Partial suitable solutions for the micropolar equations and regularity properties
[Solutions partiellement adaptées aux équations micrpolaires et leurs propriétés de régularité]
Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 2, pp. 137-187.

Le système micropolaire incompressible est donné par deux équations couplées : la première équation donne l’évolution du champ de vitesse u tandis que la deuxième équation donne l’évolution du champ de microrotation ω . Dans cet article, nous étudierons la régularité des solutions faibles de ce système. Pour cela nous introduirons la nouvelle notion de solutions partiellement adaptées, qui impose des conditions uniquement pour le champ de vitesse u , ainsi, sous quelques hypothèses classiques sur la pression, nous obtiendrons un gain de régularité hölderienne pour les deux variables u et ω .

The incompressible Micropolar system is given by two coupled equations: the first equation gives the evolution of the velocity field u while the second equation gives the evolution of the microrotation field ω . In this article we will consider regularity problems for weak solutions of this system. For this we will introduce the new notion of partial suitable solutions, which imposes a specific behavior for the velocity field u only, and under some classical hypotheses over the pressure, we will obtain a hölderian gain for both variables u and ω .

Publié le :
DOI : 10.5802/ambp.428
Classification : 35B65, 35K55, 76D99
Keywords: Micropolar fluids equations, partial regularity
Mots-clés : équations des fluides micropolaires, régularité partielle

Diego Chamorro 1 ; David Llerena 1

1 Université d’Évry Laboratoire de Mathématiques et Modélisation d’Évry 91 037 Évry Cedex (France)
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2024__31_2_137_0,
     author = {Diego Chamorro and David Llerena},
     title = {Partial suitable solutions for the micropolar equations and regularity properties},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {137--187},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {31},
     number = {2},
     year = {2024},
     doi = {10.5802/ambp.428},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/}
}
TY  - JOUR
AU  - Diego Chamorro
AU  - David Llerena
TI  - Partial suitable solutions for the micropolar equations and regularity properties
JO  - Annales mathématiques Blaise Pascal
PY  - 2024
SP  - 137
EP  - 187
VL  - 31
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/
DO  - 10.5802/ambp.428
LA  - en
ID  - AMBP_2024__31_2_137_0
ER  - 
%0 Journal Article
%A Diego Chamorro
%A David Llerena
%T Partial suitable solutions for the micropolar equations and regularity properties
%J Annales mathématiques Blaise Pascal
%D 2024
%P 137-187
%V 31
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/
%R 10.5802/ambp.428
%G en
%F AMBP_2024__31_2_137_0
Diego Chamorro; David Llerena. Partial suitable solutions for the micropolar equations and regularity properties. Annales mathématiques Blaise Pascal, Tome 31 (2024) no. 2, pp. 137-187. doi : 10.5802/ambp.428. https://ambp.centre-mersenne.org/articles/10.5802/ambp.428/

[1] D. R. Adams; J. Xiao Morrey spaces in harmonic analysis, Ark. Mat., Volume 50 (2012), pp. 201-230 | DOI | MR | Zbl

[2] G. K. Batchelor An introduction to fluids dynamics, Cambridge Mathematical Library, Cambridge University Press, 1999 | DOI | MR | Zbl

[3] H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, 2011 | DOI | MR | Zbl

[4] H. Brezis; P. Mironescu Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018), pp. 1355-1376 | DOI | Numdam | MR | Zbl

[5] L. Caffarelli; R. Kohn; L. Nirenberg Partial regularity of suitable weak solutions of the Navier–Stokes equations, Commun. Pure Appl. Math., Volume 35 (1982), pp. 771-831 | DOI | MR | Zbl

[6] D. Chamorro; J. He On the partial regularity theory for the MHD equations, J. Math. Anal. Appl., Volume 494 (2021) no. 1, 124449 | DOI | MR | Zbl

[7] D. Chamorro; D. Llerena Interior ϵ-regularity theory for the solutions of the magneto-micropolar equations with a perturbation term, J. Elliptic Parabol. Equ., Volume 8 (2022), pp. 555-616 | DOI | MR | Zbl

[8] D. Chamorro; D. Llerena A crypto-regularity result for the micropolar fluids equations, J. Math. Anal. Appl., Volume 520 (2023) no. 2, 126922 | DOI | Zbl

[9] F. W. Cruz Global strong solutions for the incompressible micropolar fluids equations, Arch. Math., Volume 113 (2019), pp. 201-212 | DOI | Zbl

[10] F. W. Cruz; C. F. Perusato; M. A. Rojas-Medar; P. R. Zingano Large time behavior for MHD micropolar fluids in n , J. Differ. Equations, Volume 312 (2022), pp. 1-44 | DOI | MR | Zbl

[11] A. C. Eringen Theory of Micropolar Fluids, J. Math. Mech., Volume 16 (1966), pp. 1-18 | DOI | MR

[12] G. P. Galdi An Introduction to the Mathematical Theory of the Navier–Stokes Equations Steady-State Problems, Springer, 2011 | DOI | MR | Zbl

[13] G. P. Galdi; S. Rionero A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Eng. Sci., Volume 15 (1977), pp. 105-108 | DOI | MR | Zbl

[14] I. Kukavica On partial regularity for the Navier–Stokes equations, Discrete Contin. Dyn. Syst., Volume 21 (2008), pp. 717-728 | DOI | MR | Zbl

[15] O. Ladyzhenskaya; V. Solonnikov; N. Uraltseva Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968 (Translated from the Russian by S. Smith) | DOI | MR

[16] P. G. Lemarié-Rieusset Recent Developments in the Navier–Stokes problem, CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, 2002 | MR | Zbl

[17] P. G. Lemarié-Rieusset The Navier–Stokes problem in the 21st century, Chapman & Hall/CRC, 2016 | DOI | MR | Zbl

[18] M. Loayza; M. A. Rojas-Medar A weak-Lp Prodi–Serrin type regularity criterion for the micropolar fluid equations, J. Math. Phys., Volume 57 (2016), 021512 | DOI | MR | Zbl

[19] J. Lorenz; W. G. Melo; S. C. P. de Souza Regularity criteria for weak solutions of the Magneto-micropolar equations, Electron. Res. Arch., Volume 29 (2021) no. 1, pp. 1625-1639 | DOI | MR | Zbl

[20] G. Łukaszewicz Micropolar Fluids, Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 1999 | DOI | Zbl

[21] C. J. Niche; C. F. Perusato Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids, Z. Angew. Math. Phys., Volume 73 (2022), 48 | DOI | MR | Zbl

[22] M. O’Leary Conditions for the local boundedness of solutions of the Navier–Stokes system in three dimensions, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 617-636 | DOI | MR | Zbl

[23] G. Prodi Un teorema di unicità per le equazioni di Navier–Stokes, Ann. Mat. Pura Appl., Volume 48 (1959), pp. 173-182 | DOI | MR | Zbl

[24] M. A. Ragusa; F. Wu A regularity criterion for three-dimensional micropolar fluid equations in Besov spaces of negative regular indicess, Anal. Math. Phys., Volume 10 (2020) no. 3, 30 | DOI | MR | Zbl

[25] A. Remond-Tiedrez; I. Tice Anisotropic Micropolar Fluids Subject to a Uniform Microtorque: The Unstable Case, Commun. Math. Phys., Volume 381 (2021) no. 3, pp. 947-999 | DOI | MR | Zbl

[26] J. Robinson An introduction to the classical theory of the Navier–Stokes equations (2010) (Lecture notes, IMECC-Unicamp)

[27] V. Scheffer Hausdorff measure and the Navier–Stokes equation, Commun. Math. Phys., Volume 55 (1977), pp. 97-112 | DOI | MR | Zbl

[28] J. Serrin On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 9 (1962), pp. 187-195 | DOI | MR | Zbl

[29] J. Serrin The initial value problem for the Navier–Stokes equations, Nonlinear Problems (Rudolph E. Langer, ed.), University of Wisconsin press, 1963, pp. 69-98 | Zbl

[30] N. Yamaguchi Existence of global solution to the micropolar fluid system in a bounded domain, Math. Methods Appl. Sci., Volume 28 (2005), pp. 1507-1526 | DOI | MR | Zbl

[31] B. Yuan Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci., Ser. B, Engl. Ed., Volume 30 (2010), pp. 1469-1480 | DOI | MR | Zbl

Cité par Sources :