 𝜏 < 0 and 𝜆 = 0, a nonzero 𝑝-form 𝜔 on 𝑀
satisfying (4.1) is nothing but a Steklov-eigenform associated with the eigenvalue −𝜏.
Problem (4.1) admits an increasing unbounded sequence of real eigenvalues with finite
multiplicities

𝜆1, 𝑝 (𝜏) ≤ 𝜆2, 𝑝 (𝜏) ≤ . . .

where 𝜆1, 𝑝 (𝜏) > 0 as soon as 𝜏 > 0, which we assume from now on. The first eigenvalue
𝜆1, 𝑝 (𝜏) of the Robin boundary problem (4.1) can be characterized as follows:

𝜆1, 𝑝 (𝜏) = inf


∫
𝑀

(
|d𝜔 |2 + |𝛿𝜔 |2

)
d𝜇𝑔 + 𝜏

∫
𝜕𝑀

|𝜄∗𝜔 |2d𝜇𝑔∫
𝑀

|𝜔|2d𝜇𝑔

 , (4.2)

where 𝜔 runs over all non-identically vanishing 𝑝-forms on 𝑀 such that 𝜈 ⌟ 𝜔 = 0. When
the parameter 𝜏 tends to 0, the Robin problem (4.1) reduces to the Neumann boundary
problem, that is 

Δ𝜔 = 𝜆𝜔 on 𝑀
𝜈 ⌟ d𝜔 = 0 on 𝜕𝑀
𝜈 ⌟ 𝜔 = 0 on 𝜕𝑀.

(4.3)

Notice that the first eigenvalue 𝜆𝑁1, 𝑝 of (4.3) is nonnegative and the kernel of the
operator (4.3) is isomorphic to the so-called absolute de Rham cohomology, which is
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defined by

𝐻
𝑝

𝐴
(𝑀) = {𝜔 ∈ Ω𝑝 (𝑀) | d𝜔 = 𝛿𝜔 = 0 on𝑀 and 𝜈 ⌟ 𝜔 = 0 on 𝜕𝑀} .

When 𝜏 → ∞, the Robin problem (4.1) reduces to the Dirichlet boundary problem{
Δ𝜔 = 𝜆𝜔 on 𝑀
𝜔 = 0 on 𝜕𝑀.

(4.4)

By [1], the first eigenvalue 𝜆𝐷1, 𝑝 of problem (4.4) is positive. We also have the estimate [4,
Prop. 5.4]

𝜆𝑁1, 𝑝 ≤ 𝜆1, 𝑝 (𝜏) ≤ 𝜆𝐷1, 𝑝 .

In the following, we will establish another estimates for 𝜆1, 𝑝 (𝜏) in terms of the Neumann
and Dirichlet ones. We have:

Theorem 4.1. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary.
We have the following estimates for the first eigenvalue of the Robin boundary problem:

(1) Assume that the absolute de Rham cohomology 𝐻 𝑝

𝐴
(𝑀) does not vanish. We

denote by 𝜔𝐷 an eigenform of the Dirichlet boundary problem associated to 𝜆𝐷1, 𝑝
and let 𝜔0 be the orthogonal projection of 𝜔𝐷 on the space 𝐻 𝑝

𝐴
(𝑀), assumed to

be nonzero. Then

1
𝜆1, 𝑝 (𝜏)

≥ 1
𝜆𝐷1, 𝑝

+
∥𝜔0∥4

𝐿2 (𝑀 )

𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 )

.

(2) Assume that the first eigenvalue 𝜆𝑁1, 𝑝 of the Neumann boundary problem is
positive, then

1
𝜆1, 𝑝 (𝜏)

≥ 1
𝜆𝑁1, 𝑝

−
𝜏𝛼𝑁

(
𝜆𝐷1, 𝑝 − 𝜆

𝑁
1, 𝑝

)
𝜆𝑁1, 𝑝

(
𝜏𝛼𝑁𝜆

𝐷
1, 𝑝 + 𝜆

𝑁
1, 𝑝

(
𝜆𝐷1, 𝑝 − 𝜆

𝑁
1, 𝑝

)) ,
where

𝛼𝑁 =
∥𝜔𝑁 ∥2

𝐿2 (𝜕𝑀 )

∥𝜔𝑁 ∥2
𝐿2 (𝑀 )

and 𝜔𝑁 is being an eigenform of the Neumann boundary problem associated
to 𝜆𝑁1, 𝑝 .
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Proof. We begin with the proof of the first point. Let 𝜔𝐷 be a 𝑝-eigenform associated
to the first eigenvalue 𝜆𝐷1, 𝑝 that is assumed to be of 𝐿2-norm equal to 1. Let 𝜔0 be the
orthogonal projection of 𝜔𝐷 to 𝐻 𝑝

𝐴
(𝑀). For any real number 𝑡, we consider the 𝑝-form

𝜔𝑡 = 𝜔𝐷 + 𝑡 𝜔0.

Clearly, we have that 𝜈 ⌟ 𝜔𝑡 = 0. Therefore, by the characterization of the first eigenvalue
𝜆1, 𝑝 (𝜏), we have that

𝜆1, 𝑝 (𝜏) ≤

∫
𝑀

(
|d𝜔𝑡 |2 + |𝛿𝜔𝑡 |2

)
d𝜇𝑔 + 𝜏

∫
𝜕𝑀

|𝜔𝑡 |2d𝜇𝑔∫
𝑀

|𝜔𝑡 |2d𝜇𝑔
.

By the definition of the form 𝜔0, we have that

∥d𝜔𝑡 ∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔𝑡 ∥2

𝐿2 (𝑀 ) = 𝜆
𝐷
1, 𝑝 , ∥𝜔𝑡 ∥2

𝐿2 (𝜕𝑀 ) = 𝑡
2∥𝜔0∥2

𝐿2 (𝜕𝑀 ) .

Also, we have that

∥𝜔𝑡 ∥2
𝐿2 (𝑀 ) = 1 + 𝑡2∥𝜔0∥2

𝐿2 (𝑀 ) + 2𝑡∥𝜔0∥2
𝐿2 (𝑀 ) .

The last term comes from the fact that 𝜔0 is the orthogonal projection of 𝜔𝐷 . Thus by
plugging in the above inequality, we get that

𝜆1, 𝑝 (𝜏) ≤
𝜆𝐷1, 𝑝 + 𝑡

2𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 )

1 + 𝑡2∥𝜔0∥2
𝐿2 (𝑀 ) + 2𝑡∥𝜔0∥2

𝐿2 (𝑀 )
.

Now, we take the inverse of this last inequality, then add and subtract the term
𝑡2𝜏 ∥𝜔0 ∥2

𝐿2 (𝜕𝑀)
𝜆𝐷1, 𝑝

in the numerator to find that

1
𝜆1, 𝑝 (𝜏)

≥ 1
𝜆𝐷1, 𝑝

+
𝑡2

(
∥𝜔0∥2

𝐿2 (𝑀 ) −
𝜏 ∥𝜔0 ∥2

𝐿2 (𝜕𝑀)
𝜆𝐷1, 𝑝

)
+ 2𝑡∥𝜔0∥2

𝐿2 (𝑀 )

𝜆𝐷1, 𝑝 + 𝑡2𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 )

.

Since this is true for any real number 𝑡, we deduce that 1
𝜆1, 𝑝 (𝜏 ) ≥ 1

𝜆𝐷1, 𝑝
+ supR ( 𝑓 ), where

𝑓 is the function given by

𝑓 (𝑡) =
𝑡2

(
∥𝜔0∥2

𝐿2 (𝑀 ) −
𝜏 ∥𝜔0 ∥2

𝐿2 (𝜕𝑀)
𝜆𝐷1, 𝑝

)
+ 2𝑡∥𝜔0∥2

𝐿2 (𝑀 )

𝜆𝐷1, 𝑝 + 𝑡2𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 )

=
𝐴𝑡2 + 𝐵𝑡
𝐶𝑡2 + 𝐷
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with

𝐴 = ∥𝜔0∥2
𝐿2 (𝑀 ) −

𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 )

𝜆𝐷1, 𝑝
, 𝐵 = 2∥𝜔0∥2

𝐿2 (𝑀 ) ,

𝐶 = 𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 ) , 𝐷 = 𝜆𝐷1, 𝑝 .

The supremum of 𝑓 can be checked to be attained at 𝑡0 = 𝐴𝐷+
√
𝐴2𝐷2+𝐵2𝐶𝐷
𝐵𝐶

and is equal to

sup
R
𝑓 = 𝑓 (𝑡0) =

𝑡0 (𝐴𝑡0 + 𝐵)
𝐶𝑡20 + 𝐷

=
𝑡0 (𝐴𝑡0 + 𝐵)

2𝐴𝐷𝑡0
𝐵

+ 𝐷 + 𝐷
=
𝐵𝑡0
2𝐷

=
𝐴 +

√︃
𝐴2 + 𝐵2𝐶

𝐷

2𝐶
.

Now, by replacing 𝐴, 𝐵, 𝐶 and 𝐷 by their values, we estimate

𝐴2 + 𝐵
2𝐶

𝐷

=

(
∥𝜔0∥2

𝐿2 (𝑀 ) −
𝜏∥𝜔0∥2

𝐿2 (𝜕𝑀 )

𝜆𝐷1, 𝑝

)2

+
4∥𝜔0∥4

𝐿2 (𝑀 )𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 )

𝜆𝐷1, 𝑝

=

(
∥𝜔0∥2

𝐿2 (𝑀 ) −
𝜏∥𝜔0∥2

𝐿2 (𝜕𝑀 )

𝜆𝐷1, 𝑝
− 2∥𝜔0∥4

𝐿2 (𝑀 )

)2

− 4∥𝜔0∥8
𝐿2 (𝑀 ) + 4∥𝜔0∥6

𝐿2 (𝑀 )

≥
(
∥𝜔0∥2

𝐿2 (𝑀 ) −
𝜏∥𝜔0∥2

𝐿2 (𝜕𝑀 )

𝜆𝐷1, 𝑝
− 2∥𝜔0∥4

𝐿2 (𝑀 )

)2

,

since ∥𝜔0∥2
𝐿2 (𝑀 ) ≤ ∥𝜔𝐷 ∥2

𝐿2 (𝑀 ) = 1. Then

sup
R
𝑓 ≥

∥𝜔0∥2
𝐿2 (𝑀 ) −

𝜏 ∥𝜔0 ∥2
𝐿2 (𝜕𝑀)

𝜆𝐷1, 𝑝
+

����∥𝜔0∥2
𝐿2 (𝑀 ) −

𝜏 ∥𝜔0 ∥2
𝐿2 (𝜕𝑀)

𝜆𝐷1, 𝑝
− 2∥𝜔0∥4

𝐿2 (𝑀 )

����
2𝜏∥𝜔0∥2

𝐿2 (𝜕𝑀 )

≥
∥𝜔0∥4

𝐿2 (𝑀 )

𝜏∥𝜔0∥2
𝐿2 (𝜕𝑀 )

.

This shows the required estimate. To prove the second inequality, let 𝜔𝐷 (resp. 𝜔𝑁 )
an eigenform of the Dirichlet (resp. Neumann) boundary problem associated to 𝜆𝐷1, 𝑝
(resp. 𝜆𝑁1, 𝑝) such that ∥𝜔𝐷 ∥𝐿2 (𝑀 ) = ∥𝜔𝑁 ∥𝐿2 (𝑀 ) = 1. For any nonnegative number 𝑠, we
consider the 𝑝-form 𝜔𝑠 = 𝑠𝜔𝐷 + 𝜔𝑁 , which clearly satisfies 𝜈 ⌟ 𝜔𝑠 = 0. In order to use
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the Rayleigh inequality for the eigenvalue 𝜆1, 𝑝 (𝜏), we compute∫
𝑀

(
|d𝜔𝑠 |2 + |𝛿𝜔𝑠 |2

)
d𝜇𝑔

= 𝑠2
∫
𝑀

(
|d𝜔𝐷 |2 + |𝛿𝜔𝐷 |2

)
d𝜇𝑔 +

∫
𝑀

(
|d𝜔𝑁 |2 + |𝛿𝜔𝑁 |2

)
d𝜇𝑔

+ 2𝑠
∫
𝑀

⟨d𝜔𝐷 , d𝜔𝑁 ⟩d𝜇𝑔 + 2𝑠
∫
𝑀

⟨𝛿𝜔𝐷 , 𝛿𝜔𝑁 ⟩d𝜇𝑔

= 𝑠2𝜆𝐷1, 𝑝 + 𝜆
𝑁
1, 𝑝 + 2𝑠𝜆𝑁1, 𝑝 (𝜔𝐷 , 𝜔𝑁 )𝐿2 (𝑀 ) .

In the last equality, we use the Stokes formula. Also, we have

∥𝜔𝑠 ∥2
𝐿2 (𝜕𝑀 ) = ∥𝜔𝑁 ∥2

𝐿2 (𝜕𝑀 ) and ∥𝜔𝑠 ∥2
𝐿2 (𝑀 ) = 𝑠

2 + 1 + 2𝑠(𝜔𝐷 , 𝜔𝑁 )𝐿2 (𝑀 ) .

Therefore, after replacing we get that

𝜆1, 𝑝 (𝜏) ≤
𝑠2𝜆𝐷1, 𝑝 + 𝜆

𝑁
1, 𝑝 + 2𝑠𝜆𝑁1, 𝑝 (𝜔𝐷 , 𝜔𝑁 )𝐿2 (𝑀 ) + 𝜏∥𝜔𝑁 ∥2

𝐿2 (𝜕𝑀 )

𝑠2 + 1 + 2𝑠(𝜔𝐷 , 𝜔𝑁 )𝐿2 (𝑀 )
.

As we did before, we take the inverse of this last inequality, then add and subtract the term

𝑠2𝜆𝐷1, 𝑝 + 𝜏∥𝜔∥
2
𝐿2 (𝜕𝑀 )

𝜆𝑁1, 𝑝

in the numerator to get that

1
𝜆1, 𝑝 (𝜏)

≥ 1
𝜆𝑁1, 𝑝

+
𝑠2

(
1 −

𝜆𝐷1, 𝑝
𝜆𝑁1, 𝑝

)
− 𝜏𝛼𝑁

𝜆𝑁1, 𝑝

𝑠2𝜆𝐷1, 𝑝 + 𝜆
𝑁
1, 𝑝 + 2𝑠𝜆𝑁1, 𝑝 + 𝜏𝛼𝑁

.

Here, we also use the fact that | (𝜔𝐷 , 𝜔𝑁 )𝐿2 (𝑀 ) | ≤ 1 by the Cauchy–Schwarz inequality
and the fact that 𝑠 ≥ 0. In order to get the lower bound, we need to compute the supremum
of the function 𝑔 which is given by

𝑔(𝑠) = 𝐴𝑠2 + 𝐵
𝐶𝑠2 + 𝐷𝑠 + 𝐸

,

with

𝐴 = 1 −
𝜆𝐷1, 𝑝

𝜆𝑁1, 𝑝
, 𝐵 = −𝜏𝛼𝑁

𝜆𝑁1, 𝑝
,

𝐶 = 𝜆𝐷1, 𝑝 , 𝐷 = 2𝜆𝑁1, 𝑝 , 𝐸 = 𝜆𝑁1, 𝑝 + 𝜏𝛼𝑁 .
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A direct computation shows that the supremum of the function 𝑔 is attained at 𝑠2 =
𝜏𝛼𝑁

𝜆𝐷1, 𝑝−𝜆
𝑁
1, 𝑝

and thus

supR (𝑔) = 𝑔(𝑠2) = −
𝜏𝛼𝑁

(
𝜆𝐷1, 𝑝 − 𝜆

𝑁
1, 𝑝

)
𝜆𝑁1, 𝑝

(
𝜏𝛼𝑁𝜆

𝐷
1, 𝑝 + 𝜆

𝑁
1, 𝑝

(
𝜆𝐷1, 𝑝 − 𝜆

𝑁
1, 𝑝

)) .
This finishes the proof of the Theorem 4.1. □

In the following result, we will give a gap inequality between the eigenvalues of the
Robin Laplacian under some curvature conditions. Let (𝑀𝑛, 𝑔) be a Riemannian manifold
with smooth boundary and let 𝜂1 (𝑥), 𝜂2 (𝑥), . . . , 𝜂𝑛−1 (𝑥) be the principal curvatures
at a point 𝑥 of the boundary (i.e. eigenvalues of the second fundamental form of the
Weingarten tensor 𝑆). We assume that 𝜂1 (𝑥) ≤ 𝜂2 (𝑥) ≤ · · · ≤ 𝜂𝑛−1 (𝑥). For any integer
𝑝 ∈ {1, . . . , 𝑛−1}, the 𝑝-curvatures𝜎𝑝 (𝑥) are defined as𝜎𝑝 (𝑥) = 𝜂1 (𝑥)+· · ·+𝜂𝑝 (𝑥). One
can easily check that for any integer 𝑝 and 𝑞 with 𝑝 ≤ 𝑞, we have that 𝜎𝑝 (𝑥 )

𝑝
≤ 𝜎𝑞 (𝑥 )

𝑞
with

equality if and only if 𝜂1 (𝑥) = 𝜂2 (𝑥) = · · · = 𝜂𝑞 (𝑥). Hence, we deduce that 𝐻 ≥ 𝜎𝑝 (𝑥 )
𝑝

for any integer 𝑝 ∈ {1, . . . , 𝑛 − 1}. In the next theorem, we set

𝜎𝑝 = inf
𝑥 ∈ 𝜕𝑀

𝜎𝑝 (𝑥)

We state the result which generalizes [4, Thm. 5.8].

Theorem 4.2. Let𝑀 be a compact domain inR𝑛. Fix an integer number 𝑞 ∈ {1, . . . , 𝑛−1}
and Let 𝜔 be a 𝑞-eigenform of the Robin Laplacian. If 𝜎𝑝 > 0 for some 𝑝 ≤ 𝑞, then we
have

∥𝜔∥2
𝐿2 (𝜕𝑀 )

∥𝜔∥2
𝐿2 (𝑀 )

≤ 1
𝜎𝑝

(
𝜆1,𝑞 − 𝜆1,𝑞−𝑝

)
.

Proof. We mainly follow the same computations as in [4, Thm. 5.8]. Let 𝜔 be a 𝑞-
eigenform of the Robin Laplacian and, for any 𝑝 ≤ 𝑞, consider the (𝑞 − 𝑝)-form
𝜙𝑖1 ,...,𝑖𝑝 := 𝜕𝑥𝑖1 ⌟ · · · ⌟ 𝜕𝑥𝑖𝑝 ⌟𝜔, for 𝑖𝑘 = 1, . . . , 𝑛 with 𝑘 = 1, . . . , 𝑝. Clearly, we have that
𝜈 ⌟ 𝜙𝑖1 ,...,𝑖𝑝 = 0. Hence by the characterization (4.2) of the first eigenvalue, we get that

𝜆1,𝑞−𝑝 (𝜏)
∫
𝑀

��𝜙𝑖1 ,...,𝑖𝑝 ��2 d𝜇𝑔

≤
∫
𝑀

(��d𝜙𝑖1 ,...,𝑖𝑝 ��2 + ��𝛿𝜙𝑖1 ,...,𝑖𝑝 ��2) d𝜇𝑔 + 𝜏
∫
𝜕𝑀

��𝜙𝑖1 ,...,𝑖𝑝 ��2 d𝜇𝑔 . (4.5)
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Next we sum over 𝑖1, . . . , 𝑖𝑝. We begin with the l.h.s. Applying successively (3.8), we
have ∑︁

𝑖1 ,...,𝑖𝑝

��𝜙𝑖1 ,...,𝑖𝑝 ��2 =
∑︁

𝑖1 ,...,𝑖𝑝

���𝜕𝑥𝑖1 ⌟ · · · ⌟ 𝜕𝑥𝑖𝑝 ⌟ 𝜔���2
= (𝑞 − (𝑝 − 1)) . . . 𝑞 · |𝜔 |2 =

𝑞!
(𝑞 − 𝑝)! |𝜔|

2.

(4.6)

For the r.h.s., we first compute∑︁
𝑖1 ,...,𝑖𝑝

��𝛿𝜙𝑖1 ,...,𝑖𝑝 ��2 =
∑︁

𝑖1 ,...,𝑖𝑝

���𝜕𝑥𝑖1 ⌟ · · · ⌟ 𝜕𝑥𝑖𝑝 ⌟ 𝛿𝜔���2 (3.8)
=

(𝑞 − 1)!
(𝑞 − 1 − 𝑝)! |𝛿𝜔|

2. (4.7)

In order to compute the term
∑
𝑖1 ,...,𝑖𝑝 |d𝜙𝑖1 ,...,𝑖𝑝 |2, we proceed as in Equation (3.6). Using

repeatedly the identity d(𝑋 ⌟ 𝛼) = ∇𝑋𝛼 − 𝑋 ⌟ d𝛼, true for any parallel vector field 𝑋 , we
get

d𝜙𝑖1 ,...,𝑖𝑝 = (−1) 𝑝𝜕𝑥𝑖1 ⌟ · · · ⌟ 𝜕𝑥𝑖𝑝 ⌟ d𝜔 +
𝑝∑︁
𝑙=1

(−1)𝑙+1𝜕𝑥𝑖1 ⌟ · · · ⌟ 𝜕̂𝑥𝑖𝑙 ⌟ · · · ⌟ 𝜕𝑥𝑖𝑝 ⌟ ∇𝜕𝑥𝑖𝑙 𝜔.

Thus, we find that the sum
∑
𝑖1 ,...,𝑖𝑝 |d𝜙𝑖1 ,,𝑐𝑑𝑜𝑡𝑠,𝑖𝑝 |2 is equal to

∑︁
𝑖1 ,...,𝑖𝑝

���𝜕𝑥𝑖1 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟d𝜔���2 + ∑︁
𝑖1 ,...,𝑖𝑝

����� 𝑝∑︁
𝑙=1

(−1)𝑙+1𝜕𝑥𝑖1 ⌟ . . .⌟𝜕̂𝑥𝑖𝑙 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟∇𝜕𝑥𝑖𝑙 𝜔
�����2

+ 2(−1) 𝑝
∑︁

𝑖1 ,...,𝑖𝑝

𝑝∑︁
𝑙=1

(−1)𝑙+1
〈
𝜕𝑥𝑖1 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟d𝜔, 𝜕𝑥𝑖1 ⌟ . . .⌟𝜕̂𝑥𝑖𝑙 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟∇𝜕𝑥𝑖𝑙 𝜔

〉
(3.8)
=

(𝑞 + 1)!
(𝑞 + 1 − 𝑝)! |d𝜔 |

2

+
∑︁

𝑖1 ,...,𝑖𝑝

∑︁
𝑙

〈
𝜕𝑥𝑖1 ⌟ . . .⌟𝜕̂𝑥𝑖𝑙 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟∇𝜕𝑥𝑖𝑙 𝜔, 𝜕𝑥𝑖1 ⌟ . . .⌟𝜕̂𝑥𝑖𝑙 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟∇𝜕𝑥𝑖𝑙 𝜔

〉
− 2

∑︁
𝑖1 ,...,𝑖𝑝
𝑙 < 𝑠

(−1)𝑙+𝑠
〈
𝜕𝑥𝑖1 ⌟ . . .⌟𝜕̂𝑥𝑖𝑙 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟∇𝜕𝑥𝑖𝑙 𝜔, 𝜕𝑥𝑖1 ⌟ . . .⌟𝜕𝑥𝑖𝑠 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟∇𝜕𝑥𝑖𝑠 𝜔

〉
− 2

∑︁
𝑖1 ,...,𝑖𝑝

𝑝∑︁
𝑙=1

〈
𝜕𝑥𝑖1 ⌟ . . . 𝜕̂𝑥𝑖𝑙 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟(𝜕𝑥𝑖𝑙 ⌟d𝜔), 𝜕𝑥𝑖1 ⌟ . . .⌟𝜕̂𝑥𝑖𝑙 ⌟ . . .⌟𝜕𝑥𝑖𝑝 ⌟∇𝜕𝑥𝑖𝑙 𝜔

〉
× (𝑞 + 1)!

(𝑞 + 1 − 𝑝)! |d𝜔 |
2 + 𝑝𝑞!

(𝑞 − 𝑝 + 1)! |∇𝜔 |
2
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− 2
∑︁

𝑖1 ,...,𝑖𝑝
𝑙 < 𝑠

(𝑞 − 1) − (𝑝 − 3)) . . . (𝑞 − 1)
〈
𝜕𝑥𝑖𝑠 ⌟∇𝜕𝑥𝑖𝑙 𝜔, 𝜕𝑥𝑖𝑙 ⌟∇𝜕𝑥𝑖𝑠 𝜔

〉
− 2

𝑝𝑞!
(𝑞 − 𝑝 + 1)! |d𝜔 |

2.

In this lenghty computation, we used the fact that
∑
𝑖 ⟨𝜕𝑥𝑖 ⌟ 𝛼, 𝜕𝑥𝑖 ⌟ 𝛽⟩ = 𝑝⟨𝛼, 𝛽⟩ for any

𝑝-forms 𝛼 and 𝛽. We also make use of the formula 𝑑 =
∑
𝑖 𝜕𝑥𝑖 ∧ ∇𝜕𝑥𝑖 . Now, one can

easily check by using the expression of 𝑑 and ∇ that the sum term in the above equality is
equal to

∑︁
𝑖1 ,...,𝑖𝑝

∑︁
𝑙 <𝑠

〈
𝜕𝑥𝑖𝑠 ⌟ ∇𝜕𝑥𝑖𝑙 𝜔, 𝜕𝑥𝑖𝑙 ⌟ ∇𝜕𝑥𝑖𝑠 𝜔

〉
=

(
𝑝

2

) (
|∇𝜔 |2 − |d𝜔 |2

)
.

Hence, after simplifying, we find that

∑︁
𝑖1 ,...,𝑖𝑝

��d𝜙𝑖1 ,...,𝑖𝑝 ��2 =
𝑝(𝑞 − 1)!
(𝑞 − 𝑝)! |∇𝜔 |2 + (𝑞 − 1)!

(𝑞 − 𝑝 − 1)! |d𝜔 |
2. (4.8)

Plugging Equalities (4.6), (4.7) and (4.8) into Inequality (4.5) yields after simplifying by
(𝑞−1)!
(𝑞−𝑝)!

𝜆1,𝑞−𝑝 (𝜏)𝑞
∫
𝑀

|𝜔 |2d𝜇𝑔

≤ 𝑝

∫
𝑀

|∇𝜔 |2d𝜇𝑔 + (𝑞 − 𝑝)
∫
𝑀

(
|d𝜔 |2 + |𝛿𝜔 |2

)
d𝜇𝑔 + 𝜏𝑞

∫
𝜕𝑀

|𝜔 |2d𝜇𝑔 . (4.9)

Now the Bochner formula Δ = ∇∗∇ +𝑊 [𝑞 ]
𝑀

applied to the form 𝜔 gives after integrating
that

𝜆1,𝑞 (𝜏)
∫
𝑀

|𝜔 |2d𝜇𝑔 =
∫
𝑀

⟨Δ𝜔, 𝜔⟩d𝜇𝑔 =
∫
𝑀

|∇𝜔 |2d𝜇𝑔 +
∫
𝜕𝑀

⟨∇𝜈𝜔, 𝜔⟩d𝜇𝑔 .

By using ⟨∇𝜈𝜔, 𝜔⟩ = ⟨𝑆 [𝑞 ] (𝜄∗𝜔), 𝜄∗𝜔⟩ + 𝜏 |𝜔 |2 as proved in [9], we get that∫
𝑀

|∇𝜔 |2d𝜇𝑔 = 𝜆1,𝑞 (𝜏)
∫
𝑀

|𝜔 |2d𝜇𝑔 −
∫
𝜕𝑀

(〈
𝑆 [𝑞 ] (𝜄∗𝜔), 𝜄∗𝜔

〉
+ 𝜏 |𝜔 |2

)
d𝜇𝑔 .
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Plugging this last equality into Inequality (4.9), we get after using the pointwise inequality
⟨𝑆 [𝑞 ] (𝜄∗𝜔), 𝜄∗𝜔⟩ ≥ 𝜎𝑞 |𝜔 |2 that

𝜆1,𝑞−𝑝 (𝜏)𝑞
∫
𝑀

|𝜔 |2d𝜇𝑔

≤ 𝑝𝜆1,𝑞 (𝜏)
∫
𝑀

|𝜔 |2d𝜇𝑔 − 𝑝
∫
𝜕𝑀

(𝜎𝑞 + 𝜏) |𝜔 |2d𝜇𝑔

+ (𝑞 − 𝑝)
(
𝜆1,𝑞 (𝜏)

∫
𝑀

|𝜔 |2d𝜇𝑔 − 𝜏
∫
𝜕𝑀

|𝜔 |2d𝜇𝑔
)
+ 𝜏𝑞

∫
𝜕𝑀

|𝜔 |2d𝜇𝑔

= 𝑞𝜆1,𝑞 (𝜏)
∫
𝑀

|𝜔 |2d𝜇𝑔 − 𝑝𝜎𝑞
∫
𝜕𝑀

|𝜔 |2d𝜇𝑔

≤ 𝑞𝜆1,𝑞 (𝜏)
∫
𝑀

|𝜔 |2d𝜇𝑔 − 𝑞𝜎𝑝
∫
𝜕𝑀

|𝜔 |2d𝜇𝑔 .

In the last inequality, we used the fact that 𝜎𝑝

𝑝
≤ 𝜎𝑞

𝑞
. This finishes the proof of the

Theorem 4.2. □

5. Robin and Steklov operators vs. biharmonic Steklov

In this section, we relate the eigenvalues of the Robin problem to those of the biharmonic
Steklov operator. This extends the result stated in [13, Thm. 1.17] for functions.

Theorem 5.1. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary.
We have for any 𝜏 > 0 the estimate

1
𝜆1, 𝑝 (𝜏)

<
1
𝜆𝐷1, 𝑝

+ 1
𝜏𝑞1, 𝑝

,

where 𝜆𝐷1, 𝑝 is the first eigenvalue of the Dirichlet boundary problem (4.4).

Proof. We mainly follow the computations done in [13, Thm. 1.17]. Let𝜔 be an eigenform
of the Robin boundary problem (4.1) associated to 𝜆1, 𝑝 (𝜏). We denote by 𝜔1 a solution
to the problem 

Δ𝜔1 = 0 on 𝑀
𝜄∗𝜔1 = 𝜄∗𝜔 on 𝜕𝑀

𝜈 ⌟ 𝜔1 = 0 on 𝜕𝑀.
(5.1)

Notice that such a problem admits a unique solution by [23]. Now, let us consider the
𝑝-form 𝜔2 := 𝜔 − 𝜔1. It clearly satisfies{

Δ𝜔2 = Δ𝜔 on 𝑀
𝜔2 = 0 on 𝜕𝑀.

(5.2)
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By using the triangle inequality, the characterization (2.10) and the one of the first
eigenvalue 𝜆𝐷1, 𝑝 of the Dirichlet problem (corresponding to 𝜏 → ∞ in (4.2)), we have

∥𝜔∥𝐿2 (𝑀 ) ≤ ∥𝜔1∥𝐿2 (𝑀 ) + ∥𝜔2∥𝐿2 (𝑀 )

≤
√︃
𝑞−1

1, 𝑝 ∥𝜔1∥𝐿2 (𝜕𝑀 ) +
√︂(

𝜆𝐷1, 𝑝

)−1 (
∥d𝜔2∥2

𝐿2 (𝑀 ) + ∥𝛿𝜔2∥2
𝐿2 (𝑀 )

) 1
2

≤
√︃
𝑞−1

1, 𝑝 ∥𝜔∥𝐿2 (𝜕𝑀 ) +
√︂(

𝜆𝐷1, 𝑝

)−1 (
∥d𝜔∥2

𝐿2 (𝑀 ) + ∥𝛿𝜔∥2
𝐿2 (𝑀 )

) 1
2
.

(5.3)

Indeed, ∥𝜔1∥𝐿2 (𝜕𝑀 ) = ∥𝜔∥𝐿2 (𝜕𝑀 ) since 𝜔2 = 0 on 𝜕𝑀 and

∥d𝜔∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔∥2

𝐿2 (𝑀 )

= ∥d𝜔1∥2
𝐿2 (𝑀 ) + ∥d𝜔2∥2

𝐿2 (𝑀 ) + 2(d𝜔1, d𝜔2)𝐿2 (𝑀 ) + ∥𝛿𝜔1∥2
𝐿2 (𝑀 )

+ ∥𝛿𝜔2∥2
𝐿2 (𝑀 ) + 2(𝛿𝜔1, 𝛿𝜔2)𝐿2 (𝑀 )

= ∥d𝜔1∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔1∥2

𝐿2 (𝑀 ) + ∥d𝜔2∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔2∥2

𝐿2 (𝑀 )

+ 2
∫
𝑀

⟨𝛿d𝜔1, 𝜔2⟩d𝜇𝑔 − 2
∫
𝜕𝑀

⟨𝜈 ⌟ d𝜔1, 𝜄
∗𝜔2⟩d𝜇𝑔

+ 2
∫
𝑀

⟨d𝛿𝜔1, 𝜔2⟩d𝜇𝑔 + 2
∫
𝜕𝑀

⟨𝜄∗𝛿𝜔1, 𝜈 ⌟ 𝜔2⟩d𝜇𝑔

= ∥d𝜔1∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔1∥2

𝐿2 (𝑀 ) + ∥d𝜔2∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔2∥2

𝐿2 (𝑀 )

≥ ∥d𝜔2∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔2∥2

𝐿2 (𝑀 ) .

Now, we square both sides of Inequality (5.3) to write

∥𝜔∥2
𝐿2 (𝑀 ) ≤ 𝑞−1

1, 𝑝 ∥𝜔∥
2
𝐿2 (𝜕𝑀 ) +

(
𝜆𝐷1, 𝑝

)−1 (
∥d𝜔∥2

𝐿2 (𝑀 ) + ∥𝛿𝜔∥2
𝐿2 (𝑀 )

)
+ 2

(
𝑞−1

1, 𝑝

(
𝜆𝐷1, 𝑝

)−1
∥𝜔∥2

𝐿2 (𝜕𝑀 )

(
∥d𝜔∥2

𝐿2 (𝑀 ) + ∥𝛿𝜔∥2
𝐿2 (𝑀 )

)) 1
2

≤ 𝑞−1
1, 𝑝 ∥𝜔∥

2
𝐿2 (𝜕𝑀 ) +

(
𝜆𝐷1, 𝑝

)−1 (
∥d𝜔∥2

𝐿2 (𝑀 ) + ∥𝛿𝜔∥2
𝐿2 (𝑀 )

)
× 𝜏−1𝑞−1

1, 𝑝

(
∥d𝜔∥2

𝐿2 (𝑀 ) + ∥𝛿𝜔∥2
𝐿2 (𝑀 )

)
+ 𝜏

(
𝜆𝐷1, 𝑝

)−1
∥𝜔∥2

𝐿2 (𝜕𝑀 )

=

(
𝜏−1𝑞−1

1, 𝑝 +
(
𝜆𝐷1, 𝑝

)−1
) (

∥d𝜔∥2
𝐿2 (𝑀 ) + ∥𝛿𝜔∥2

𝐿2 (𝑀 ) + 𝜏∥𝜔∥
2
𝐿2 (𝜕𝑀 )

)
.

In the second above inequality, we use the fact that 2
√
𝑎𝑏 ≤ 𝑎

𝜏
+ 𝜏𝑏 for any real positive 𝜏.

The characterization (4.2) allows to deduce the inequality in the broad sense. Moreover,
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if that inequality were an equality, then 𝜔2 would be a 𝜆𝐷1, 𝑝-Dirichlet-eigenform. But then

𝜔1 =
𝜆𝐷1, 𝑝 − 𝜆1, 𝑝 (𝜏)

𝜆𝐷1, 𝑝
𝜔

would hold on 𝑀, which with Δ𝜔1 = 0 would imply that Δ𝜔 = 0 and hence 𝜔 = 0,
contradiction. Therefore, the inequality must be strict. □

Now, we come back to the Serrin problem on forms. We will use the existence of
solution to this problem in harmonic domains carrying parallel forms to get an estimate
for the eigenvalues of the absolute Dirichlet-to-Neumann operator introduced in [21] (see
also [11]). Recall the definition of this operator. Let (𝑀𝑛, 𝑔) be a compact Riemannian
manifold with smooth boundary 𝜕𝑀. Let 𝑝 ∈ {0, . . . , 𝑛 − 1}. Given any 𝑝-form 𝜔 on
𝜕𝑀 , there exists a unique 𝑝-form 𝜔 on 𝑀 such that [23]

Δ𝜔 = 0 on 𝑀
𝜄∗𝜔 = 𝜔 on 𝜕𝑀

𝜈 ⌟ 𝜔 = 0 on 𝜕𝑀.
(5.4)

The form 𝜔 is usually called the harmonic tangential extension of 𝜔. The Dirichlet-
to-Neumann operator is then defined as 𝑇 [𝑝] : Λ𝑝 (𝜕𝑀) → Λ𝑝 (𝜕𝑀), 𝜔 ↦→ −𝜈 ⌟ d𝜔.
When 𝑝 = 0, this operator reduces to the classical Dirichlet-to-Neumann operator on
functions, known as Steklov operator. It is shown in [21] that𝑇 [𝑝] is an elliptic self-adjoint
pseudo-differential operator with discrete spectrum consisting of eigenvalues

0 ≤ 𝜈1, 𝑝 (𝑀) ≤ 𝜈2, 𝑝 (𝑀) ≤ . . . .

The kernel of this operator is isomorphic to the absolute de Rham cohomology 𝐻 𝑝

𝐴
(𝑀)

introduced in Section 4. The dual problem to (5.4) (w.r.t. the Hodge star operator) is called
the relative Dirichlet-to-Neumann operator and is defined by 𝑇 [𝑝]

𝐷
= (−1) 𝑝 (𝑛−1−𝑝) ∗𝜕𝑀

𝑇 [𝑛−1−𝑝]∗𝜕𝑀 . If 𝜈𝐷1, 𝑝 (𝑀) is the first eigenvalue of 𝑇 [𝑝]
𝐷

, we have

𝜈𝐷1, 𝑝 (𝑀) = 𝜈1,𝑛−1−𝑝 (𝑀).

Also, we have the following characterization [22] for the first eigenvalue 𝜈𝐷1, 𝑝 (𝑀):

𝜈𝐷1, 𝑝 (𝑀) = inf

{∫
𝑀

(
|d𝜙|2 + |𝛿𝜙 |2

)
d𝜇𝑔∫

𝜕𝑀
|𝜙|2d𝜇𝑔

����� 𝜙 ∈ Ω𝑝+1 (𝑀), 𝜄∗𝜙 = 0

}
. (5.5)

Theorem 5.2. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary.
Assume that 𝑀 is a harmonic domain and carries a parallel 𝑝-form for some 𝑝 =
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1, . . . , 𝑛 − 1. If moreover 𝜎𝑝 > 0 or 𝜎𝑛−𝑝 > 0, then

min
(
𝜈1, 𝑝−1 (𝑀), 𝜈1,𝑛−1−𝑝 (𝑀)

)
≤ Vol(𝜕𝑀)

Vol(𝑀) .

Proof. Let 𝜔 be any 𝑝-eigenform of the biharmonic Steklov operator associated to some
eigenvalue, say 𝑞. We let the (𝑝 + 1)-form 𝜙 := d𝜔. Clearly, we have that 𝜄∗𝜙 = 0. Hence,
by Characterization (5.5), we get that

𝜈𝐷1, 𝑝 (𝑀)
∫
𝜕𝑀

|𝜈 ⌟ d𝜔 |2d𝜇𝑔 ≤
∫
𝑀

|𝛿d𝜔 |2d𝜇𝑔 . (5.6)

Now, applying the same characterization (5.5) to d(∗𝑀𝜔), since ∗𝑀𝜔 is also an eigenform
of the biharmonic Steklov operator, yields the inequality

𝜈𝐷1,𝑛−𝑝 (𝑀)
∫
𝜕𝑀

|𝜄∗𝛿𝜔 |2d𝜇𝑔 ≤
∫
𝑀

|d𝛿𝜔 |2d𝜇𝑔 . (5.7)

Summing Inequalities (5.6) and (5.7) yields

min(𝜈𝐷1, 𝑝 (𝑀), 𝜈𝐷1,𝑛−𝑝 (𝑀))
∫
𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗𝛿𝜔|2

)
d𝜇𝑔 ≤

∫
𝑀

(
|𝛿d𝜔 |2 + |d𝛿𝜔 |2

)
d𝜇𝑔 .

Now a direct computation using the Stokes formula and the boundary conditions on 𝜔
gives that∫

𝑀

|Δ𝜔 |2d𝜇𝑔 =
∫
𝑀

(
|d𝛿𝜔|2 + |𝛿d𝜔 |2

)
d𝜇𝑔 −

2
𝑞2

∫
𝜕𝑀

〈
𝜈 ⌟ Δ𝜔, 𝛿𝜕𝑀 (𝜄∗Δ𝜔)

〉
d𝜇𝑔 .

Hence after plugging this equality into the above inequality, we deduce that

min
(
𝜈𝐷1, 𝑝 (𝑀), 𝜈𝐷1,𝑛−𝑝 (𝑀)

)
≤ 𝑞 + 2

𝑞2

∫
𝜕𝑀

〈
𝜈 ⌟ Δ𝜔, 𝛿𝜕𝑀 (𝜄∗Δ𝜔)

〉
d𝜇𝑔∫

𝜕𝑀

(
|𝜈 ⌟ d𝜔 |2 + |𝜄∗𝛿𝜔 |2

)
d𝜇𝑔

. (5.8)

Notice that this inequality is true for any eigenform 𝜔 of the biharmonic Steklov operator.
From Theorem (3.6), we know that when 𝑀 is a harmonic domain carrying a parallel
𝑝-form 𝜔0, the form 𝜔 = 𝑓 ·𝜔0 is an eigenform associated to the eigenvalue 𝑞 =

Vol(𝜕𝑀 )
Vol(𝑀 ) .

Hence, we will apply Inequality (5.8) to the particular form 𝜔 = 𝑓 · 𝜔0. For this purpose,
we will check the sign of the integral. Assume first that 𝜎𝑛−𝑝 > 0. We estimate∫
𝜕𝑀

〈
𝜈 ⌟ Δ𝜔, 𝛿𝜕𝑀 (𝜄∗Δ𝜔)

〉
d𝜇𝑔 =

∫
𝜕𝑀

〈
𝜈 ⌟ 𝜔0, 𝛿

𝜕𝑀 (𝜄∗𝜔0)
〉

d𝜇𝑔

=

∫
𝜕𝑀

〈
𝜈 ⌟ 𝜔0,

(
𝑆 [𝑝−1] − (𝑛 − 1)𝐻)𝜈 ⌟ 𝜔0

)〉
d𝜇𝑔

≤
∫
𝜕𝑀

( (
𝜎𝑛−1 − 𝜎𝑛−𝑝

)
|𝜈 ⌟ 𝜔0 |2 − 𝜎𝑛−1 |𝜈 ⌟ 𝜔0 |2

)
d𝜇𝑔

≤ 0.
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In the second equality, we use the identity [20, Lem. 18]

𝛿𝜕𝑀 (𝜄∗𝜔0) = 𝜈 ⌟ ∇𝜈𝜔0 + 𝜄∗ (𝛿𝜔0) + 𝑆 [𝑝−1] (𝜈 ⌟ 𝜔0) − (𝑛 − 1)𝐻𝜈 ⌟ 𝜔0.

Also, we use the pointwise estimate ⟨𝑆 [𝑝]𝛼, 𝛼⟩ ≤ (𝜎𝑛−1 − 𝜎𝑛−𝑝−1) |𝛼 |2 for any 𝑝-form
𝛼. Hence, we deduce that

min
(
𝜈𝐷1, 𝑝 (𝑀), 𝜈𝐷1,𝑛−𝑝 (𝑀)

)
≤ Vol(𝜕𝑀)

Vol(𝑀) .

Finally, the fact that 𝜈𝐷1, 𝑝 (𝑀) = 𝜈1,𝑛−1−𝑝 (𝑀) and 𝜈𝐷1,𝑛−𝑝 (𝑀) = 𝜈1, 𝑝−1 (𝑀) finishes the
proof of the statement when 𝜎𝑛−𝑝 > 0. If 𝜎𝑝 > 0, then replacing 𝑝 by 𝑛 − 𝑝 and by
invariance of parallel forms under the Hodge star operator on 𝑀, we obtain the same
inequality. This concludes the proof. □

Remark 5.3. Notice that a similar estimate has been established in [21, Cor. 15] for
compact manifolds carrying parallel forms with the assumption 𝐻 𝑝

𝐴
(𝑀) = 𝐻 𝑝 (𝑀) = 0.

The inequality is

𝜈1,𝑛−1−𝑝 (𝑀) + 𝜈1, 𝑝−1 (𝑀) ≤ Vol(𝜕𝑀)
Vol(𝑀) .

Appendix A.

Lemma A.1. Let (𝑀𝑛, 𝑔) be a compact Riemannian manifold with smooth boundary 𝜕𝑀
and let 𝜈 be the inward unit normal vector field to the boundary. Consider the following
boundary value problem 

Δ2𝜔 = 𝑓 on 𝑀
𝐵1𝜔 = 𝜔1 on 𝜕𝑀
𝐵2𝜔 = 𝜔2 on 𝜕𝑀
𝐵3𝜔 = 𝜔3 on 𝜕𝑀

(A.1)

for given 𝑓 ∈ Ω𝑝 (𝑀), 𝜔1 ∈ Γ(Λ𝑝𝑇∗𝑀 |𝜕𝑀 ), 𝜔2 ∈ Ω𝑝−1 (𝜕𝑀) and 𝜔3 ∈ Ω𝑝 (𝜕𝑀) and
where if 𝐸1 := Λ𝑝𝑇∗𝑀 |𝜕𝑀 , 𝐸2 := Λ𝑝−1𝑇∗𝜕𝑀 and 𝐸3 := Λ𝑝𝑇∗𝜕𝑀, 𝐵1 : Ω𝑝 (𝑀) →
Γ(𝐸1) such that 𝐵1𝜔 := 𝜔 |𝜕𝑀 , 𝐵2 : Ω𝑝 (𝑀) → Γ(𝐸2) and 𝐵3 : Ω𝑝 (𝑀) → Γ(𝐸3) are
either:

(1) 𝐵2 = 𝜄∗𝛿𝜔 and 𝐵3 = 𝜈 ⌟ d𝜔. In this case, (A.1) is elliptic in the sense of
Lopatinskiı̆–Shapiro (see [23, Def. 1.6.1]), self-adjoint and its kernel is reduced
to {0}. Or

(2) 𝐵2𝜔 := 𝜈 ⌟ Δ𝜔 + 𝑞𝜄∗ (𝛿𝜔) and 𝐵3𝜔 := 𝜄∗Δ𝜔 − 𝑞𝜈 ⌟ d𝜔 for some real constant 𝑞.
In this case, problem (A.1) is elliptic in the sense of Lopatinskiı̆–Shapiro.
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Proof. We denote by 𝜎Δ2 and 𝜎𝐵 𝑗
the principal symbols of the operators Δ2 and 𝐵 𝑗

respectively, for 𝑗 = 1, 2, 3. Given any 𝑣 ∈ 𝑇∗
𝑥𝜕𝑀 \ {0} for a fixed 𝑥 ∈ 𝜕𝑀 , we consider

the space

M+
𝑣 := {bounded solutions 𝑦 = 𝑦(𝑡) on R+ to the ODE 𝜎Δ2 ((−𝑖𝑣, 𝜕𝑡 ))𝑦 = 0} .

A direct computation shows that

M+
𝑣 = Span

(
𝑒−|𝑣 |𝑡 (𝑎𝑡 + 𝑏) · 𝜔0

��� 𝑎, 𝑏 ∈ R, 𝜔0 ∈ Λ𝑝𝑇∗
𝑥𝑀 |𝜕𝑀

)
,

which is hence a space of dimension 𝑁 := 2( 𝑛𝑝 ). We look at the pointwise map

M+
𝑣 −→

3⊕
𝑗=1

𝐸 𝑗

𝑦 ↦−→
(
𝜎𝐵1 ((−𝑖𝑣, 𝜕𝑡 ))𝑦, 𝜎𝐵2 ((−𝑖𝑣, 𝜕𝑡 ))𝑦, 𝜎𝐵3 ((−𝑖𝑣, 𝜕𝑡 ))𝑦

)
(0)

which we want to show to be an isomorphism. Note already that space dimensions are
equal on both sides. Since 𝜎𝐵1 ((−𝑖𝑣, 𝜕𝑡 )) = Id, 𝜎𝐵2 ((−𝑖𝑣, 𝜕𝑡 )) = −𝜕𝑡 · 𝜈 ⌟ · + 𝑖𝑣 ⌟ 𝜄∗· and
𝜎𝐵3 ((−𝑖𝑣, 𝜕𝑡)) = 𝜕𝑡 · 𝜄∗ + 𝑖𝑣 ∧ (𝜈 ⌟ ·), we obtain that, for any fixed 𝜔0 ∈ Λ𝑝𝑇∗

𝑥𝑀, the
element 𝑒−|𝑣 |𝑡 · 𝜔0 of M+

𝑣 (corresponding to 𝑎 = 0 and 𝑏 = 1) is sent to (𝜔0, |𝑣 |𝜈 ⌟ 𝜔0 +
𝑖𝑣 ⌟ 𝜄∗𝜔0,−|𝑣 |𝜄∗𝜔0+ 𝑖𝑣∧ (𝜈 ⌟𝜔0)); and that the element 𝑡𝑒−|𝑣 |𝑡 ·𝜔0 of M+

𝑣 (corresponding
to 𝑎 = 1 and 𝑏 = 0) is sent to (0,−𝜈 ⌟ 𝜔0, 𝜄

∗𝜔0). Choosing a basis (𝜔 (1)
0 , . . . , 𝜔

(𝑁 )
0 ) of

Λ𝑝𝑇∗
𝑥𝑀, the basis (𝑒−|𝑣 |𝑡 · 𝜔 (1)

0 , . . . , 𝑒−|𝑣 |𝑡 · 𝜔 (𝑁 )
0 , 𝑡𝑒−|𝑣 |𝑡 · 𝜔 (1)

0 , . . . , 𝑡𝑒−|𝑣 |𝑡 · 𝜔 (𝑁 )
0 ) of

M+
𝑣 will therefore be sent to a basis of

⊕3
𝑗=1 𝐸 𝑗 . This shows the map M+

𝑣 →
⊕3

𝑗=1 𝐸 𝑗
to be an isomorphism. Therefore the boundary value problem (A.1) is elliptic (see [23,
Def. 1.6.1]).

Using (2.3), it is easy to see that (A.1) is also self-adjoint. Moreover, the kernel
of (A.1) is reduced to {0}: namely, if 𝜔 ∈ Ω𝑝 (𝑀) solves (A.1) with 𝑓 = 0 as well as
𝜔1 = 𝜔2 = 𝜔3 = 0, then (2.4) implies that ∥Δ𝜔∥𝐿2 (𝑀 ) = 0, from which 𝜔 = 0 on 𝑀
follows using 𝜔 |𝜕𝑀 = 0.

As a consequence, fixing 𝑓 = 0 as well as 𝜔1 = 0, for any given (𝜔2, 𝜔3) ∈
Ω𝑝−1 (𝜕𝑀) ⊕ Ω𝑝 (𝜕𝑀), there exists a unique 𝜔 ∈ Ω𝑝 (𝑀) solving (A.1). In particular,
𝜔 ∈ 𝑍 , where, as in the proof of Theorem 2.3,

𝑍 :=
{
𝜔 ∈ Ω𝑝 (𝑀)

��Δ2𝜔 = 0 on 𝑀 and 𝜔 |𝜕𝑀 = 0
}
.

This shows the map 𝑍 → Ω𝑝 (𝜕𝑀) ⊕ Ω𝑝−1 (𝜕𝑀), 𝜔 ↦→ (𝜈 ⌟ d𝜔, 𝜄∗𝛿𝜔), to be onto. This
proves 1.

Changing the boundary operators 𝐵2 and 𝐵3 via 𝐵2𝜔 := 𝜈 ⌟ Δ𝜔 + 𝑞𝜄∗ (𝛿𝜔) and
𝐵3𝜔 := 𝜄∗Δ𝜔 − 𝑞𝜈 ⌟ d𝜔 for some real contant 𝑞 (which actually plays no role since it
is only involved in the first-order-terms of the b.c. and not in their principal symbols),
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we still get elliptic boundary conditions for Δ2: for any 𝑣 ∈ 𝑇∗
𝑥𝜕𝑀 \ {0}, the pointwise

map M+
𝑣 →

⊕3
𝑗=1 𝐸 𝑗 from above sends 𝑒−|𝑣 |𝑡 · 𝜔0 to (𝜔0, 0, 0) and sends 𝑡𝑒−|𝑣 |𝑡 · 𝜔0

to (0, 2|𝑣 |𝜈 ⌟ 𝜔0, 2|𝑣 |𝜄∗𝜔0), which shows that map to be an isomorphism. Therefore
𝐵1, 𝐵2, 𝐵3 define elliptic boundary conditions for Δ2, this proves 2. □

Lemma A.2. Let 𝑀𝑛 ↩→ R𝑛+𝑚 be an isometric immersion and let 𝐼𝐼 be the second
fundamental form of the immersion. For all 𝑋,𝑌 ∈ 𝑇𝑀 and 𝑁 ∈ 𝑇⊥𝑀 , we have

(∇𝑋 𝐼𝐼𝑁 ) (𝑌 ) = (∇𝑌 𝐼𝐼𝑁 ) (𝑋) − 𝐼𝐼∇⊥
𝑌
𝑁 (𝑋) + 𝐼𝐼∇⊥

𝑋
𝑁 (𝑌 ), (A.2)

where ∇⊥
𝑋
𝑁 := (∇R𝑛+𝑚

𝑋
𝑁)⊥ defines the normal connection on 𝑇⊥𝑀. As a consequence,

by writing 𝜕𝑥𝑖 = 𝜕𝑇𝑥𝑖 + 𝜕
⊥
𝑥𝑖

for all 𝑖 = 1, . . . , 𝑛 + 𝑚, the divergence of the endomorphism
𝐼𝐼𝜕⊥𝑥𝑖

is equal to

𝛿(𝐼𝐼𝜕⊥𝑥𝑖 ) = −𝑛d
(〈
𝐻, 𝜕⊥𝑥𝑖

〉)
− 𝑛𝐼𝐼

𝐻
(𝜕𝑇𝑥𝑖 ) +

𝑚∑︁
𝑎=1

𝐼𝐼2𝑓𝑎 (𝜕
𝑇
𝑥𝑖
). (A.3)

Here { 𝑓1, . . . , 𝑓𝑚} is a local orthonormal frame of 𝑇⊥𝑀 and 𝐻 is the mean curvature
field of the immersion.

Proof. Let 𝑋,𝑌, 𝑍 be vector fields in 𝑇𝑀 that we assume to be parallel at some point in
𝑀 and let 𝑁 ∈ 𝑇⊥𝑀 . We compute

(∇𝑋 𝐼𝐼𝑁 ) (𝑌, 𝑍) = 𝑋 (𝐼𝐼𝑁 (𝑌, 𝑍))
= 𝑋 ⟨𝐼𝐼 (𝑌, 𝑍), 𝑁⟩

=

〈
∇R𝑛+𝑚𝑋 𝐼𝐼 (𝑌, 𝑍), 𝑁

〉
+

〈
𝐼𝐼 (𝑌, 𝑍),∇R𝑛+𝑚𝑋 𝑁

〉
=

〈
∇R𝑛+𝑚𝑌 𝐼𝐼 (𝑋, 𝑍), 𝑁

〉
+

〈
𝐼𝐼 (𝑌, 𝑍),∇R𝑛+𝑚𝑋 𝑁

〉
= 𝑌 (𝐼𝐼𝑁 (𝑋, 𝑍)) −

〈
𝐼𝐼 (𝑋, 𝑍),∇R𝑛+𝑚𝑌 𝑁

〉
+

〈
𝐼𝐼 (𝑌, 𝑍),∇R𝑛+𝑚𝑋 𝑁

〉
= (∇𝑌 𝐼𝐼𝑁 ) (𝑋, 𝑍) − 𝐼𝐼∇⊥

𝑌
𝑁 (𝑋, 𝑍) + 𝐼𝐼∇⊥

𝑋
𝑁 (𝑌, 𝑍).

In the fourth equality, we use the Codazzi equation for submanifolds in R𝑛+𝑚. Hence
we get Equality (A.2). To find Equation (A.3), we decompose 𝜕𝑥𝑖 = 𝜕𝑇𝑥𝑖 + 𝜕

⊥
𝑥𝑖

for all
𝑖 = 1, . . . , 𝑛 + 𝑚. Then from the parallelism of the vector 𝜕𝑥𝑖 and the Gauss formula, we
get that

∇R𝑛+𝑚𝑋 𝜕⊥𝑥𝑖 = −∇R𝑛+𝑚𝑋 𝜕𝑇𝑥𝑖 = −∇𝑋𝜕𝑇𝑥𝑖 − 𝐼𝐼
(
𝑋, 𝜕𝑇𝑥𝑖

)
,

where ∇ is the Levi-Civita connection on 𝑇𝑀 . Thus, we deduce that

∇⊥
𝑋𝜕

⊥
𝑥𝑖
=

(
∇R𝑛+𝑚𝑋 𝜕⊥𝑥𝑖

)⊥
= −𝐼𝐼

(
𝑋, 𝜕𝑇𝑥𝑖

)
. (A.4)
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The divergence of the endomorphism 𝐼𝐼𝜕⊥𝑥𝑖
can be computed using Equation (A.2) with

𝑁 = 𝜕⊥𝑥𝑖 . For 𝑋 ∈ 𝑇𝑀 , we have

𝛿

(
𝐼𝐼𝜕⊥𝑥𝑖

)
(𝑋)

= −
𝑛∑︁
𝑠=1

(
∇𝑒𝑠 𝐼𝐼𝜕⊥𝑥𝑖

)
(𝑒𝑠 , 𝑋)

= −
𝑛∑︁
𝑠=1

(
∇𝑒𝑠 𝐼𝐼𝜕⊥𝑥𝑖

)
(𝑋, 𝑒𝑠)

(A.2)
= −

∑︁
𝑠

(
∇𝑋 𝐼𝐼𝜕⊥𝑥𝑖

)
(𝑒𝑠 , 𝑒𝑠) −

𝑛∑︁
𝑠=1

𝐼𝐼𝐼𝐼 (𝑋,𝜕𝑇𝑥𝑖 ) (𝑒𝑠 , 𝑒𝑠) +
𝑛∑︁
𝑠=1

𝐼𝐼𝐼𝐼 (𝑒𝑠 ,𝜕𝑇𝑥𝑖 ) (𝑋, 𝑒𝑠)

= −𝑛𝑋
(〈
𝐻, 𝜕⊥𝑥𝑖

〉)
− 𝑛𝐼𝐼

𝐻

(
𝑋, 𝜕𝑇𝑥𝑖

)
+

𝑚∑︁
𝑎=1

𝑛∑︁
𝑠=1

〈
𝐼𝐼

(
𝑒𝑠 , 𝜕

𝑇
𝑥𝑖

)
, 𝑓𝑎

〉
⟨𝐼𝐼 (𝑋, 𝑒𝑠), 𝑓𝑎⟩

= −𝑛𝑋
(〈
𝐻, 𝜕⊥𝑥𝑖

〉)
− 𝑛𝐼𝐼

𝐻

(
𝜕𝑇𝑥𝑖 , 𝑋

)
+

𝑚∑︁
𝑎=1

𝑔

(
𝐼𝐼 𝑓𝑎

(
𝜕𝑇𝑥𝑖

)
, 𝐼𝐼 𝑓𝑎 (𝑋)

)
.

This ends the proof of the Lemma A.2. □

Proposition A.3. For any 𝑝-form 𝜔, the curvature term
∑𝑛
𝑠=1 𝑒𝑠 ⌟ 𝑅(𝑒𝑠 , 𝑋)𝜔 is equal to

𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅(𝑒𝑠 , 𝑋)𝜔 = −
𝑚∑︁
𝑎=1

𝐼𝐼 𝑓𝑎 (𝑋) ⌟ 𝐼𝐼
[𝑝]
𝑓𝑎
𝜔 + 𝐼𝐼

𝑛𝐻
(𝑋) ⌟ 𝜔,

where {𝑒1, . . . , 𝑒𝑛} and { 𝑓1, . . . , 𝑓𝑚} are respectively orthonormal basis of 𝑇𝑀 and
𝑇⊥𝑀 .

Proof. In order to compute the curvature term, we use the Gauß equation. Indeed, for any
𝑋,𝑌, 𝑍, 𝑇 ∈ 𝑇𝑀 we have

𝑅(𝑋,𝑌, 𝑍, 𝑇) = −⟨𝐼𝐼 (𝑋, 𝑍), 𝐼𝐼 (𝑌,𝑇)⟩ + ⟨𝐼𝐼 (𝑋,𝑇), 𝐼𝐼 (𝑌, 𝑍)⟩,

which can be equivalently written as

𝑅(𝑋,𝑌 )𝑍 = −
𝑚∑︁
𝑎=1

𝑔(𝐼𝐼 𝑓𝑎 (𝑋), 𝑍)𝐼𝐼 𝑓𝑎 (𝑌 ) +
𝑚∑︁
𝑎=1

𝑔(𝐼𝐼 𝑓𝑎 (𝑌 ), 𝑍)𝐼𝐼 𝑓𝑎 (𝑋).
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Now, due to linearity, we can consider that 𝜔 of the form 𝑒𝑖1 ∧ · · ·∧ 𝑒𝑖𝑝 . Then, we compute

𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅(𝑒𝑠 , 𝑋)𝜔

=

𝑛∑︁
𝑠=1

𝑝∑︁
𝑗=1
𝑒𝑠 ⌟

(
𝑒𝑖1 ∧ · · · ∧ 𝑅(𝑒𝑠 , 𝑋)𝑒𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝

)

= −
𝑚∑︁
𝑎=1

𝑛∑︁
𝑠=1

𝑝∑︁
𝑗=1
𝑔

(
𝐼𝐼 𝑓𝑎 (𝑒𝑠), 𝑒𝑖 𝑗

)
𝑒𝑠 ⌟

©­­­«𝑒𝑖1 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑋)︸  ︷︷  ︸
𝑗𝑡ℎ

∧ · · · ∧ 𝑒𝑖𝑝
ª®®®¬

+
𝑚∑︁
𝑎=1

𝑛∑︁
𝑠=1

𝑝∑︁
𝑗=1
𝑔

(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

)
𝑒𝑠 ⌟

©­­­«𝑒𝑖1 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑠)︸   ︷︷   ︸
𝑗𝑡ℎ

∧ · · · ∧ 𝑒𝑖𝑝
ª®®®¬

= −
𝑚∑︁
𝑎=1

𝑛∑︁
𝑠=1

𝑝∑︁
𝑘, 𝑗=1
𝑘≠ 𝑗

(−1)𝑘+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑒𝑠), 𝑒𝑖 𝑗

)
𝛿𝑠𝑖𝑘 𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑋) ∧ · · · ∧ 𝑒𝑖𝑝

−
𝑚∑︁
𝑎=1

𝑛∑︁
𝑠=1

𝑝∑︁
𝑗=1

(−1) 𝑗+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑒𝑠), 𝑒𝑖 𝑗

)
𝑔

(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑠

)
𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝

+
𝑚∑︁
𝑎=1

𝑛∑︁
𝑠=1

𝑝∑︁
𝑘, 𝑗=1
𝑘 ≠ 𝑗

(−1)𝑘+1𝑔(𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗 )𝛿𝑠𝑖𝑘 𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑠) ∧ · · · ∧ 𝑒𝑖𝑝

+
𝑚∑︁
𝑎=1

𝑛∑︁
𝑠=1

𝑝∑︁
𝑗=1

(−1) 𝑗+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

)
𝑔

(
𝐼𝐼 𝑓𝑎 (𝑒𝑠), 𝑒𝑠

)
𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝 .

By using the symmetry of the second fundamental form, the above computation reduces
to

𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅(𝑒𝑠 , 𝑋)𝜔

= −
𝑚∑︁
𝑎=1

𝑝∑︁
𝑘, 𝑗=1
𝑘 ≠ 𝑗

(−1)𝑘+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ), 𝑒𝑖 𝑗

)
𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑋) ∧ · · · ∧ 𝑒𝑖𝑝

−
𝑚∑︁
𝑎=1

𝑝∑︁
𝑗=1

(−1) 𝑗+1𝑔
(
𝐼𝐼2𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

)
𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝
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+
𝑚∑︁
𝑎=1

𝑝∑︁
𝑘, 𝑗=1
𝑘 ≠ 𝑗

(−1)𝑘+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

)
𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ) ∧ · · · ∧ 𝑒𝑖𝑝

+
𝑚∑︁
𝑎=1

𝑝∑︁
𝑗=1

(−1) 𝑗+1𝑔
(
𝐼𝐼
𝑛𝐻

(𝑋), 𝑒𝑖 𝑗
)
𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝 .

Now, we prove that the first sum vanishes. Indeed, by decomposing with respect to 𝑘 < 𝑗

and 𝑘 > 𝑗 , it is equal to∑︁
𝑘 < 𝑗

(−1)𝑘+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ), 𝑒𝑖 𝑗

)
𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑋) ∧ · · · ∧ 𝑒𝑖𝑝

+
∑︁
𝑘 > 𝑗

(−1)𝑘+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ), 𝑒𝑖 𝑗

)
𝑒𝑖1 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑋) ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝑒𝑖𝑝

=
∑︁
𝑘 < 𝑗

(−1)𝑘+ 𝑗−1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ), 𝑒𝑖 𝑗

)
𝐼𝐼 𝑓𝑎 (𝑋) ∧ 𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝

+
∑︁
𝑘 > 𝑗

(−1)𝑘+ 𝑗𝑔
(
𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ), 𝑒𝑖 𝑗

)
𝐼𝐼 𝑓𝑎 (𝑋) ∧ 𝑒𝑖1 ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒̂𝑖𝑘 ∧ · · · ∧ 𝑒𝑖𝑝

= 0.

In the same way, we prove that the third sum is to −∑𝑚
𝑎=1 𝐼𝐼

[𝑝−1]
𝑓𝑎

(𝐼𝐼 𝑓𝑎 (𝑋) ⌟ 𝜔). Indeed,
it is equal to∑︁
𝑘 < 𝑗

(−1)𝑘+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

) (
𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ) ∧ · · · ∧ 𝑒𝑖𝑝

)
+

∑︁
𝑘 > 𝑗

(−1)𝑘+1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

) (
𝑒𝑖1 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ) ∧ · · · ∧ 𝑒𝑖𝑘 ∧ · · · ∧ 𝑒𝑖𝑝

)
=

∑︁
𝑘 < 𝑗

(−1)𝑘+1+ 𝑗−𝑘−1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

) (
𝑒𝑖1 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ) ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝

)
+

∑︁
𝑘 > 𝑗

(−1)𝑘+1+𝑘− 𝑗−1𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

) (
𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖 𝑗 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ) ∧ · · · ∧ 𝑒𝑖𝑝

)
=

∑︁
𝑘 < 𝑗

(−1) 𝑗𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

) (
𝑒𝑖1 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ) ∧ · · · ∧ 𝑒̂𝑖 𝑗 ∧ · · · ∧ 𝑒𝑖𝑝

)
+

∑︁
𝑘 > 𝑗

(−1) 𝑗𝑔
(
𝐼𝐼 𝑓𝑎 (𝑋), 𝑒𝑖 𝑗

) (
𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖 𝑗 ∧ · · · ∧ 𝐼𝐼 𝑓𝑎 (𝑒𝑖𝑘 ) ∧ · · · ∧ 𝑒𝑖𝑝

)
= −𝐼𝐼 [𝑝−1]

𝑓𝑎

(
𝐼𝐼 𝑓𝑎 (𝑋) ⌟ 𝜔

)
.
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In the last equality, 𝐴[𝑝] (𝑋1 ∧ · · · ∧ 𝑋𝑝) =
∑𝑝

𝑖=1 𝑋1 ∧ · · · ∧ 𝐴(𝑋𝑖) ∧ · · · ∧ 𝑋𝑝 is used
again for any tangent vector fields 𝑋1, . . . 𝑋𝑝 on 𝑀 . Therefore, we deduce that

𝑛∑︁
𝑠=1

𝑒𝑠 ⌟ 𝑅(𝑒𝑠 , 𝑋)𝜔 = −
𝑚∑︁
𝑎=1

𝐼𝐼2𝑓𝑎 (𝑋) ⌟ 𝜔 −
𝑚∑︁
𝑎=1

𝐼𝐼
[𝑝−1]
𝑓𝑎

(
𝐼𝐼 𝑓𝑎 (𝑋) ⌟ 𝜔

)
+ 𝐼𝐼

𝑛𝐻
(𝑋) ⌟ 𝜔

= −
𝑚∑︁
𝑎=1

𝐼𝐼 𝑓𝑎 (𝑋) ⌟ 𝐼𝐼
[𝑝]
𝑓𝑎
𝜔 + 𝐼𝐼

𝑛𝐻
(𝑋) ⌟ 𝜔.

In the last equality, we used the identity 𝐴[𝑝−1] (𝑋 ⌟ 𝛼) = 𝑋 ⌟ 𝐴[𝑝]𝛼 − 𝐴(𝑋) ⌟ 𝛼. □
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