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Partial suitable solutions for the micropolar equations and regularity
properties

Dieco CHAMORRO
Davip LLERENA

Abstract

The incompressible Micropolar system is given by two coupled equations: the first equation gives the
evolution of the velocity field i while the second equation gives the evolution of the microrotation field
@. In this article we will consider regularity problems for weak solutions of this system. For this we will
introduce the new notion of partial suitable solutions, which imposes a specific behavior for the velocity
field i only, and under some classical hypotheses over the pressure, we will obtain a hdlderian gain for
both variables i and &.

Solutions partiellement adaptées aux équations micrpolaires et leurs
propriétés de régularité

Résumé

Le systéme micropolaire incompressible est donné par deux équations couplées: la premiére équation
donne I’évolution du champ de vitesse i tandis que la deuxieme équation donne 1’évolution du champ de
microrotation @. Dans cet article, nous étudierons la régularité des solutions faibles de ce systéme. Pour
cela nous introduirons la nouvelle notion de solutions partiellement adaptées, qui impose des conditions
uniquement pour le champ de vitesse i, ainsi, sous quelques hypotheses classiques sur la pression, nous
obtiendrons un gain de régularité hglderienne pour les deux variables i et &.

1. Introduction

We study here, under mild assumptions over only one variable, some general regularity
properties for weak solutions of the 3D incompressible Micropolar equations. This system
is composed of two coupled equations: the first one is based in the incompressible 3D
Navier-Stokes problem, which gives the evolution of the velocity field i with an internal
pressure p, while the second one considers the evolution of a microrotation field &
representing the angular velocity of the rotation of the fluid particles. These equations are
given by the following problem:

Qi = Nii — (il - V)il ~Vp+ 1V A&,  div(i) =0,
06 = A& +V div(@d) - & — (il - V)& + 4V A, (1.

#(0,x) = iip(x), &(0,x)=0dy(x) and div(ig) =0, xeR3,

Keywords: Micropolar fluids equations, partial regularity.
2020 Mathematics Subject Classification: 35B65, 35K55, 76D99.
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here ii : [0, +oo[ x R? — R3 is the velocity field of the fluid, p : [0, +co[ X R} — R is
the pressure and & : [0, +oo[ x R? — R3 is the angular velocity. Micropolar equations
were first introduced in 1966 by Eringen [11] and they are now used in some particular
cases, such as in the study of polymers, blood, muddy fluids, nematic liquid crystals and
bubly liquids. We refer to the book [20] for other applications of this model. From the
mathematical point of view, this system was studied in [9, 21, 25, 30] where a variety of
results were obtained.

Let us start with some remarks about the equations (1.1). First note that when the
microrotation field @& is null, we recover the usual 3D incompressible Navier—Stokes
equations for irrotational fluids (i.e. VAQ= 0) which were studied for instance in [2] or
in [12]. Next we observe that the angular velocity @ is not a divergence free vector field
and this makes the study of the properties of @& slightly more delicate to handle. Finally,
it is important to observe that the evolution equation for @ is essentially linear and that
there is a relatively mild coupling between the variables i and &: in this article we will
exploit this particular point to deduce our main regularity results for the system (1.1).

Existence of global weak solutions for this system were obtained in 1977 [13] and from
now on we will always assume that (i7, @) € L* ([0, +co[, L*(R3))NL?([0, +oo[, H'(R?))
is a weak solution of (1.1). Note that information over the pressure p can be easily obtained
from i: indeed, by applying the divergence operator in the first equation of (1.1) we
obtain, since div(i) = 0 and div(% A @) = 0, the usual equation for the pressure:

Ap = —div((@ - V)i). (1.2)

As said before, in this article we are interested in studying regularity issues for the
micropolar system. In the realm of fluid dynamics equations (and in particular for the
Navier—Stokes equations) this topic is a challenging and often open problem which can be
solved under some different sets of hypotheses such as the Serrin criterion (see [22, 28]),
the Prodi—Serrin criterion (see [23, 29]) or in the setting of the Caffarelli-Kohn—Nirenberg
theory (see [5, 14]).

Concerning the micropolar system (1.1), some recent results were obtained in [7, 8, 19]
where almost all of the previous theories cited above were applied to obtain a regularity
gain over the variables i and &. Let us remark that in most of these references the
additional information is asked for both variables u and &. However, as it was pointed
outin [10, 18, 24] and [31] it is possible to make a separated study of each one of these
variables.

In this article we are going one step further and in our main result (Theorem 1.2
below) we will show that just some additional information over the velocity field i is
needed in order to deduce a gain of regularity for both variables i and &. In this sense,
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when studying regularity issues for the problem (1.1), we will say that the velocity field i
“dominates” the angular velocity field ©.

To obtain a gain of regularity, we will work over small neighborhoods and for a point
(t,x) € ]0,+00[ x R let us consider the parabolic ball

Or(t,x) = |t = Rt + R*[ x Br(x), (1.3)

for some radius 0 < R < 1 such that  — R? > 0. When the context is clear we will write
Qr instead of Qg(t, x).
We introduce now the following concept:

Definition 1.1 (Partial suitable solutions). Consider it,&d € L®L2(Qg) N L?HL(QRr)
two vector fields that satisfy the equation (1.1) in the weak sense over the set Q. Assume

3
moreover that we have the following local information over the pressure: p € L; , (QR)-
We will say that (i, p, &) is a partial suitable solution for the micropolar equations (1.1)
if the distribution y given by the expression

= —8,|@2 + Ali]> = 2|V @ | - div ((|ﬁ|2 + 2p)ﬁ) +(VAD)-i, (14
is a non-negative locally finite measure on Qg.

First note that in this local setting each term of the above expression is well defined.
Remark also that the notion introduced above is only related to the evolution of the
velocity field # and that the action of the variable & can be seen here as an external force.
In a previous work [7] we considered a non-negative measure involving the evolution of
both variables if and &, but as we only consider here the equation related to the variable i
(and not the equation of &), this weaker notion of partial suitable solutions is needed.

With all these notions above, we can now state our main result:

Theorem 1.2. Consider a parabolic ball Qg given by (1.3). Let (i, p, ®) be a partial
suitable solution (in the sense of Definition 1.1) for the micropolar system (1.1) over QRg.
There exists a small constant 0 < €* < 1 such that if for some point (ty,x9) € Qr we
have

limsupl/ IV ® ii|*dxds < €, (1.5)

r—0 T Jtg—r2,10+r2[xB(x0,r)

then, the solution (i, @) is Holder continuous in time and space for some exponent
O<ac< ﬁ in a small neighborhood of (g, xo).

As it was mentioned before, observe that we only impose conditions on the variable
u (namely, the partial suitability condition given in (1.4) and a good behavior for the
gradient of the velocity field given in (1.5)) and no particular hypotheses are asked for
the variable @. However, and despite of this fact, we will see here that we can deduce
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a holderian gain of regularity for both variables. Of course, the strategy of the proof of
Theorem 1.2 is adapted to this setting: indeed, we will first perform a detailed study for
the variable u using the first equation of (1.1), next we will deduce some controls for the
variable @ by studying the second equation of (1.1) and only then, once we have gathered
enough information, we will obtain the wished gain of regularity for both variables by
studying the evolution of the whole system (1.1). Finally, let us remark that the interval
O<acx< % for the index of holderian regularity « given above is mainly technical and
we do not claim any optimality on it.

We can give now the plan of the article: in Section 2 we present the main tools used
in this article and in Section 3 we study the evolution of the variable i to obtain some
information on this variable. However, this information will not be enough and in Section 4
we will perform a more detailed analysis of the properties of the variables i. Then, in
Section 5 we will deduce from the previous sections some properties for the variable @.
Finally, in Section 6, we will gather all these results to give a proof of Theorem 1.2.

2. Definitions and Useful results

Before going any further, let us be more explicit about the Holder regularity stated in
Theorem 1.2 above. Indeed, we will consider the homogeneous space (R X R3.d, n)
where d is the parabolic distance given by d((z,x), (s,y)) = |t — s|? + |x — y| and where
u is the usual Lebesgue measure du = dxds. We then define the homogeneous (parabolic)
Holder spaces C®(R x R3, R?) with 0 < @ < 1 by the usual condition:

e sup 6.5 - 35, 7)|
C(l

1 a
(1,0)#£(5,y) (|¢ —sP - y|)

< +00,

and it is with respect to this functional space that we will obtain the regularity gain
announced.

Let us now say few words about Morrey spaces: although completely absent in the
statement of Theorem 1.2, they are a powerful tool when studying problems related
to regularity in PDEs. This fact was particularly underlined in [26] and in [17] for the
Navier-Stokes problem since they provide a very natural framework as we shall see later
on (see the key Lemma 6.1 below) and in this article we will use them in a systematic
manner. Thus, for 1 < p < g < +00, the (parabolic) Morrey spaces M,’f IR X R3) are
defined as the set of measurable functions (5 : R x R? — R3 that belong to the space
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(Lf,x)loc such that ||<Z;||Mtp~fl < 400 where

[l = sup — /[
DY xgeR3 1 €ER, >0 1—* lt=to| <r? J B(xo,r)

We present now some Well-known facts:

3, x)| dxdt) .

Lemma 2.1 (Holder inequalities).

(1) Iff g : Rx R} — R3 are two functions such that f € M ) (R x R®) and
g €Ly (R XR3), then forall | < p < q < +o0 we have ||f gIIMpq <

CIIfIlng;I I18llLe,-

(2)Letl§p0 q0<+oo1<p1<q1<+ooand1<p2<qz<+oo

If le + o= 170 and Z + % = —, then for two measurable functions f g :
RxR3 — R3 such that f € Mf’;q‘ (RxRY) and § € MPL% (R x R?), we have

the following Holder inequality in Morrey spaces

17 &l oo < 171 pren 18 gy

Lemma 2.2 (Localization). Let Q be a bounded set of R X R3. If we have 1 < pg < qo,
1 < p1 < g with the condition qy < q < +co and if the function f : RxR> — R3
belongs to the space Mf YR X R3) then we have the following localization property

”]lﬂﬂ‘Mfg»qo < C”]lgﬂ|Mﬂ{ql < C”f”/v(f’;(‘ql .

In our work, the notion of parabolic Riesz potential (and its properties) will be crucial
and for some index 0 < a < 5 we define the parabolic Riesz potential £, of a locally
integrable function f : R x R? — R3 by

Lu(fen) = [ /R 3 — (s, y)dyds. 22)

— s+ x|

Then, we have the following property in Morrey spaces

Lemma 2.3 (Adams—Hedberg inequality). If0 < a < i 1 <p < q < +c0and

f € M TR % R3), then for A =1 — ? we have the followmg boundedness property in
Morrey spaces.

2], 4 < CUFlages

The three lemmas above constitute our main tools in Morrey spaces. For a more
detailed study of these functional spaces we refer to the books [1] and [17].
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3. A (first) partial gain of information for the variable i

In this section we will only focus our study in the variable # and its equation:
By = A — (il - V)it — Vp + %% AG,  div(i) =0,

Here, the variable & can be seen as an external force for which we have the information
@ € L®L2 n L2H!. Note that at this stage, we will not obtain a gain of regularity for the
variable i, instead, using the hypotheses given in Theorem 1.2 above, we will obtain a
gain of integrability for i (stated, as we shall see, in terms of Morrey spaces). In this
sense our first result is the following:

Proposition 3.1. Under the hypotheses of Theorem 1.2 consider (i, p,®) a partial
suitable solution for the micropolar equations (1.1) over the set Qg given in (1.3). Then
there exists a radius 0 < R; < % and an index 1o > 0 with % <71 < ? such that we
have the following local Morrey information:

]lQRl(ZO,XO)ﬁ € M?,’TO (R X RS) ) 3.1

where the point (ty,xo) € Qg is given by the hypothesis (1.5).

Proof of the Proposition 3.1. The proof of this result is rather technical and our starting
point is given by the notion of partial suitable solution: indeed, from the Definition 1.1
and exploiting the positivity of the quantity given in (1.4) we easily deduce the following
partial local energy inequality: for all ¢ € D, (Qgr) (for which we have ¢(0,x) = 0) we
obtain

/Ra |ﬁ|2¢dx+2/R‘/R3 IV ® ii|>¢ dxds

S/(6,¢+A¢)|ﬁ|2dxds+2// p(ii - Vo) dxds
R3 R JR3

+// |ﬁ|2(ﬁ-€)¢dxds+//(%A@)-((pﬁ)dxds. (3.2)
R JR3 R JR3

Although this estimate is fundamental, it is necessary to fix a convenient test function ¢
which will allows us to perform some computations. A particular good choice has been
given by Scheffer in [27]:

Lemma 3.2. Let0 <r < 5 < R < 1. Let ¢ € C*(R X R?) be a function such that

¢(S, )’) = rza) (Sp_2t7 y;x) 0 (Sr_zt) g(4r2+[—s)(x - Y),
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where w € C5°(R X R3) is positive function whose support is in Q1(0,0) and equal to 1
in Q 1 (0, 0). In addition 6 is a smooth function non negative such that @ = 1 over |—co, 1|
and 0 = 0 over ]2, +oo[ and g;(+) is the usual heat kernel. Then, we have the following
points.

(1) the function ¢ is a bounded non-negative function, and its support is contained
in the parabolic ball Q,, and for all (s,y) € Q,(t,x) we have the lower bound
o(s,y) > €,

(2) forall (s,y) € Qp(t,x) with0 < s <t + 1> we have ¢(s,y) < %
(3) forall (s,y) € Qp(t,x) withO < s <t+ r? we have %qﬁ(s, y) < r%
(4) moreover, for all (s,y) € Qp(t,x) with0 <s <t+ r? we have

7‘2
(0, + M) (s, )] < C .
P

A detailed proof of this lemma can be found for instance in [6] or in [17].

The strategy is thus the following: by a convenient use of the estimate (3.2) and by the
properties of the function ¢ given in the previous lemma, we will obtain (by controlling
the information over small balls by the information over bigger balls) the wished Morrey
information stated in Proposition 3.1.

To do so, it will be useful to introduce the following quantities: for a point (z, x) € RxR3
and for a real parameter r > 0 we write

1 N
A= sup - / Jats Py
B(x,r

t-r2<s<t+r2 T

1 R
0= / it vl
Oy (t,x

1
ar(l’x):;/g( )
(2,

1 3
P = [ Iplias,
= Jo,(t,x)

) ) 3.3)
Vil(s, y)‘ dyds,

and when the context is clear we will simply write A, = A, (¢, x). Note that the previous
3

quantities correspond to the information L°L2, L?H!, L}  and L? .. Note also that for
0 < r < 1, we have the relationship between A,, A, and «,

1
A < C(Ar +ay)?. (3.4)
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Indeed, using the definition of 4, given in (3.3) above and by Holder inequality we have
1 1 C
A7 = — Nl < Ml w o
r r% Lt,.x(Qr) I’% Lt,ax(Q")
Since by interpolation we have
2 3
- . < - . 3 - . 3
e g < g I
we can easily deduce that

2
- < d |5
Il g <l

t:x r

3
llall;

PL(Qn) " LIS (00)”

Now, for the L>LS norm of i, we use the classical Gagliardo—Nirenberg inequality
gsee [4]? t'o obtain ”u”L,ZLf’((Q,) <C(|ve ””LtzLi(Q,) + ||u||LtooL)zc(Qr)) and using Young’s
inequalities we have

2 - 3 3
- =3 =115 =113
Il = €l (nv @il 0, * Il

?"Li(Qr))

X =T

<C (||’/7||Lt°°L§(Qr) +IvVe ﬁ”L%L%(Qn) :

1 > 1
Noting that ||ﬁ||L;’°L§(Qr) = r%ﬂrz and ||V ® 'Z”L,ZLE(QV) = r%arz, we finally obtain (3.4).
We establish now a first relationship between the quantities given in (3.3) that will be
helpful to deduce by an iteration procedure the wished Morrey control.

Lemma 3.3. Under the hypotheses of Theorem 1.2 and with the notations given in (3.3)
we have for any radius 0 < r < ’% < 1 the inequality

r2 p2 1 p2 2 1 > 1
A +a, < C?ﬂp+ r_zal%‘ﬂ/""cr_zplg (Ap, +ap)>+C ”VA“)HL?,X(Qp)aﬁ% . (3.5
Proof. With the support properties of the function ¢ stated in the Lemma 3.2 and using
the notations (3.3) above we can rewrite the left hand side of the inequality (3.2) in the

following manner:

Ao < [ @oraplitadss [ [ pa o
R3 R JR3

(1) @)
+// |ﬁ|2(ﬁ-€)¢dxds+//(%A@)-(M)dxds. (3.6)
R JR3 R JR3

(3) “4)
The terms of the right hand side above will be studied separately. Indeed,
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e For the quantity (1) in (3.6), using the properties of the function ¢ given in
Lemma 3.2 and by the definition of the quantity A, given in (3.3) we have

2 t+p?

2 2
/ (8,6 + Ad)|ii|2dxds < CV—S/ jiiPdxds = C ji*dxds < C 5 A,
RS P’ Jo, 05 Jipr Jg, p

e For the term (2) in (3.6), by the properties of the function ¢ given in Lemma 3.2
and by the Holder inequality, we obtain

- C t+p2 C
*-V)dxd <= ildeds < & - ,
/R/R3P (u ¢ s = /t_pz /Bp |pl|i|dxds 7'2||p||L,%x(Qp)||u||L’3’X(Q")

noting that by (3.3) we have

2
4 2
3 3

R 2 L
piP and il (o, =054,

Ipll
LI,X(QP)

we can thus write

- Cipd) (il < gl :
plii - Ve)dxds < — (03P, || P3| < C5P; (Ap+ap)?,
R JR3 r r

A

where in the last estimate we used the control (3.4).

For the term (3) in (3.6), let us first define the average

i)y = =— lii(t, y) Pdy
. |B(X,P)| B(x,p)

and since u is divergence free we have fB (li]*), (i - V)¢ dx = 0. Then, we can
o
write by the properties of the function ¢ given in Lemma 3.2 and by the Holder

inequality:

‘/R/R3 |ﬁ|2(ﬁ~§)¢dxds :L [|IZ|2 _ (|ﬁ|2)p] (ﬁ'§)¢dxds

o
2
S e = qap, s
r t—p? B,

C t+p2 ) )
=8 O L CER N LIS TREE

IA
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Now, Poincare’s inequality implies
C t+p2 N . 5 .
< o [ RGP 1555,
t=p
C t+p2 R
<3 / s Mz, 9 @ (52 ) 1G5 s, ds
t=p

C. . > -
< r_zllu”LtéL)z((Qp) “V ® u||Lz2.x(Qp) ||u”Lz3,x(Qp)’
where in the last inequality we used the Holder inequality in the time variable.
We observe now that by the notations given in (3.3) we can write
- LI 5 4
lillorz o, = CooMillp 20, < CPO A

and

= o 1 - 2.1
Vel o, =re il o, =,
Hence, we obtain, by (3.4):

2
il @i - v p* 111
/R/R} || (it - V)¢ dxds < B Azasa;

P> b 4 !
< Cr—z.?{pa/p (Ap+ap)?

Py
< ol (A, +ay).
r

o Finally, for the term (4) in (3.6), by the Holder inequality and by the properties
of the function ¢ given in Lemma 3.2 we write

/R/R3 (VA &) - ($id)dxds

t+p? .
< [ 10z I 26z, 5 M,
tfpz x \BPp x\Pp
0 t+p? _
<8 [ IR Az g 75 g g, 9
Pz . - S
<CTIVAdlL: ol 0,

where we applied the Sobolev inequalities (see [3, Corollary 9.14]) and the
Cauchy—Schwartz inequality in the time variable. Since by (3.3) we have
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- 1 4
lill 2611 (0,) = P2 @, we conclude

- p% - 1
/R/R3 (VA®) - (gi)dxds < CTHV A ‘T’HL?,X(Qp)“ﬁ'

Gathering all these estimates we obtain the inequality (3.5) and this ends the proof of the
Lemma 3.3. o

The inequality (3.5) is important, but it will not be enough for our purposes as we need
to study more in detail the pressure p. This variable only appears in the first equation of
the system (1.1) and since we have the condition div(iZ) = 0 and the vectorial identity
div(e A &) = 0, by applying the divergence operator to the equation of i in (1.1), we can
write

div(8,i0) = div(Aid) — div((@ - V)ii) - div(Vp) + % div(V A &)
0 = —div((ii - V)ii) - Ap,

from which we obtain the following equation for the pressure (see also (1.2) above):

3
—Ap =div((ii - V)ii) = div(div(d ® i) = " 8,0 (usuy). 3.7)
i,j=1
Note that this previous equation for the pressure p is exactly the same for the system (1.1)
than for the classical Navier—Stokes equation. Thus, by the same ideas given in Proposi-
tion 4.3 of our previous work [7] (see also [6, Proposition 4.2] or [17, Lemma 13.3]) we
obtain the following result for the pressure:

Lemma 3.4. Under the hypotheses of Theorem 1.2 and with the notations given in (3.3)
forany 0 <r < & < R we have the inequality

2 P 1 r % 2
P} < C((7) (Aya,)? +(;) svg). (3.8)
For the sake of completeness we give the proof of this result.

Proof. We will start by proving the following estimate

1 s -
ol <€z T Ol o +eiply ) 69
’ 1

where O, and Q are parabolic balls of radius o~ and 1 respectively (the definition of such
balls given in (1.3)). To obtain this inequality we introduce 1 : R*> — [0, 1] a smooth
function supported in the ball B; such that 7 = 1 on the ball B% and n = 0 outside the
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ball B4 Note in particular that on QO , we have the identity p = np. Now a straightforward
calculatlon shows that we have the identity

3
—A(np) = —nAp + (An)p -2 Z 9:((0im)p),
i=1

from which we deduce the inequality
P |I = llnp II
L X( Qo) Q)

H -nAp)
(=A)

(An)p 0; ((0im)p)

. (3.10
Ch | (3.10)

L2, (Qo)

3
Lr%x(Qa) ‘ (Qo' i=1

(p1) (p2) (p3)

For the first term of (3.10), since we have the equation (3.7) Ap = — Zl =1 0;0; (uiuj)
on O, if we denote by N; ; = u;(u; — (u;)1) where (uj)l is the average of u; over the
ball of radius 1, since i is divergence free we have .2 _, 9;0;(u;u;) = al;N; ; and thus
we can write

i,j=1

(-nAp)

(p])zﬂ , Zaazvl,
= L’%X(Q‘T) ‘I A) . L}(00)
1
ey (G0N = (@)
i,j=1
— Bj(((?m)Ni,j) + Z(Biajﬂ)Ni’j) 3 (311)
Lr%x(Q(r)

Denoting by R; = ‘/a—_';A the usual Riesz transforms on R, by the boundedness of these
operators in Lebesgue spaces and using the support properties of the auxiliary function 7,
we have for the first term above:

”R R (T]Nl ])(t )” C”’]Nlj(t )”

H( N j (5:) L2 (®)

< Cllui(t, )l 28y H”j(t’ ) = (uj)IHLG(BI)
< Clli(t, Mz IV @ it |2,

L3 (B.) L3 (B)
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where we used Holder and Poincaré inequalities in the last line. Now taking the L2-norm
in the time variable of the previous inequality we obtain

;0
(=4)

The remaining terms of (3.11) can all be studied in a similar manner. Indeed, noting that
0;n vanishes on B 3 u Bj and since B, C B 1C B 3 using the integral representation for

nN;, j

1o =d -
P < Co3 ||u||L;°L§(Q])||V ® “”L?,X(Qn' (3.12)
t.x o

the operator (HA) we have for the second term of (3.11) the estimate

0; d
— ((8:n)N; ) (¢, - < Co?||——((8:n)N; ) (¢, -
H(_A) (( 177) s])(t ) L%(Bo—) <Co (—A) (( Jn) »J)(t ) L (B,)
<co? /{ y 4}h((a,n>zvl,)(t ) dy
s L~(Bo)
< Co?|Nij ()| g, (3.13)

< Collui(t, Mz 1 (4. = @il o g,
< Clu(t, ')||L2(B|)“6 ® (1, ')“LZ(BI)’

where we used the same ideas as previously and the fact that 0 < o < 1, and with the
same arguments as in (3.12) before, taking the L2-norm in the time variable, we obtain

1.5 = >
=) A) ——((3;mN:,)) 2 on < CoSiil gz on IV @ill2 (o) (3.14)

A symmetric argument gives

1 -
0in)N; < Co3||ul| e Vi , 3.15
= A)(( N ;) o ol erzonllV @il (o) G.15)
and observing that the convolution kernel associated to the operator (_]—A) is |x| , following
the same ideas we have for the last term of (3.11) the inequality
(6;0;1)N; - >
—_— <Co3 w Ve . 3.16
8 g =7 MerenlV etz @y G10

Therefore, combining the estimates (3.12), (3.14), (3.15) and (3.16) and getting back
to (3.11) we finally have:

H -nAp)

e - -
-y < C (ol g 2000 IV @ .2 (g, (3.17)

L2 Qo)
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We continue our study of expression (3.10) and for the term (p,) we first treat the space
variable. Recalling the support properties of the auxiliary function 7 and properties of the
convolution kernel associated to the operator (_—IA), we can write as before (see (3.13)):

(An)p(z,-)
-~z <C t, <C 1,
‘ I AP 2lp )z s, < Collp( I3 (B’
and thus, taking the L>-norm in the time variable we obtain:
(An)p 5
()_‘(M L on = T Pl 00 (3.18)

For the last term of expression (3.10), followmg the same ideas developed in (3.13) we
can write

m(a imp(t,)

and we obtain

< Co? t,- < Co? t,
s, = C P Limy £ €3 -

(p3) =

’@&M223 <colpl (3.19)
(=4) L2 (Qs) Ly X(Ql)

Now, gathering the estimates (3.17), (3.18) and (3.19) we obtain the inequality

Ltzx (Q1 ))
which is (3.9). With estimate at hand, it is quite simple to deduce inequality (3.8). Indeed,

if we fix o = % < % and if we introduce the functions p,(t,x) = p(p%t, px) and

J RN =l -
||p|| © )< C(as||u||LtmL§(Ql)||V®u||Ltzx(Ql) 2lpll s
tx Qs ’

il,(t,x) = ii(p*t, px) then from (3.9) we have
1
Il ;  <c

L7 (ey) (P)

and by a convenient change of variable we obtain

2
““p||L°°L2(Q|)“V®b””Lz2,x(Ql> ( ) Il ,X(Qu))’

¥ Pl 5 ! o

1
<c(ﬂ3-Mm Ve +Vf “Slipll
< —| p 72 lull or200 0P u — p
o LiEx(Qp) Lix(@0) 7\ p Li0)
Now, recalling that by (3.3) we have the identities

4 2 1 1 1 -
455 L5 - 5 -
riP; = ||P||L% , prA, = ||“||L;°L§(Qp) and p2a, = ”V ® M”Ltz’X(Qp),

t,x r
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we obtain
2
Pl <C

2) '+ (2) )

and this finishes the proof of Lemma 3.4. O

Now, with the estimates (3.5) and (3.8) obtained in the previous lines, we will set
up a general inequality that will help us to deduce the gain of integrability stated in
Proposition 3.1. For this, we introduce the notations

Ar:—(ﬂr"'a'r)a

4 (3.20)

o) e

Lemma 3.5. Under the hypotheses of Theorem 1.2, for 0 < r < % < R there exists a
constant € > 0 such that

P, and O, = A, +

A7)

and we have the following result:

1
O, (tg, xg) < EOP(tO’xO) + €, (3.21)
where the point (ty, xo) € QR is given by the hypothesis (1.5).

Note that this result allows us to control the information over smaller parabolic balls by
the information over bigger parabolic balls and this will be the key to obtain the whished
gain of integrability.

Proof. First, by the estimate (3.5) we can write

1
Ar=—— A +a)
2-3)
C ) 0%l % 2 |
< 2(1_;) (—zﬂp + r—zajﬂp + r—zfoj (Ap +ap)?
r 0
3
P19 A '
= ||V/\a)||Lr2’x<Qp)a/p), (3.22)

and we will treat each one of the previous terms separately. Indeed,
e For the first term of (3.22) we have

1 r2 1 r2 af1-5 r\w
) () < )’ = (5)"
r

70
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e For the second term of (3.22), using the definition of A, given in (3.20), we
obtain

1 2 1 2 s 4-10 |
2(1—_i) (i)—zd‘éﬂp) < 2(—) (%a;p2(1 T“)Ap) = ('(7)) 0 Apa;§~
r 0 r

o The third term of (3.22) follows essentially the same arguments as above and by
the definition of the quantities A, and P,, given in (3.20) we can write

1 ,02 2 | ,04—% -
(B ) < () Felal
r\

o Finally, for the last term of (3.22), we have

1 piie ! P\ R 3 L.
2(1_i) (THVA‘””LZ (Q,,)a/%) < (_) ‘o 2“5|‘VA“)||L§X(Q,,)-
r\U T

1,X r

Thus, gathering all these estimates, we have

10

- 10
()" e () P ) el

_10
+("7’)3 TOpig_%a/%”%/\(f)”Ltz’x(Qp)). (3.23)

A, <C

Now, for the pressure, from the inequality (3.8) we can write

B, = ﬁ% < r%(%%)((r)zwap (;)P )

and by the Young inequality and using the definition of A, given in (3.20) we obtain for
the first term of the right-hand side above:

3 3 _ 15
() mfad s — (2 St = (2

3 5 3 5
A0-3) SAlm)

1_
and using the fact that ( )Po (‘;’)2 2

Bl

o“"

P, (by the definition of P, given

r2<1 5)

in (3.20)), we conclude that

P\ 75 3 (p\iTs
P, <C ((—) ° (Apa,)i + (7) 0 Pp). (3.24)

r
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With the estimates (3.23) and (3.24) at hand, we will now introduce a relationship between

the parameters r and p: indeed, let us fix 0 < k <« % a real number and consider r = «p,

then, by the definition of the quantity O, given in (3.20) we obtain:

RIS

15 _1s
O, =A,+ (KTO 2 Pr)
10 10

10 10 10

10 10 _4 1 10 4 2 1 10 _3
SClk0A, +k "Apas +k0 PIAS+kT0 TpTo

3 olgs
a0

(1) 2) 3)

4
45 21 3

45 21 3 45 3
+C (k7077 (Apay)t + k70 Spp) . (3.25)

(4)
We will rewrite now each one of the previous terms:

e Since by (3.20) we have A, < O,, it is then easy to see that the term (1) above
can be controlled in the following manner:

10 10 _4 % 10 10 _4 %
K70 A, + K70 Apa'p < |k +kT0 g Op.

e For the quantity (2) in (3.25), using Young’s inequality and the relationships
given in (3.20), we observe that

10 _y 2

1 10 1 1 2 1 1 1

1 —4 5L -1 £ 5(1_ L 4

3 2 T 2 3 2 T 2

K70 PPAP_KT() (K(O )PPXK( O)Ap)

IA

10 _ 1_1 11y 4
K0 (Klo(2 TO)Ap+K10(TO 2)]P’2,)

15 _ 15 ;
K(Ap+(K 0 2]P’p)

IA

e For the term (3) of (3.25), using the fact that % > % (recall the hypothesis of
5

Proposition 3.1: we have 2~
a

10 _3

p7 2 <1, and thus

<71 < %) and that 0 < p < R < 1, we obtain

10_-, 10_3 1,5 N 10 _3 1. 5 N
K70 3pfo 2af%||VAw”L,2,X(Qp) < k™ 3a;||VAw||Lt2,x(QP)-
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15_1s
e For the last term of (3.25), since (k™0 2 Pp)% < 0y and A, < O, we have

4
45 3 45 45

4
21 S 3 30 S 3
-] 3048 \3 0_14 A g \3

(KZTU 2 (Apa/p)“ + K27 Pp) <C (KTO Apap + (K“O IP’p) )

30 _ 10_2

14
<C (KTO Qp + K™ 3) Op.
Gathering these estimates we finally obtain
10 10 _ 1 30 10 _

= = 5 E 10 _2 0_5 1,5 o
0, < (KTo + K70 cy; + K+ K70 ap + K70 3)@p+KTo a’§”VAw“Lt2,x(Qp)' (3.26)

Futhermore, we claim that we have

10 10 _4 1 30 _14 10 _2 1
K™ +K70 “ap+k+K0 @y +KkT0 3| < 5 3.27)
Indeed, since « = % < % is a fixed small parameter and since % - % > 0 (recall again

10 10_2

that % <19 < 23—0), then the quantities k™, x and k™ 3 in the previous formula

are small. Now, using the fact that we have the control @, < €* which is given in the
10 1 30

hypothesis (1.5) where €* > 0 is small enough, then the terms K70_4ap2 and KTTJ_MQP
can be made small enough and thus we obtain (3.27). To continue, noting that the quantity
IV A Bli2 (g, is bounded since & € LL2(QRr) N L2HL(QR), we can apply the same
ideas used previously (i.e. @, < € < 1) to obtain

10

[T Ad], o) <e

Then, with these estimates at hand and coming back to (3.26) we conclude that O, <
%(O)p + € and Lemma 3.5 is proven. O

Lemma 3.5 paved the way to obtain some Morrey information for the velocity i that
will be crucial. Indeed, from the definition of Morrey spaces given in (2.1) we only need
to prove that for all radius r > 0 such that r < R < % and (z,x) € Og, (to,x0), we have

3
/Q( )|ﬁ|3dydsgcr5(1‘fo), (3.28)
- (t,x

and this will imply that 1o, il € M>™ (R x R?). In order to obtain the control (3.28), by
the definitions given in (3.3) and by the estimate (3.4), we observe that

/ |17|3dyds =22, (t,x) < r?(A,(t,x) + ar(t,x))%.
Qr(tax)
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Hence, it is then enough to prove forall 0 < r < Ry < % < R < 1and (t,x) € Qg, that
one has the control

_5
ﬂr(t,x) +ar(t,x) < Crz(1 To).

Recalling the definition of the quantity A, given in (3.20), we easily see that the
condition (3.28) above is equivalent to prove that there exists some R; and 0 < « < %
such that for all n € N and (¢, x) € QOg, (%0, x0), we have estimates:

Agng, (t,x) < C. (3.29)

Note that, for any radius r such that 0 < r < Ry < min{%, dist(dQk, (o, x))} (and since
we have Qg, (t9,x0) C Or) by the hypotheses of the Theorem 1.2, we have the bounds

||ﬁ||LfoL)2<(Qr(t0,xo)) = ”ﬁ”LfOL;Zc(QR) < Foo,
IV @ li: (o, = IV @iz (0n <+

and

el s <llpll 3 < +00.
Ly (Qr (10,%0)) L’ (QORr)

Then, by the notations introduced in (3.3), we have the uniform bounds sup, g {r A,
ray, r*P,} < +oo from which we can deduce by the definition of the quantities A, (#o, xo)
and P, (%o, xo) given in (3.20), the uniform bounds

310 5-3(1+3)
sup 1~ o A, (l‘o,xO) < 400, and sup r /P, (IO’ )CO) < too.
0<r<R 0<r<gR

Thus, there exists a radius 0 < rp < R small such that, by the estimates above, the
quantities A,, and P,, are bounded: indeed, recall that we have 7y > % > 5 (where
0 < @ < 1) and this implies that all the powers of r in the expression above are positive.
As a consequence of this fact, by (3.20) the quantity O, is itself bounded. Remark
also that, if r( is small enough, then the inequality (3.21) holds true and we can write

Oxry (t0,X0) < %Oro (9, x0) + €. We can iterate this process and we obtain for all n > 1,
1 n—1
@Knro(t(),xO) < 2—n©r0(t0,X()) +€ Z 277,
Jj=0

and therefore there exists N > 1 such that for all n > N we have O,n, (t9, xp) < 4€ from
which we obtain (using the definition of O, given in (3.20)) that

1 1
AKNrO(t(),X()) < gC and PKNrO(I(),X()) < ﬁc.

This information is centered at the point (7, xg), in order to treat the uncentered bound, we
can let %KN ro to be the radius R; we want to find, thus for all points (#,x) € Qg, (fo,x0)
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we have that Qr, C Qarg, (f0,X0), which implies
3_10
AR] (t’x) < 27 T AQR] (t09x0) < 8A2R1 (tO’ xO) < SAKNp(tOPXO) < C,

and Pg, (¢,x) < 25_%(1+%)]P’2R1 (t0,x0) < 32Pg, (t0,x0) < 8P,n,(f0,x9) < C. Having
obtained these bounds, by the definition of Og,, we thus get Og, (¢,x) < C. Applying
the Lemma 3.5 and iterating once more, we find that the same will be true for kR; and
then, for all "R, n € N. Since by definition we have A, g, (f,x) < Ogng, (f,x) we have
finally obtained the estimate A,»g, (t,x) < C and the inequality (3.29) is proven which
implies the Proposition 3.1. O

Corollary 3.6. Under the hypotheses of Proposition 3.1, we also have the following local

control:

. 111
Log (o) V@i € MPT(RXRY),  with —=—+ 2. (3.30)
! ’ T v 5

Proof. In the previous results we have proved the estimate (3.29). Let us recall now
that, by the definition of the quantity A, given in (3.20), we can easily deduce for all

2(1-= . .
0 <r < Rjand (t,x) € Qg, the control @, < Cr (1=%5) which can we rewritten as

1 (/ W ® ﬁ|2dyds < Crz(l_%).
Q,(t,x)

r

Ti] = Tio + %, forall 0 < r < Ry and (¢,x) € Qg, (fo, Xo), we have the estimate

Thus, since
> _1o -z
/ ¥ @ afdyds < % = o),
Or
and by the definition of Morrey spaces given in (2.1), we obtain that

Ve 2
ﬂQM(’O,Xo)V@M € Mt”;l (RXR3). O

4. A (second) partial gain of information for the variable i

This first gain of integrability information stated in Proposition 3.1 is fundamental for our
theory to work, however it is not enough since we only obtain a “small” control! for the
variable # and without any information on the variable & we can not go very far: now we
will see how to obtain some further control on @ and how it is possible to reinject this
information in the study of the variable ii. Indeed, in our recent article [8] we proved the
following result which gives some mild control over the variable @:

!In terms of the indexes of the Morrey spaces involved in Proposition 3.1.
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Theorem 4.1. Let (i, p, &) be a weak solution of the micropolar equations (1.1) over
a parabolic ball Qr of the form (1.3) for some fixed radius R > 0. Assume that
i, € L¥L2 N L2HL(QR) and p € D/ (Qr). Suppose in addition that for some
0 < Ry < R we have

lge il € MPY™(RXRY)  with 2 < po < qo, 5<qo <6, “.1)

then

(1) for a parabolic ball Qv,, with 0 < 11 < Ry we have
lg, i€ L (RxR’),  5<gqy<6,

(2) for a parabolic ball Qy,, with 0 < vy <11 < R{ we have
1o, @€ L (RXR),
for5 < qo <6.

As we can see, this result gives an interesting improvement of integrability for both
variables # and @ as long as we have the hypothesis (4.1), but this is precisely the
conclusion of Proposition 3.1: indeed, over a small parabolic ball Qg, (7o, xo) we do have

Lo, (19,x0) 1 € M?;" (R x R?) and it is enough to remark that we have here py = 3 and
5

qo = 1o with 2= < 79 < ? and this last parameter can be chosen such that 7o = 6 < ?.
Thus, we deduce that

Lo, (1y.x0)il € L® (RxR?) and 1o, (19.x0)® € LS (RxR?), 4.2)

wherer) <1ty <R <R< 1.

Note that from the initial setting ii, @ € L°L2 N L?H., the controls stated in (4.2)
provide a better integrability information and we will see now how to improve the Morrey
information given in Proposition 3.1 for the variable i:

Proposition 4.2. Under the hypotheses of Theorem 1.2 and within the framework of
Proposition 3.1, there exists a radius Ry with 0 < Ry <1 <11 < R; < R < 1 such that

- 3,00 3
1QR2(IOsx0)M € Mt,x (R xR )’
for some o close to 1y = 6 such that 1y < .

Proof of the Proposition 4.2. In order to obtain this small additional gain of integrability
we will first localize the variable & in a suitable manner and then we will study its
evolution: the wished result will then be deduced from the Duhamel formula and from all
the available information over i. Let us start fixing the parameters R, Ry, R, such that

O<R <R, <Ry, <Ru<1<71 <Ry,
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with the associated parabolic balls Qr, C Ox,. C O, C Ox, C Or, (all centered in the
point (g, xg)). Consider now ¢,y : R x R* — R two non-negative functions such that
¢.¢ € Cy° (R x R?) and such that

¢ =1 over Ox,., supp(¢) C Ox,

4.3)
and ¢ =1 over Ox,, supp(y) C Oy,.

Using these auxiliar functions we will study the evolution of the variable ¥ = ¢ ii given
by the system

8V =AV+V,
(4.4)
{\7(0, x) =0,
where we have
3
V=(08,¢ - Ap)ii — 22(6,-;/5)(@17) — (i - V)i —2¢Vp + ¢(V A D). 4.5)
i=1

We will now rewrite the term gb% p above in order to avoid a direct derivative over the
pressure. Indeed, as we have the identity p = yp over Og,,, then over the smaller ball
QORr, (recalling that ¢ = 1 over Qg, by (4.3) since Qr, C O%,), We can write

3
~AWp) = —YAp + (AY)p =2 3:((3)p)
i=1

from which we deduce the identity

3

- V(=yAp)  V((Ap)p) V(3 ((9:%)p))
=0Ty T AT a)

At this point we recall that we have by (1.2) the following equation for the pressure
Ap = - Z?’j:l 0;0;(u;u ;) and thus, the first term of the right-hand side of the previous
formula can be written in the following manner:

(4.6)
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Recalling that by construction of the auxiliar functions ¢, y given in (4.3) we have the

identity ¢y = ¢, we can write for the first term above

(‘W uj),

-

Vo | va V6:0
¢mij('/’“i“j)— ¢,( ) ('701]) a)y

and we finally obtain the following expression for (4.6)
3 =
Vo;0;
(Yujuj) +
! Z (-A)

i,j=1

(‘W u;)

3

$Vp = Z

Vo0,
" 1a)
SR
N Z m(ai((ajl!/)uiuj) + 0 (3 usu ) — (8:0,0) (u M]))
5 V@i (0w)p))

(a0)p)
“n AT h

With this expression for the term that contains the pressure p, we obtain the (lengthy)

formula for (4.5):
: vaa
= (8¢ - M) 2Z<a¢)<au) o V)i- 3, |0y | W)
—_— =] T~ ~Y——— | j=1
(1) (2) 3
(4)
3 %a 3 ¢

)= ¢u u;) Z (— 0 (B0 uiu ) +0; (8 )uiu ;) — (8:0;0) (uin )|

Y — ©) %) ®)

(5
V(aw)p) L V@@wp) o
+2¢ p——————+p(VAD). 4.7
A Z S A
(11)
9) (10)
Thus, by the Duhamel formula, the solution ¥ of the equation (4.4) is given by

t 11 t
V= / eV (s, )ds = Z/ eI (s, )ds = Z Vk.
0 k=170 k=1

Since v = ¢u, and due to the support properties of ¢ (see (4.3)), we have g, vV =Tg i
v (R xR?) we will study 1o, Vi forall 1 <k < 11.

and to conclude that 1o, i € M
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e For %71, by the term (1) in (4.7) we have

t
Lok, V1 (t.x)| = ‘]1%/ eI (8,¢ — Ap)ii] (s,x)ds], (4.8)
0

since the convolution kernel of the semi-group e*~*)2 is the usual 3D heat kernel g,, we

can write by the decay properties of the heat kernel as well as the properties of the test
function ¢ (see (4.3)), the estimate

[Lox, Vi(t, x)|<C]1QR2//RS <[ Loy, (s, y)|dyds,
~ sl + v - y)

Now, recalling the definition of the parabolic Riesz potential given in (2.2) and since
QOr, C Ow, we obtain the pointwise estimate

Lop, ¥1(5,%)] < Clloy, Lo(|Toy, i) (1, x), 4.9)

and taking Morrey M?;’ norm we obtain

0w, 71669 r < € Hn% £o(ftn, ] .-

Now, for some 2 < g < 3 we setd=1- — . Then, we have 3 <
Lemma 2.2 and by Lemma 2.3 we can erte

3 3and o < 4 7~ Thus, by

“]lme '£2(|]1me ﬁi)“Mff <C ||'£2(|11wa ﬁi)“

3.4
Mt

S C”]IQW,, ﬁ”/\/lfg S C’|]1QR] 17”/\/[3;0 < +0o,
where in the last estimate we applied again Lemma 2.2 (noting that g < 79 = 6) and we
used the estimates over i available in (3.1).

e For V5, using the expression (2) in (4.7) we write (8;¢) (8;ii) = 8; ((8;¢)ii) — (82¢)ii
and we have

+ (4.10)

t
1og, /0 =989, ((:¢)id)ds

Lo, /Ot eli=s)a [(612¢) ﬁ] ds|.

Remark that the second term of the right-hand side of (4.10) can be treated in the same
manner as the term V; so we will only study the first term: by the properties of the heat
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kernel and by the definition of the Riesz potential £; (see (2.2)), we obtain
t
Ar:= Loy, / =29, ((9;¢)id) ds
0

= ’1QR2 /0 /R3 0i81-s(x = y)(9;9)ii(s, y)dyds

)]lmeb_i(s,y)|
SC]IQRQ./R./H@ ) 7dyds
(1= sl +1x - 1)

< Clgy, (£L1([Tow, @) (1.5).

@.11)

Taking the Morrey M?f norm we obtain

142l =€ e, (£ill1en, @) -
q

Now, forsome 4 < g <5 <19 =6wedefined=1- %,notingthat3 < %anda <%
by Lemma 2.3, we can write
1ex, (£1(|1Q9¢,,'Z|))HM3§ < C”['l(']lmeﬁ')HMi,

< C”]lQR, IZ“M:;O < 400,

3.9
M3

. "
4 <C|igy,d

from which we deduce that ||ILQR2 @'gll Moo < +oo.
t,x

e For the term %73, by the same arguments given to obtain the pointwise estimate (4.9),

‘HQRﬁs(t,x)’ = ‘11QR2 /Ot/R3 gr-s(x =) [¢((ﬁ-§)ﬁ)] (s, y)dyds
) .,

we have

< Clog Lo (’1@1«,, ((ﬁ - %)ﬁ)
(recall (4.3)) from which we deduce
10x 73] < €ll1or 22 ([ton, @ D] ... (4.12)

We setnow 72 < g < 3andd=1- 2. Since 3 < & and 79 = 6 < o < 4, applying
Lemma 2.2 and Lemma 2.3 we have

ron 2t -]y e 2 5]

< 1oy, @- %)ﬂ”M%ﬂ .
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Recall that we have 1y = 6 < o and by the Holder inequality in Morrey spaces (see
Lemma 2.1) we obtain

< +oo,

H]IQ% (i - )i

ﬂQR1§®IZ

M[g,}q < ’|]1QR1 ﬁ” Mi’;"

2,1'1
My

where é =47 T_1 = —0 + % These two last quantities are bounded by (3.1) and (3.30).
2 .1

Note that the condition 1y = 6 < o and the relationship cl[ = tsare compatible with

the fact that 3_% <g< % (recall that 0 < @ < ﬁ).

e The term V, is the most technical one. Indeed, by the expression of V4 given in (4.7),
we write

v a,] () (s, y)'

H‘?” )
10,74 < Z]l /R/ —dyds

1
b=l It—SI7+Ix—y|

3
Vo 0
< > T L (Yuiuj)| |
i,j=1 ( A)
and taking the Mf;’ -norm we have
. : V0,
P N
o] e Zl Q’”LZ( [ T | ) )' ros
If we set + = 2 and/l =1- — then we have 3 < ﬁ and for
q T0
q 579
< = 4.13
T2 10-1 (.13)
by Lemmas 2.2 and 2.3 we obtain:
tm, 22 (|| 6. 2292 | (gray C[1on £ ¢%ia"(w )
2 u;u = 2 s T u;uj
Or, ( A) J A Or, (=A) ity Mtz%l%
<c|ls. 22| ey
< , —— Uil ,
(_A) o M%,q
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We will study this norm and by the definition of Morrey spaces (2.1), if we introduce a

threshold r = w, we have

V6,0, : 1 V6,0, i
=) (L VRS reee AP 2y [
Mg ) T
- 3
1 Valﬂj 8
+ sup —/ I ()| dxdr. (4.14)
w0 S(-5) Joam || (-4)

Now, we study the second term of the right-hand side above, which is easy to handle as
we have r < r and we can write

3
: / 5. Y00 ()| e
sup , ——— Uil t
5 erxed U3 Jo, %) (=4) o
: :
Vo;0;
< Cr ¢, a—— (lﬂuiuj) N
(_A) Lt%x
and since ¢ is a regular function and V(?’f)j is a Calderén—Zydmund operator, by the
V8, 9;

Calderén commutator theorem (see the book [16]), we have that the operator [gb, N

3
is bounded in the space L; , and we can write (using the support properties of ¢ given
in (4.3) and the information given in (3.1)):

_ V80,

|| ®, =) (Yuiuj)

3
2

< Clas| 5 < Clt g uans|

3
3 2’
L2 t,x Mt
t,x

WX

= C“ILQRIIZHM%E( |ILQR11;||M,3,’)3(

s C“]IQR] u”/\/lf;(’ ]1QR1 u“Mf;[) < +oo,
where in the last line we used Holder inequalities in Morrey spaces and we applied
Lemma 2.2.

The first term of the right-hand side of (4.14) requires some extra computations: indeed,
as we are interested to obtain information over the parabolic ball Q, (t, X) we can write
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forsome 0 < r < 1:

V9,;0; V9;0;
1o, ’(_—A)j (uiu;) = 1o, |, (_—A)j (Lo, Yujuj)
V6,0,
+1p, ¢,(_—A)’ ((1- 1o, uu,), (4.15)

3

and as before we will study the L; , norm of these two terms. For the first quantity in
the right-hand side of (4.15), by the Calderén commutator theorem, by the definition of
Morrey spaces and by the Holder inequalities we have

[N

Vo0,

1o, |9, [y (Lo, Yuiuj)

< ol gy uin
Mt,x

s d N
<ol gl . o il
1,x

3,79
MT.X

for all 0 < r < t, from which we deduce that

Vé:0; :
1o, |9, (_—ZA)] (Lo, Yujuj)| dxdt

i
sup —————
0 S(1-3) Jo,wn

O<r<rt

3 !
< C||]1QR1 ﬁ”/z\/(l‘r()”]lQRl ”‘”/2\43,70 < +oo.
1,x 1,x

We study now the second term of the right-hand side of (4.15) and for this we consider
the following operator:

T:fv—>(]lQr

V8,0,
¢ —ZAJ l (H - ]ler) l//) /s
and by the properties of the convolution kernel of the operator ﬁ we obtain

(I 10,) (") Low, GFWIIS) - B
=l d.

(I < Clo, () [
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Recalling that 0 < r < t = m,, R, , by the support properties of the test function ¢

(see (4.3)), the integral above is meamngful if |x — y| > r and thus we can write

3
2

V0,
T (D)

1o, (I-1g, ) puiu;)

%
Ltvx

3

2
Lix

3
Lix-yl>r 2
< CH]lgr /R% =y (I=1g,,) () 1loe, (3)uiusldy

<C / H]l
( ly|>r |y|4 O,

with this estimate at hand and using the definition of Morrey spaces, we can write

3
2
]lQR] uiu J|

3

2
dy) <Cr~ 3
LZ (Qr)

(Qr)

-

3
3

Vio, 1 5(1-2) 3
1o, |6, (1 - 1o, uu;)| dudr < Cr= 37~ ’]1 P
/Qru,x) o |* gy |- Te: 2 R YRS
5(1-4 3
<Cr ( zq) ’]IQRlul”i M%;TTO ,
_3
where in the last inequality we used the fact thattl—] = T% % which implies r~ 30 R)
rs(l_%). Thus we finally obtain
3
1 Vé;0; :
sup ——~ 1o, |9, A (IT-1g, )puu;)| dxds
(t5) . s(1-%) Jo, (-4)
O<r<r
-3 -3
< C”]IQR'u”MS’TO ]]-QRIM”M?TO < 400

We have proven that all the term in (4.14) are bounded and we can conclude that
Tor, Vall yp.0 < Foo.

Remark 4.3. The condition (4.13) implies an upper bound for o~ depending on the current
Morrey information of i, which a priori is close to 7y = 6. Nevertheless it is clear that
whether we obtain a better Morrey information on integrability for iz, the value of o~ can
increase.
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o For the quantity 3_'/5, based in the expression (4.7) we write

)]IQR Vs(t, x)| <C Z Log, // IR R (puiu;)(s, y)4|dyds

e (1 = 1%+ 1x = »1)

<C Z Lgg, L1 (|RiR; (duu)|) (1.x),

ij=1

where we used the decaying properties of the heat kernel (recall that R; = % are the

4T0+5

519 °

=3, g=1suchthat 2 >3and £ > o Wthh is compatible with the condition 7y < o)
pP=349= by v p

we have

Riesz transforms). Now taking the Morrey M 7 norm and by Lemma 2.2 (with v =

c ZHnQR Li(RR; Guiu )] .

4q
v

[100 7] 5 <

Then by Lemma 2.3 with A = 1 — TOT/z (recall 19 = 6 < 10 so that v > 21) and by the
boundedness of Riesz transforms in Morrey spaces we obtain:

<CllL (|RiRj(¢ui“j)|)” &

q
2 ’24

H]lQR2£1 (|Ri7?j(¢ui“j)|)”M§ :

4q
v
x

><>.

< C”‘R iR (pu; uj)H

3%
22

< ”]lQRl Ui

30
272
M;

s C”]IQR] IZHMS;O ]lQR] ﬁHMf’;O <+,

and we obtain ||]1QR2§75||M3,0 < 400,
1,x

o For the term X_)i'(, and following the same ideas we have

T @i s, y)\

dyds

|]1QR V6| <C Z ]lQR2 //

¢va
=C .Zl ]IQR2-£2 ( ( A)
i,j=

—s|? +|x—yl

|

((9 w)"‘ uj
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For 2 < g < 3, define 4 =1 - — , we thus have 3 < % and o < % Then, by
Lemma 2.2 and Lemma 2.3 we can wrlte
1 .[:2 (3 Yuiu; <Cj1 .£2 (6 Yuiu;
Or, ( A) J A Or, (- A) J MI%’%
< Cll—=(0y)uju ,
‘(A) 4
oV

but since the operator =) is bounded in Morrey spaces and since 2 < g < % <
2 =3 (since 19 = 6), one has by Lemma 2.2 and by the Holder inequalities

oV,

Ty @iy

< C“]IQR u; uJH 34 S CH]IQR u; uJ”
M 1,x

; 17
5.4 M,
M

< c||]1QRlﬁ||M?:x,0

N
]]'QRl u va‘ro ’
X

from which we deduce [[1¢,, @6” o < +oo. Note that the same computations can be
t,x

performed to obtain that || 1o, @7“ Mie < Foo.
1,x

o The quantity Y_}’g based in the term (8) of (4.7) is treated in the following manner: we
first write

3
H]lQR2V8“M3*°' S Z
t,x i,j=1

Wesetl <v < — ,2v < g < 5" and A = 1 — L, thus we have 3 < ¥ and o < 4, then, by
Lemma 2.2 and by Lemma 2. 3 we can wrlte

(Aﬁﬁﬁwxu%)

Log, (£2

3,0
M

]lQR2 (-[:2 ( A) —(0; (3 l//)(” ”1)) Ms,rr
<C ]lQR2 (.Ez ( A)((?ﬁt//)(u i) M%% ( A)(Bﬁw)(u 7 o
( A) ——(0:0;) (uiu;) v% ( A) ——(0;0;) (uiu;) . (4.16)

sv

where in the last estimate we used the space inclusion LY LY ¢ M, 2 .
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Remark 4.4. Note that if the parameter ¢ above is close to the value 57", thend=1- g—z
is close to 0 and thus the value % can be made very big: in the estimates (4.16) we can

consider a Morrey space M;"7 with & > 1.

Let us focus now in the L* norm above (i.e. without considering the time variable).
Remark that due to the support properties of the auxiliary function ¢ given in (4.3)
we have supp(9;0;¢) C Or, \ Ox, and recall by (4.3) we have supp ¢ = O, where
Ry, < R, < Ry, thus by the properties of the kernel of the operator % we can write

Y

A (6;0jyr) (uiuj)

.

<C

1
/R3 mﬂ@xh () Lok, \0n, (y)(aiajlﬂ)(uiuj)(',y)d)”

<C

Ly > ®a-9)
/R% x|i>_—y|2b]lQ‘Rb () Lo \ox, (D) (0:0;40) (uiuj) (-, y)dy|, (4.17)

and the previous expression is nothing but the convolution between the function
(0;0j)(u;u ) and a L*-function, thus we have

< C|[(0;0j¢) (uiu ) (t, ) 1
Lo
< CliLog, (uiuj)(t,)llLr,

v
H‘l’m(aiajlﬂ)(uiuj)(h )

(4.18)

and taking the L”-norm in the time variable we obtain

-

\Y

e

(0:0;9) (uius) < C|[ o, ity

LYLY

< C”IlQR] ﬁ”M?;O ILQRI ﬁ“ME;O < 400,

where we used the factthat 1 < v < % < 5 and we applied Holder’s inequality. Gathering
together all these estimates we obtain ||]lQR2\78 |y < +o0.
t,x

e The quantity \_)79 based in the term (9) of (4.7) can be treated in a similar manner.
Indeed, by the same arguments displayed to deduce (4.16), we can write (recall that
l<v< Z):

2

v
¢m((A¢’)P)

)

Jten ), .. <c
1,X L;/L;O
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and if we study the L*-norm in the space variable of this term, by the same ideas used
in (4.17)—(4.18) we obtain

< ClAYPE i < CllLog, P, ),
.

(=4)

Hfﬁ—((AW)p)(t )

Thus, taking the L”-norm in the time variable we have

— ((AY)p)

“]lQRZQQHM? o = C”ILQR]p” % +00.

(A)

LYLY

e The study of the quantity @10 follows almost the same lines as the terms @g and 37’9.
However instead of (4.17) we have

Lx=y>Ra—Rp)
( A) —((d)p)| < '/ P — 5 Loy, 1o 05, (M @iY)p(t,y) dy|,
and thus we can write:
[ QW (@) = Cltoplyy, < Cltonpl,3 <+
" LYLY

Note that, by the same reason given in the Remark 4.4, in the study of the terms that
contain the pressure (i.e. Vg and Vlo) we can consider a Morrey space M 7 witho > 1.
But this is not the case anymore for the last term below.

o Finally, for the term \Y 11 based in the term (11) of (4.7) we write:

t
[0k, Tu|= ‘1% /0 = |9 A 3) | (5, )ds

+

t t
< [lgg, /0 eIV A (¢) (s, x)ds| + Loy, /0 "IN (Vp) A &(s,x)ds

<V,+Vy,

for the first term above, and following the ideas given in (4.11), we have the following
estimate with the Riesz potential £, and by Lemma 2.2 we can write

Vall e < €[[1en, (£ ([10n, )], < €]<1 ([2en, )|

e fron )l 15

120,120
M5

169



D. Chamorro & D. Llerena

where g = 24 and A = 25. Thus, since 1 < % and since 4 = 1 — % we can apply the

Lemma 2.3 to obtain that
o (o3l 3 = w7l

< C|1on,@

= Cfren, 7|
Mg ¢ H Ow, @ t%*%

< +00.

-Clions

‘Rb L6

t,x

MES

Now, for the term V;, above, using the same ideas as in (4.8)-(4.9) and applying again
the Lemma 2.2, we obtain

ol = € ton, (€2 ([tn, 2],
=< ton (£ (100, )] 0 419
<l ron 5
where this time g = = 2and A = 5. Since we have 2 < % and 1 =1- Z?q, we apply

Lemma 2.3 and we have

s w15 =  Foul g = lren3], 5

<|ten, |, .0 =|1ewd]| , <+~
ol ol
We can thus conclude that
”]IQR2V11||M3U +00.
With all these estimates Proposition 4.2 is now proven. O

Remark 4.5. Note that the value of the index o of the Morrey space Mf;’ (RxR3) is
potentially bounded by the information available over & and the maximal possible value
for this parameter is close to o = 60 (see the expression (4.19) above).

This result gives a small gain of integrability as we pass from an information on the
Morrey space M 7 to a control over the space M 7 with 7y < o with o close to 1.
This is of course not enough and we need to repeat the arguments above in order to obtain
a better control. In this sense we have the following proposition:

Proposition 4.6. Under the hypotheses of Theorem 1.2 and within the framework of
Proposition 3.1, there exists a radius R, with 0 < Ry < R, such that

Log, (t0.x0) il € MID (R XRY), (4.20)
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Proof. By the Proposition 4.2 above it follows that 1o, i € Mff (R x R?) with o very
close to 7o (say o = 1o + €). Hence, with the information 1o, i € Mi’;‘)“ (R x R3) at

hand, we can reapply the Proposition 4.2 to obtain for some smaller radius R, < R that
Lo, ue Mf;‘ (R x R3) where oy = 0 + € = 79 + 2¢. Iterating these arguments as long

as necessary, we obtain the information 1o, i € Mi’ﬁo(R x R%) where the value o = 60
is fixed by the information available for the quantity & which is the only term that is fixed:
see the computation leading to the estimate (4.19) and Remark 4.5. Let us note that a
slight abuse of language has been used for the radius R»: at each iteration this radius is
smaller and smaller, but in order to maintain the notations we still denote the final radius
by R;. O

5. A first gain of information for the variable &

Note that the Proposition 4.6 and the Corollary 3.6 give interesting control (on a small
neighborhood of a point (7, xo)) for the variable ii. Remark also that Theorem 4.1 gives
some information for the variable &:

- 3,60 3 = 6 3
]IQRZ(IOJCO)M € Mt,x (R xR )’ ]ler (t.x0) 4 € Lg x (R xR )’

Lo, ()Y ® 1 € MIT(RXRY), Lo, (10 ® € LS (R X R?), e-b
where
O<Ry<Ry<1m<r <R <R<1, 5.2)
withtyg =6and 7| = % (which is given by the condition Til = TLO+ é, see the Corollary 3.6).
Note that we have 14—250 <71 = %.

We will exploit all this information in order to derive some Morrey control for the
variable div(®), indeed, we have:

Proposition 5.1. Under the general hypotheses of Theorem 1.2, if we have the controls (5.1)
over il and & then we have, for some radius 0 < R3 < 1?2, we have

6 60
]]‘QR3 (t0,x0) le((D) € M,S’;C“ (R X RS)

Proof. We first apply the divergence operator to the equation satisfied by @ (see the
system (1.1)) and since we have the identities div(V div(&)) = A and div(V A i) = 0,
we obtain

8; div(B) = 2Adiv(@) — div(®) — div((ii - V)@).
Consider now ¢ : R X R? — R a non-negative function such that ¢ € C;*(R x R?) and
such that

¢ =1 over Q,,(to,x0), supp(¢) C Qp, (0, x0), (5.3)
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where we have
0 <R3 < pp < pa < R>, 5.4

where the radius R is fixed in (5.2). With the help of this auxiliar function we define the
variable ‘W by

W = div(d),

note that, due to the support properties of the function ¢ we have Tog, W=1p Ry div(w).
If we study the evolution of ‘W we obtain:

W = (8,9) div(®) + ¢|2A div(®) — div(d) — div( (i - 6)@))

3
= 2AW + (8, + 2A¢ — ) div() — 4 Z 0 ((8;0) div(@)) — ¢ div((@ - V)),
i=1

where we used the identity
3
PAdIV(S) = AP div(B)) + Ad div(d) — 2 Z 3 ((8;4) div(&)).
i=1

Recall now that we also have the identity (since div(u) = 0):

¢ div((ii - V)@) = ¢ div(div(d ® it))
= div(div(¢®d ® i) — div(& ® ii - V) — V- div(d ® ii),

and we obtain

3
W =2AW + (8,4 +2A¢ — ¢) div(d) — 4 Z 9 ((0;¢) div(d)) — div(div(¢® @ if))
i=1

+div(@®ii - V) + Ve - div(d ® if).
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Thus, since we have ‘W (0, -) = 0 (by the properties of the localizing function ¢ given
in (5.3)), applying the Duhamel formula we can write:

W(t, x)

t 3 t
= / 21N 3,4 + 2A¢ — ¢) div(&)ds — 4 Z / 27985, ((8:¢) div(@))ds
0 o /0

W W
t t
- / =9 diy(div(d @ if))ds + / UM div(d @i - Vg)ds
0 0
W Wi
t
N / 2T E . div( @ i)ds, (5.5
0
Ws

and we will estimate each one of the terms above.

o For the first term ‘W) we write,

t
e, Wil = 'nQR3 /0 PN div((8,¢ + 2A¢ — )d)ds

+ , (5.6)

‘
Log, ‘/0 ez(t_S)A(V(ﬁzqﬁ +2A¢ — ¢)) - &ds

since the convolution kernel of the semi-group ¢2(/~5)2 is the usual 3D heat kernel g,;,

thus by the decay properties of the heat kernel, by the properties of the test function ¢
(see (5.3)) and by the definition of the parabolic Riesz potentials £ and £, given in (2.2),
we can write the estimate

1o (s,
1 (Wl <C1 | Opa ( y)l dde
OR; OR; i
RIRS (|t —s]2 +[x - y])*

1o, @(s, )

+C]1QR3// | prw(s ) dyds 57
RJR (= 5]2 + |x - y))?

< Clgg, (Li(I1g,, @) (t,x) + Clgg, (L2(I1g,, &) (2, x),

and we have
1o (W1H o @
R3 5011
MIVX

< Clluow, (£1(1enal)| 0.6 +€ten (£ (e, al)], o0

1,x

S
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60 _ 15 6 9 1
For the first term above, since 77 < 3, wesetp = 3, ¢ = 5 and A = 75 and by Lemma 2.2

we obtain

[ton, (4 e )], .0 = Clion £ 10 3] 5

,X

<C “Ll (|]1QP“J)|)“M%’% ,

since g < E and 5 15 < 57- Thus, applying Lemma 2.3 (and Lemma 2.2), we have

|2 (1te,.al)|, &5 = Clito,al o =Cltg,,al, <+

since we have the control ]lQrch) € L?’ L(R % R3) given in (5.1) and we have by (5.2)
and (5.4) that p, < Ry < 15.

For the second term that we need to study, we fix p = g, q = % and A = 25, by
applying Lemma 2.2 and Lemma 2.3 we obtain
”11QR3 (132 (|]1Qpaw|))” &8
: C“ﬂQR LIt0 )], o5 = [ (10.3l)], 5.5
< Clto,all 55 < Cliig.dly, <Cio,a],, <+

where we used the information (5.1) and the relationships (5.2)-(5.4). With these two
estimates at hand we conclude that ”]1QR3 Wil 5,15 < +oo.
) Mr,x

o For the term ‘W5 of (5.5) we need to study, for all 1 < i < 3, the quantities

t
I = ‘]1QR3 /0 =989, ((8:9) div(®))ds

and we write

t
< |Lop, /0 =984, (div((8;¢)))ds

t
+ Lo, /0 X985, ([V(0:9)] - B)ds].

(5.8)
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We study the first term above and by the support properties of the function ¢ given in (5.3),
we have for 1 <i,j <3:

t
’ﬂQR3L 62("S)A8iaj((6i$)é))ds
// Lo, (t, x)]lC(ph pa) (8 V)6(s, )]
R3

5 dyds, (5.9)
(11 =51 +1x = »1)

where the set C(pp, py) is the corona defined by Q,,, \ Q,, . Noting that (f,x) € Qg,

and that (s,y) € C(pp, pa), since we have Rz < pp, by (5.4), the convolution kernel

Lok, (t.x) ey pa) (5:) . .
3 < is bounded and we can write

T
(It=s|2+|x-y])?

t
H]1QR3 /0 e*17943,0,((8:9)))ds

)
Ll,X

< Clltcenn@lyy, < Clto,a],, <+ 10
(recall (5.2)-(5.4)), from which we deduce that

< +00.

t
HnQR% / 217984, (div((0;4)d))ds
- JO

Mg 0 = CH]IQr2

r,x

The second term of (5.8) has the same structure as the first term in (5.6), and thus by the
same arguments we can write

o < CH]IQQJ}

*11

Mt,x

< +00.

6
5 LS,

HIQR3 / 85, ([V(9:0)] - B)ds
0

o We study now the term “W; defined in (5.5) and we write

6
1
X

S

bl

t
||11QR3’W3||M%% = ”]1%/0 > 1798 div(div(gd @ if))ds

S uloy

M

and by the maximal regularity of the heat kernel in Morrey spaces (the Theorem 7.3
of [16] can be generalized to parabolic Morrey spaces), we have
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now, using the Holder inequalities for Morrey spaces stated in Lemma 2.1 (with g = % + %

and % = é + &) and the properties of the localizing function ¢, we obtain

[roe Wi s < Clo,algs o, il
t,x

< CHHQQQHM“

Ul
<o,

1o, i < 00
R 6,60 ?
LS. ‘ 2 lIMy

where in the last estimate above we used Lemma 2.2, the information available in (5.1)
and the relationships (5.2)-(5.4).

o For the term ‘W) given in (5.5) we have, following the same arguments given in (5.9):
t
)11% ‘W4‘ = ']1% / =8 giy (J) ® i V(,E) ds
/ / Lok, (1, X)L ¢ (pp pq) (5. V)G ® (s, )]
<C
R3

(11 = 1% +1x = »1)

dyds,

and thus, by the ideas given in (5.9)-(5.10) we can write

// ]lez(t x)]lc(/’b pu)lw@u(s y)|
R3

dyds
(1= 1%+ 1 = 1)

Ly
<C “]IC(P!),PH)J) ® ﬁ”Lrlx

<clio 507

1,x

<C H]thzca

16 |]1QF1ML6 < +o00,
X

where we applied the Holder inequalities, Lemma 2.2 (in the Lebesgue space setting) and
the relationships (5.2)—(5.4). With these estimates at hand, we easily deduce that

”:HQR3(W4” 6.60 < +oo.
e For the last term ‘W5 of (5.5) we have
t - —
(nQR;w5| - ‘]lg,h / PTG . div( ® if)ds| .
; *Jo
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Partial suitable solutions for the micropolar equations and regularity properties

Thus, for 1 <1, j, k,l < 3 we need to study the quantities
t p—
Jijki= 'HQR3/ I8(5:)0; (wiup)ds
0
t
< [to, [ e2<’-S>Aa,»((al-@(wkuz))ds
0

t
+|Log, /0 2798(9;0;0) (wiup)ds|

where we used the identity (6i(5)6j(wkul) = Gj(((')iq;)(wkul)) - (ai(')i(;;)(wkul). Now,
due to the properties of the heat kernel and the support properties of the function ¢, we
obtain the inequality

]1QR (X)L (o pa) IWEHI (S, Y)]
Ji kol = C 2 de
(|t—s|z -yl

Log, (1, X)L oy p0) IWrUi (s, y)|
dyds
R3

3
(1= 1% + e = 1)

Now, by the same arguments given in (5.9)-(5.10) we obtain

// ]lQRg(t X)L c(pp.p0) Wit (s, y)|
yds
R%

t—sf+x— )
(1= s1¥+ b=l .

Log, (1. X)L oy p0) [Wrtt1 (s, ¥)]
+ - 3 dyds
BIE (e sl e ))

L;’?X
<C ||1szwkul||L1 +C H]thzwkul“
t,x

1
Ll,X

<C ||]th2L3 < +00,

and with these estimates for 1 < i, j, k,[ < 3, we easily deduce that

“]IQRs(WS“Meso +oo.

With all these controls, Proposition 5.1 is proven. O

177



D. Chamorro & D. Llerena
6. The end of the proof of Theorem 1.2

Proof. The key result for obtaining a gain of regularity is the following lemma coming
from the theory of parabolic equations (see [15, 17]).

Lemma 6.1. Let o be a smooth homogeneous function over R3 \ {0}, of exponent I with
0 (D) the Fourier multiplier associated. Consider a vector field ® € M,’&’qo (RxR3?) and
a scalar function h € Mﬁ‘;’q' (R X R3) such that 1 < py < qo, with % = Z‘T" 1 _ I—T"

g
for 0 < a < 1. Then, the function V equal to 0 for t < 0 and

t
0= [ eIBls )+ (DIh(s. s
0
fort > 0, is Holder continuous of exponent a with respect to the parabolic distance.

In order to apply this lemma to the proof of Theorem 1.2, we will first localize
the full micropolar equations (1.1) and then we will show that each term of the corre-
sponding Duhamel formula belongs either to the space Mz 0% (R x R?) or to the space
MG (R X R?).

We start by localizing the problem and for this we consider ¢ : R x R? — R a test
function such that supp(¢) C ]_4]'1’ JT[ x B(0, %) and ¢ = 1 over ]_1]_6’ 1]_6[ X B(0, }1). We
consider next a radius R > 0 such that

AR<R3<Ry<ty<t1 <R <R<1, 6.1)

where Rj is the radius of Proposition 5.1, R, is the radius of Proposition 4.6, 11, x, are the
radii from Theorem 4.1 and R; is the radius obtained in Proposition 3.1. We then write

t—1t) x— xo)
Lx)=¢|—,——|, 6.2
n(t) = ¢ (=t (6.2)
and we consider the variable U/ defined by the formula
U =i + &), (6.3)

then, by the properties of the auxiliar function 7, we have the identity U = ii + & over
a small neighborhood of the point (¢, xo), the support of the variable (L7 is contained
in the parabolic ball Qr and moreover we also have ‘L?(O, x) = 0. Thus, if we study the
evolution of this variable, following the system (1.1), we have

- . .1 .
U= (0m)(U+d)+nA(d+@) —n((u-V)u) —nVp + EnV A®@+nVdiv(od)

- ISR S-S
—nw—n((u-V)w)+EnV/\u.
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We use now the identity nA(ii + ) = AU - An(u+a) -2 Zle (0;m)(0; (i + @)) to obtain
the equation

3
OU = AU + (9 — M) (i + &) =2 ) (9m) (9, (i + B)) = (@ - V)id) —nVp
i=1

1 - _ _ 1 -
+ ET]V A®+nVdiv(®) —no —n((u-V)o) + zr]V Al

In the expression above, we need to rewrite six particular terms, indeed, since we have
the identities

7V div(d) = V(5 div(d)) — (V) div(d),
3 3 3
D 0m) @i+ @) = )" a0 i+ @) = Y (:0m) (i + &),
i=1 i=1 i=1
n((ii - V)ii) = div(nii ® it) —ii ® ii - Vn,
WWAS=VAMD) — (V) Ad, and nV Adi=V A (nid)— (Vn) A,
and 7((i - V)®) = ndiv(® ® it) = divind ® il) — & @i - Vn,
we obtain

3
U = AU+ (9 + An) (i + @) =2 ) 0:((0m) (i + &) - div(nii ® if)

i=1
L2 > 12 IR R L2 CNPTPN
+i®u-Vn—nVp + EV A (@) — E(Vn) A+ V(ndiv(o)) — (Vn) div(w)
e L L2 1o IR -
—nw—d1v(nw®u)+w®u-Vn+§V/\ (nu) — E(Vn) AU
We rewrite this equation in the following form:

3
6,17=A(L7+ﬁ+26,-1§,-+§C+§/\Z—5+divE,

i=1

(6.4)
U0, x) =0,

where the vector A is given by
> e e m o D 2 l o -
A=0Om+An)(i+d)+u®iu-Vn—nVp — E(Vn) NG
— (V) div(®) —nd+d®ii -V, (6.5)
the vector B; (for 1 <i < 3)is given by

B; = 2(0m) (il + &), (6.6)
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the scalar function C is given by
C =ndiv(d), 6.7)
the vector D is given by
D= %n(a + i), (6.8)
and finally, the tensor E is defined by the expression
E=-niQi+d®i). 6.9

Thus, by the Duhamel formula, the solution of the equation (6.4) can be written in the
following manner:

¢ 3
U(t,x) = / e<’S>A(3{ + Zaizsi +VC+VAD+divE|ds, (6.10)
0 i=1

thus, in order to apply Lemma 6.1 to this system and obtain a parabolic gain of regularity,
we only need to prove that the quantities A, B;, C, D and E, defined in (6.5)-(6.9)
respectively, satisfy:

Ae MY RxRY) and B,C,D,Ee MM (RxR?), 6.11)
1
. ’q1
Let us start with the quantity A and we have

6 : 1 _ 2-a _l-a 1
wherelSposgsm),wnh%——S = =% ,forsomeO<a<24.

Lemma 6.2. For the term A defined in (6.5) we have
1A o0 < +oo.
Proof. By definition we have

”ﬁ”Mf&,qo < ||(<9;17 + A?’])(ﬁ + (7))”ququ + “ﬁ QU - 6””/\4?&’% + ”TI%IJ”M;)?X’QO

) @) 3)
+C[|(Tm) A& oo + | (Fm) div(@)]] o

(4) (5)
+ ||77(r)||Mfoqo + ”(T) ® 1/7 . %T]”Mfo,% . (612)

(6) (7)

Each term above is studied separately:
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e For the first term of (6.12), we note that since pg < qp = i and since 0 < a < 24,

we have py < qp < 3 < 6, and thus by the support properties of the function 7 as well as
by the properties of Morrey spaces given in the Lemma 2.2, we obtain
10+ An) i + )| oo < CllT g (@ +5) | o
< Clltg,, (i + @)l pss = Clilg,, (@ + @)l s < +0o,

since we have the controls (5.1) and the relationships (6.1).
e The terms (2) and (7) of (6.12) can be treated in a similar manner. Indeed, since
O<ac< 2]—4 we have pg < qo < 3 and by the same arguments as above we write for (2):
i @ - Val| ypoo < CllLowii ® it oo < CllLg, i@ ]
< Clto,ioil,y = Clig,il,y Lo, il <+
where we used the Holder inequality in the last estimate as well as the controls (5.1) and
the relationships (6.1). The same ideas apply for (7).

o For the term (3) of (6.12), we recall that by the equation (1.2) over the pressure we

3;0;
have the expression p = Zl =1 =AY = (uju ;). We consider now two auxiliary functions ¢

and ¢ satisfying the same properties stated in (4.3) and such that

=1 over Q,,(t,x0), supp(a) C Oy, (to,x0) and
=1 over Qy,(to,x0), Supp(¥) C Qg (to,xo),

™)

where R < rp, < rqy < Rj3.
Thus, by definition of the auxiliary function ¢ we have the identity Log, = $]IQR%

(recall the relationships 6.1). Thus the term ¢Vp = ¢Z —x70;0(uju;) can be

rewritten in the following manner

t]l(A)

3 ~V6 3 ~"
2:] ) i) - > - A)ww)m Z - A)(aw)uu,

i,j=1 i,j=1
(a) (b) ()
3 v 3
V((Ag)p) v (9:((9; w)p))
+2 —(66 ) (i ;) + g ———— (6.13)
,-;1 ) J ) Z TN
> ——————
(d) (e) (f)
and since 0 < @ < 24 we have pp < qo = i < m < 3 and we only need to prove that

each one of these terms belong to the Morrey space M, $- 47 (R x R3).
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* The term (a) in (6.13) is treated as follows: since the Riesz transforms are
bounded in Morrey spaces we obtain

~va, ;
( A)

<C

<
(i) 6 120 6,120 C”V(tﬁuu,)” %%’
547 5°747

50,V —
m(lﬁ”zuﬂ

now, for 1 < k < 3, using all the information available over i (see (5.1)), by
Lemma 2.2 and by the Holder inequality in Morrey spaces, we have

a7

IO usus] | g0 < € [1os, i “JHM

<C ”IlQRzu,‘ < 400,

M;%’,)s(o IlQR2 J”Mwo

. 6 _ 3 120 2 _ 1 _ 1,1
since 2 < 3, 45 < 30 and 3 + 3, 30 = %0t s BY the same arguments

(recall the informations over i given in (5.1)) we have

Pl g < €[t T o] i 10w

3
M

IA

C ]lQRl V ® ﬁ“MZ

T
t,x

]lQR3 ”UHMMO < +0o,
1,x

i (B )| e ¢ 11QR3MiHM?‘iO ]1QR]V®L7HM2,%

<C ]lQR3 uiHM3’60 ILQRIV ® IZHMZ‘TI < 400,
t,x t,x

: 5 _ 47 _ 45 & 120 _ 30 _ 20
since 2 = 7 +3 L and 4L 6 = 150t L and <71 = 137 < 5. Thus we can deduce

that we have the estimate

« The terms (b) and (c) of (6.13) can be treated in a similar manner and using the
information available in (5.1) we have:

PV O; Vo
= A)(c')t,b)uu] émSC = A)(ng)uuj g@<C||(c')t,b)uu]|| %%
MY MY
<C ]IQR ou“Mzm
<C ]lQRZMiHM3,6O ]]'QR2 J”M3 g < FO0.
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x The term (d) is treated as follows. By Lemma 2.2, since g <3 3 and @ < 14—5, we
have

—» —»

— (8,09 (wiu) — (8,0;9) (wiu,)

( A) i ( A) M
3 31
Now, by the space inclusion L; LY € M * we obtain
v 0;0, 5V 0;0;
F s @0y )| = C|F s (000,0) ay)
MZ 4 L Loo

Following the same ideas displayed in formulas (4.16)-(4.18), due to the support
properties of the auxiliary functions we obtain

< CH]IQR u; uj|
Lt2L§°

— = (8,0;9) (uiu,)

3
L2

(A)

< +00.

<C H]lQRjHMm 1

O, |Mf;°

* The term (e) of (6.13) follows the same ideas as previous one, and we have

j((A&I)p) _V((AG)p)

(—A) <C ¢ (—A) C”]]'QRp” % +00,

LZLY

6 120
2

54T
M

3
since we have by hypothesis that 1, p € L2 (R X R?).

* The last term of (6.13) is estimated in a very similar manner:

_V(0;((8:0r _V(6;((8:0F
P wm)‘ 7Y @Dp)

< C”]]'QRpH % +oo.
LALY

(=A) §,120 (=n)

Mtyx

We have proven that all the terms of (6.13) belong to the Morrey space Mﬁ 0-% and thus,
the term (3) of (6.12) too.

e The terms (4) and (6) of (6.12) are very similar. Indeed, for (4), using the properties

of the auxiliar function 7 and with the Lemma 2.2 we write (recall that pg < g9 < 6 and
that we have the controls (5.1))

H(Vn) A w”MfO‘qO <C ”]lQRw”M,"f’);"“ <C “]lQrZ‘U s < 400,
For (6) we have by the same arguments:
||7767)>||Mfggqo <C ”]lQRCT)“M;’g;“O <C ||]lQr2<D L6 < +o00.
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e For the term (5) of (6.12), we need to study the quantity || (617) div(o)|| P00, but
by the Proposition 5.1 we know that '

6 60
51

r, diV(©) € MJ (R x R%).

Since 0 < @ < 214, we have pp < 3 < qp = 3725 < ﬁ, and by the support properties of

the function 7 (recall (6.1) and (6. 2)) we have (by Lemma 2.2)

<C H]IQR3 diV((D)HM% 60 < 400,

090 1
M S

With all these estimates, we can conclude that Ae Mz (;q" (R x R3), and Lemma 6.2 is
proven. O

We study now the quantity B; defined in (6.6). Following (6.11), we shall obtain that

B; EMqu‘(RXR3) where 1 < po < qo, with ql() = _T",ql = 1TT",forsomeO <a<l.
Since 0 < a < 24, we have q; = — < 6 and we thus write

||Bi||Mff)x~“1 = ||2(3i77)(b7+63)||Mf’<;01 < C||1Qr2(ﬁ+63)||Mfg;q1

< C”]lQr2 (ﬁ+a)”L?,x < 400,

where we used the support properties of the test function 7, the Lemma 2.2 and the
controls (5.1).

We thus obtain that B; € MM (R x R3).

For the terngiven in (6.7) we have ||C||Mp0 a =|n div(d)')lleo a.Sincel < pg < 9

and q; = L <7 80 (since 0 < @ < > 4) by the support properties of the function r7 and

by Lemma 2.2 we obtaln

7 div(@)l o < C 1oy, div(J))”M%% < 400,

With this estimate we obtain C € M}, (R x R3).

The term D given in (6.8) can be treated just as the terms éi above. Indeed, using the
controls (5.1) we write:
< +00.

- < CH]IQ (u+u))” CH]IQQ(ﬁHT)) L6

t,x

Po a1

- 1 . .
”D”Mf‘)’q' = ”ETI(W'H‘)
We have D € MM (R x R3).
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For the tensor E defined in (6.9), since 1 < pg < g and q; = % < 90 we obtain, by

1
Lemma 2.2:
VBl o = 17 © 1+ @ D) o < 10 @ ] pysoes + 113 © o

6 60
5°T1
1,x

<Clni®ill so+Clnd i
M3 M

x

and by the Holder inequalities in Morrey spaces (see Lemma 2.1) with % = % + % and

m_1,1 -
% = ¢ T go» We can write :

< Clnz - - -
IEl pgor < Cllidll ys il o0 + Cllnllyes llmll .00

< 400

< |1y, o

LS. ILQR2§|MI3,)GC0+CHHQR2(D ]IQRZI’_[
We thus have E € Mﬁ‘;q‘ (R x R3).

With all the previous computations we have proven all the information stated in (6.11),
which applied in the integral representation formula (6.10) allows us, with Lemma 6.1, to
conclude that U € CY(RxR}) with0 < a < i, and since by (6.3) we have U = (+©)
over a small neighborhood of the point (f, xg), we deduce that & and @ are also Holder

regular and this finishes the proof of Theorem 1.2. O

6
Lr,x
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