[Solutions partiellement adaptées aux équations micrpolaires et leurs propriétés de régularité]
Le système micropolaire incompressible est donné par deux équations couplées : la première équation donne l’évolution du champ de vitesse tandis que la deuxième équation donne l’évolution du champ de microrotation . Dans cet article, nous étudierons la régularité des solutions faibles de ce système. Pour cela nous introduirons la nouvelle notion de solutions partiellement adaptées, qui impose des conditions uniquement pour le champ de vitesse , ainsi, sous quelques hypothèses classiques sur la pression, nous obtiendrons un gain de régularité hölderienne pour les deux variables et .
The incompressible Micropolar system is given by two coupled equations: the first equation gives the evolution of the velocity field while the second equation gives the evolution of the microrotation field . In this article we will consider regularity problems for weak solutions of this system. For this we will introduce the new notion of partial suitable solutions, which imposes a specific behavior for the velocity field only, and under some classical hypotheses over the pressure, we will obtain a hölderian gain for both variables and .
Keywords: Micropolar fluids equations, partial regularity
Mots-clés : équations des fluides micropolaires, régularité partielle
Diego Chamorro 1 ; David Llerena 1

@article{AMBP_2024__31_2_137_0, author = {Diego Chamorro and David Llerena}, title = {Partial suitable solutions for the micropolar equations and regularity properties}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {137--187}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {31}, number = {2}, year = {2024}, doi = {10.5802/ambp.428}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/} }
TY - JOUR AU - Diego Chamorro AU - David Llerena TI - Partial suitable solutions for the micropolar equations and regularity properties JO - Annales mathématiques Blaise Pascal PY - 2024 SP - 137 EP - 187 VL - 31 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/ DO - 10.5802/ambp.428 LA - en ID - AMBP_2024__31_2_137_0 ER -
%0 Journal Article %A Diego Chamorro %A David Llerena %T Partial suitable solutions for the micropolar equations and regularity properties %J Annales mathématiques Blaise Pascal %D 2024 %P 137-187 %V 31 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/ %R 10.5802/ambp.428 %G en %F AMBP_2024__31_2_137_0
Diego Chamorro; David Llerena. Partial suitable solutions for the micropolar equations and regularity properties. Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 2, pp. 137-187. doi : 10.5802/ambp.428. https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/
[1] Morrey spaces in harmonic analysis, Ark. Mat., Volume 50 (2012), pp. 201-230 | DOI | MR | Zbl
[2] An introduction to fluids dynamics, Cambridge Mathematical Library, Cambridge University Press, 1999 | DOI | MR | Zbl
[3] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011 | DOI | MR | Zbl
[4] Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018), pp. 1355-1376 | DOI | Numdam | MR | Zbl
[5] Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 35 (1982), pp. 771-831 | DOI | MR | Zbl
[6] On the partial regularity theory for the MHD equations, J. Math. Anal. Appl., Volume 494 (2021) no. 1, 124449 | DOI | MR | Zbl
[7] Interior -regularity theory for the solutions of the magneto-micropolar equations with a perturbation term, J. Elliptic Parabol. Equ., Volume 8 (2022), pp. 555-616 | DOI | MR | Zbl
[8] A crypto-regularity result for the micropolar fluids equations, J. Math. Anal. Appl., Volume 520 (2023) no. 2, 126922 | DOI | Zbl
[9] Global strong solutions for the incompressible micropolar fluids equations, Arch. Math., Volume 113 (2019), pp. 201-212 | DOI | Zbl
[10] Large time behavior for MHD micropolar fluids in , J. Differ. Equations, Volume 312 (2022), pp. 1-44 | DOI | MR | Zbl
[11] Theory of Micropolar Fluids, J. Math. Mech., Volume 16 (1966), pp. 1-18 | DOI | MR
[12] An Introduction to the Mathematical Theory of the Navier–Stokes Equations Steady-State Problems, Springer, 2011 | DOI | MR | Zbl
[13] A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Eng. Sci., Volume 15 (1977), pp. 105-108 | DOI | MR | Zbl
[14] On partial regularity for the Navier–Stokes equations, Discrete Contin. Dyn. Syst., Volume 21 (2008), pp. 717-728 | DOI | MR | Zbl
[15] Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968 (Translated from the Russian by S. Smith) | DOI | MR
[16] Recent Developments in the Navier–Stokes problem, CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, 2002 | MR | Zbl
[17] The Navier–Stokes problem in the 21st century, Chapman & Hall/CRC, 2016 | DOI | MR | Zbl
[18] A weak- Prodi–Serrin type regularity criterion for the micropolar fluid equations, J. Math. Phys., Volume 57 (2016), 021512 | DOI | MR | Zbl
[19] Regularity criteria for weak solutions of the Magneto-micropolar equations, Electron. Res. Arch., Volume 29 (2021) no. 1, pp. 1625-1639 | DOI | MR | Zbl
[20] Micropolar Fluids, Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 1999 | DOI | Zbl
[21] Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids, Z. Angew. Math. Phys., Volume 73 (2022), 48 | DOI | MR | Zbl
[22] Conditions for the local boundedness of solutions of the Navier–Stokes system in three dimensions, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 617-636 | DOI | MR | Zbl
[23] Un teorema di unicità per le equazioni di Navier–Stokes, Ann. Mat. Pura Appl., Volume 48 (1959), pp. 173-182 | DOI | MR | Zbl
[24] A regularity criterion for three-dimensional micropolar fluid equations in Besov spaces of negative regular indicess, Anal. Math. Phys., Volume 10 (2020) no. 3, 30 | DOI | MR | Zbl
[25] Anisotropic Micropolar Fluids Subject to a Uniform Microtorque: The Unstable Case, Commun. Math. Phys., Volume 381 (2021) no. 3, pp. 947-999 | DOI | MR | Zbl
[26] An introduction to the classical theory of the Navier–Stokes equations (2010) (Lecture notes, IMECC-Unicamp)
[27] Hausdorff measure and the Navier–Stokes equation, Commun. Math. Phys., Volume 55 (1977), pp. 97-112 | DOI | MR | Zbl
[28] On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 9 (1962), pp. 187-195 | DOI | MR | Zbl
[29] The initial value problem for the Navier–Stokes equations, Nonlinear Problems (Rudolph E. Langer, ed.), University of Wisconsin press, 1963, pp. 69-98 | Zbl
[30] Existence of global solution to the micropolar fluid system in a bounded domain, Math. Methods Appl. Sci., Volume 28 (2005), pp. 1507-1526 | DOI | MR | Zbl
[31] Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci., Ser. B, Engl. Ed., Volume 30 (2010), pp. 1469-1480 | DOI | MR | Zbl
Cité par Sources :