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Partial suitable solutions for the micropolar equations and regularity
properties

Diego Chamorro
David Llerena

Abstract

The incompressible Micropolar system is given by two coupled equations: the first equation gives the
evolution of the velocity field ®𝑢 while the second equation gives the evolution of the microrotation field
®𝜔. In this article we will consider regularity problems for weak solutions of this system. For this we will

introduce the new notion of partial suitable solutions, which imposes a specific behavior for the velocity
field ®𝑢 only, and under some classical hypotheses over the pressure, we will obtain a hölderian gain for
both variables ®𝑢 and ®𝜔.

Solutions partiellement adaptées aux équations micrpolaires et leurs
propriétés de régularité

Résumé

Le système micropolaire incompressible est donné par deux équations couplées: la première équation
donne l’évolution du champ de vitesse ®𝑢 tandis que la deuxième équation donne l’évolution du champ de
microrotation ®𝜔. Dans cet article, nous étudierons la régularité des solutions faibles de ce système. Pour
cela nous introduirons la nouvelle notion de solutions partiellement adaptées, qui impose des conditions
uniquement pour le champ de vitesse ®𝑢, ainsi, sous quelques hypothèses classiques sur la pression, nous
obtiendrons un gain de régularité hölderienne pour les deux variables ®𝑢 et ®𝜔.

1. Introduction

We study here, under mild assumptions over only one variable, some general regularity
properties for weak solutions of the 3D incompressible Micropolar equations. This system
is composed of two coupled equations: the first one is based in the incompressible 3D
Navier–Stokes problem, which gives the evolution of the velocity field ®𝑢 with an internal
pressure 𝑝, while the second one considers the evolution of a microrotation field ®𝜔
representing the angular velocity of the rotation of the fluid particles. These equations are
given by the following problem:

𝜕𝑡 ®𝑢 = Δ®𝑢 − (®𝑢 · ®∇) ®𝑢 − ®∇𝑝 + 1
2
®∇ ∧ ®𝜔, div( ®𝑢) = 0,

𝜕𝑡 ®𝜔 = Δ ®𝜔 + ®∇ div( ®𝜔) − ®𝜔 − (®𝑢 · ®∇) ®𝜔 + 1
2
®∇ ∧ ®𝑢,

®𝑢(0, 𝑥) = ®𝑢0 (𝑥), ®𝜔(0, 𝑥) = ®𝜔0 (𝑥) and div( ®𝑢0) = 0, 𝑥 ∈ R3,

(1.1)

Keywords: Micropolar fluids equations, partial regularity.
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here ®𝑢 : [0, +∞[ × R3 → R3 is the velocity field of the fluid, 𝑝 : [0, +∞[ × R3 → R is
the pressure and ®𝜔 : [0, +∞[ × R3 → R3 is the angular velocity. Micropolar equations
were first introduced in 1966 by Eringen [11] and they are now used in some particular
cases, such as in the study of polymers, blood, muddy fluids, nematic liquid crystals and
bubly liquids. We refer to the book [20] for other applications of this model. From the
mathematical point of view, this system was studied in [9, 21, 25, 30] where a variety of
results were obtained.

Let us start with some remarks about the equations (1.1). First note that when the
microrotation field ®𝜔 is null, we recover the usual 3D incompressible Navier–Stokes
equations for irrotational fluids (i.e. ®∇ ∧ ®𝑢 = 0) which were studied for instance in [2] or
in [12]. Next we observe that the angular velocity ®𝜔 is not a divergence free vector field
and this makes the study of the properties of ®𝜔 slightly more delicate to handle. Finally,
it is important to observe that the evolution equation for ®𝜔 is essentially linear and that
there is a relatively mild coupling between the variables ®𝑢 and ®𝜔: in this article we will
exploit this particular point to deduce our main regularity results for the system (1.1).

Existence of global weak solutions for this system were obtained in 1977 [13] and from
now on we will always assume that ( ®𝑢, ®𝜔) ∈ 𝐿∞ ( [0, +∞[, 𝐿2 (R3))∩𝐿2 ( [0, +∞[, ¤𝐻1 (R3))
is a weak solution of (1.1). Note that information over the pressure 𝑝 can be easily obtained
from ®𝑢: indeed, by applying the divergence operator in the first equation of (1.1) we
obtain, since div( ®𝑢) = 0 and div( ®∇ ∧ ®𝜔) = 0, the usual equation for the pressure:

Δ𝑝 = − div
(
( ®𝑢 · ®∇) ®𝑢

)
. (1.2)

As said before, in this article we are interested in studying regularity issues for the
micropolar system. In the realm of fluid dynamics equations (and in particular for the
Navier–Stokes equations) this topic is a challenging and often open problem which can be
solved under some different sets of hypotheses such as the Serrin criterion (see [22, 28]),
the Prodi–Serrin criterion (see [23, 29]) or in the setting of the Caffarelli–Kohn–Nirenberg
theory (see [5, 14]).

Concerning the micropolar system (1.1), some recent results were obtained in [7, 8, 19]
where almost all of the previous theories cited above were applied to obtain a regularity
gain over the variables ®𝑢 and ®𝜔. Let us remark that in most of these references the
additional information is asked for both variables ®𝑢 and ®𝜔. However, as it was pointed
out in [10, 18, 24] and [31] it is possible to make a separated study of each one of these
variables.

In this article we are going one step further and in our main result (Theorem 1.2
below) we will show that just some additional information over the velocity field ®𝑢 is
needed in order to deduce a gain of regularity for both variables ®𝑢 and ®𝜔. In this sense,
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when studying regularity issues for the problem (1.1), we will say that the velocity field ®𝑢
“dominates” the angular velocity field ®𝜔.

To obtain a gain of regularity, we will work over small neighborhoods and for a point
(𝑡, 𝑥) ∈ ]0, +∞[ × R3 let us consider the parabolic ball

𝑄𝑅 (𝑡, 𝑥) =
]
𝑡 − 𝑅2, 𝑡 + 𝑅2 [ × 𝐵𝑅 (𝑥), (1.3)

for some radius 0 < 𝑅 < 1 such that 𝑡 − 𝑅2 > 0. When the context is clear we will write
𝑄𝑅 instead of 𝑄𝑅 (𝑡, 𝑥).

We introduce now the following concept:

Definition 1.1 (Partial suitable solutions). Consider ®𝑢, ®𝜔 ∈ 𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅) ∩ 𝐿2
𝑡
¤𝐻1
𝑥 (𝑄𝑅)

two vector fields that satisfy the equation (1.1) in the weak sense over the set 𝑄𝑅. Assume
moreover that we have the following local information over the pressure: 𝑝 ∈ 𝐿

3
2
𝑡 ,𝑥 (𝑄𝑅).

We will say that ( ®𝑢, 𝑝, ®𝜔) is a partial suitable solution for the micropolar equations (1.1)
if the distribution 𝜇 given by the expression

𝜇 = −𝜕𝑡 | ®𝑢 |2 + Δ| ®𝑢 |2 − 2| ®∇ ⊗ ®𝑢 |2 − div
( (
| ®𝑢 |2 + 2𝑝

)
®𝑢
)
+ ( ®∇ ∧ ®𝜔) · ®𝑢, (1.4)

is a non-negative locally finite measure on 𝑄𝑅.

First note that in this local setting each term of the above expression is well defined.
Remark also that the notion introduced above is only related to the evolution of the
velocity field ®𝑢 and that the action of the variable ®𝜔 can be seen here as an external force.
In a previous work [7] we considered a non-negative measure involving the evolution of
both variables ®𝑢 and ®𝜔, but as we only consider here the equation related to the variable ®𝑢
(and not the equation of ®𝜔), this weaker notion of partial suitable solutions is needed.

With all these notions above, we can now state our main result:

Theorem 1.2. Consider a parabolic ball 𝑄𝑅 given by (1.3). Let ( ®𝑢, 𝑝, ®𝜔) be a partial
suitable solution (in the sense of Definition 1.1) for the micropolar system (1.1) over 𝑄𝑅.
There exists a small constant 0 < 𝜖∗ ≪ 1 such that if for some point (𝑡0, 𝑥0) ∈ 𝑄𝑅 we
have

lim sup
𝑟→0

1
𝑟

∫
]𝑡0−𝑟2 ,𝑡0+𝑟2 [×𝐵(𝑥0 ,𝑟 )

| ®∇ ⊗ ®𝑢 |2d𝑥d𝑠 < 𝜖∗, (1.5)

then, the solution ( ®𝑢, ®𝜔) is Hölder continuous in time and space for some exponent
0 < 𝛼 < 1

24 in a small neighborhood of (𝑡0, 𝑥0).

As it was mentioned before, observe that we only impose conditions on the variable
®𝑢 (namely, the partial suitability condition given in (1.4) and a good behavior for the
gradient of the velocity field given in (1.5)) and no particular hypotheses are asked for
the variable ®𝜔. However, and despite of this fact, we will see here that we can deduce
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a hölderian gain of regularity for both variables. Of course, the strategy of the proof of
Theorem 1.2 is adapted to this setting: indeed, we will first perform a detailed study for
the variable ®𝑢 using the first equation of (1.1), next we will deduce some controls for the
variable ®𝜔 by studying the second equation of (1.1) and only then, once we have gathered
enough information, we will obtain the wished gain of regularity for both variables by
studying the evolution of the whole system (1.1). Finally, let us remark that the interval
0 < 𝛼 < 1

24 for the index of hölderian regularity 𝛼 given above is mainly technical and
we do not claim any optimality on it.

We can give now the plan of the article: in Section 2 we present the main tools used
in this article and in Section 3 we study the evolution of the variable ®𝑢 to obtain some
information on this variable. However, this information will not be enough and in Section 4
we will perform a more detailed analysis of the properties of the variables ®𝑢. Then, in
Section 5 we will deduce from the previous sections some properties for the variable ®𝜔.
Finally, in Section 6, we will gather all these results to give a proof of Theorem 1.2.

2. Definitions and Useful results

Before going any further, let us be more explicit about the Hölder regularity stated in
Theorem 1.2 above. Indeed, we will consider the homogeneous space (R × R3, 𝑑, 𝜇)
where 𝑑 is the parabolic distance given by 𝑑

(
(𝑡, 𝑥), (𝑠, 𝑦)

)
= |𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 | and where
𝜇 is the usual Lebesgue measure d𝜇 = d𝑥d𝑡. We then define the homogeneous (parabolic)
Hölder spaces ¤C𝛼 (R × R3,R3) with 0 < 𝛼 < 1 by the usual condition:

 ®𝜙 ¤C𝛼 = sup
(𝑡 ,𝑥 )≠(𝑠,𝑦)

��� ®𝜙(𝑡, 𝑥) − ®𝜙(𝑠, 𝑦)
���(

|𝑡 − 𝑠 | 1
2 + |𝑥 − 𝑦 |

)𝛼 < +∞,

and it is with respect to this functional space that we will obtain the regularity gain
announced.

Let us now say few words about Morrey spaces: although completely absent in the
statement of Theorem 1.2, they are a powerful tool when studying problems related
to regularity in PDEs. This fact was particularly underlined in [26] and in [17] for the
Navier–Stokes problem since they provide a very natural framework as we shall see later
on (see the key Lemma 6.1 below) and in this article we will use them in a systematic
manner. Thus, for 1 < 𝑝 ≤ 𝑞 < +∞, the (parabolic) Morrey spaces M 𝑝,𝑞

𝑡,𝑥 (R × R3) are
defined as the set of measurable functions ®𝜙 : R × R3 → R3 that belong to the space
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(𝐿 𝑝
𝑡,𝑥)𝑙𝑜𝑐 such that ∥ ®𝜙∥𝑀 𝑝,𝑞

𝑡,𝑥
< +∞ where

 ®𝜙M𝑝,𝑞
𝑡,𝑥

= sup
𝑥0 ∈ R3 , 𝑡0 ∈ R, 𝑟 > 0

(
1

𝑟
5
(
1− 𝑝

𝑞

) ∫
|𝑡−𝑡0 | < 𝑟2

∫
𝐵(𝑥0 ,𝑟 )

��� ®𝜙(𝑡, 𝑥)���𝑝 d𝑥d𝑡

) 1
𝑝

. (2.1)

We present now some well-known facts:

Lemma 2.1 (Hölder inequalities).

(1) If ®𝑓 , ®𝑔 : R × R3 → R3 are two functions such that ®𝑓 ∈ M 𝑝,𝑞
𝑡,𝑥 (R × R3) and

®𝑔 ∈ 𝐿∞
𝑡 ,𝑥 (R × R3), then for all 1 ≤ 𝑝 ≤ 𝑞 < +∞ we have ∥ ®𝑓 · ®𝑔∥M𝑝,𝑞

𝑡,𝑥
≤

𝐶∥ ®𝑓 ∥M𝑝,𝑞
𝑡,𝑥

∥ ®𝑔∥𝐿∞
𝑡,𝑥

.

(2) Let 1 ≤ 𝑝0 ≤ 𝑞0 < +∞, 1 ≤ 𝑝1 ≤ 𝑞1 < +∞ and 1 ≤ 𝑝2 ≤ 𝑞2 < +∞.
If 1

𝑝1
+ 1

𝑝2
= 1

𝑝0
and 1

𝑞1
+ 1

𝑞2
= 1

𝑞0
, then for two measurable functions ®𝑓 , ®𝑔 :

R × R3 → R3 such that ®𝑓 ∈ M 𝑝1 ,𝑞1
𝑡 ,𝑥 (R × R3) and ®𝑔 ∈ M 𝑝2 ,𝑞2

𝑡 ,𝑥 (R × R3), we have
the following Hölder inequality in Morrey spaces ®𝑓 · ®𝑔M𝑝0 ,𝑞0

𝑡,𝑥
≤

 ®𝑓 M𝑝1 ,𝑞1
𝑡,𝑥

∥ ®𝑔∥M𝑝2 ,𝑞2
𝑡,𝑥

.

Lemma 2.2 (Localization). Let Ω be a bounded set of R × R3. If we have 1 ≤ 𝑝0 ≤ 𝑞0,
1 ≤ 𝑝1 ≤ 𝑞1 with the condition 𝑞0 ≤ 𝑞1 < +∞ and if the function ®𝑓 : R × R3 → R3

belongs to the space M 𝑝1 ,𝑞1
𝑡 ,𝑥 (R × R3) then we have the following localization property1Ω
®𝑓

M𝑝0 ,𝑞0

𝑡,𝑥
≤ 𝐶

1Ω
®𝑓

M𝑝1 ,𝑞1

𝑡,𝑥
≤ 𝐶∥ ®𝑓 ∥M𝑝1 ,𝑞1

𝑡,𝑥
.

In our work, the notion of parabolic Riesz potential (and its properties) will be crucial
and for some index 0 < 𝔞 < 5 we define the parabolic Riesz potential L𝔞 of a locally
integrable function ®𝑓 : R × R3 → R3 by

L𝔞 ( ®𝑓 ) (𝑡, 𝑥) =
∫
R

∫
R3

1(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)5−𝔞

®𝑓 (𝑠, 𝑦)d𝑦d𝑠. (2.2)

Then, we have the following property in Morrey spaces

Lemma 2.3 (Adams–Hedberg inequality). If 0 < 𝔞 < 5
𝑞
, 1 < 𝑝 ≤ 𝑞 < +∞ and

®𝑓 ∈ M 𝑝,𝑞
𝑡,𝑥 (R × R3), then for 𝜆 = 1 − 𝔞𝑞

5 we have the following boundedness property in
Morrey spaces: L𝔞 ( ®𝑓 )


M

𝑝
𝜆
,
𝑞
𝜆

𝑡,𝑥

≤ 𝐶∥ ®𝑓 ∥M𝑝,𝑞
𝑡,𝑥

.

The three lemmas above constitute our main tools in Morrey spaces. For a more
detailed study of these functional spaces we refer to the books [1] and [17].
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3. A (first) partial gain of information for the variable ®𝑢

In this section we will only focus our study in the variable ®𝑢 and its equation:

𝜕𝑡 ®𝑢 = Δ®𝑢 − (®𝑢 · ®∇) ®𝑢 − ®∇𝑝 + 1
2
®∇ ∧ ®𝜔, div( ®𝑢) = 0.

Here, the variable ®𝜔 can be seen as an external force for which we have the information
®𝜔 ∈ 𝐿∞

𝑡 𝐿2
𝑥 ∩ 𝐿2

𝑡
¤𝐻1
𝑥 . Note that at this stage, we will not obtain a gain of regularity for the

variable ®𝑢, instead, using the hypotheses given in Theorem 1.2 above, we will obtain a
gain of integrability for ®𝑢 (stated, as we shall see, in terms of Morrey spaces). In this
sense our first result is the following:

Proposition 3.1. Under the hypotheses of Theorem 1.2 consider ( ®𝑢, 𝑝, ®𝜔) a partial
suitable solution for the micropolar equations (1.1) over the set 𝑄𝑅 given in (1.3). Then
there exists a radius 0 < 𝑅1 < 𝑅

2 and an index 𝜏0 > 0 with 5
1−𝛼

< 𝜏0 < 20
3 such that we

have the following local Morrey information:

1𝑄𝑅1 (𝑡0 ,𝑥0 ) ®𝑢 ∈ M3,𝜏0
𝑡 ,𝑥

(
R × R3

)
, (3.1)

where the point (𝑡0, 𝑥0) ∈ 𝑄𝑅 is given by the hypothesis (1.5).

Proof of the Proposition 3.1. The proof of this result is rather technical and our starting
point is given by the notion of partial suitable solution: indeed, from the Definition 1.1
and exploiting the positivity of the quantity given in (1.4) we easily deduce the following
partial local energy inequality: for all 𝜙 ∈ D𝑡 ,𝑥 (𝑄𝑅) (for which we have 𝜙(0, 𝑥) = 0) we
obtain∫

R3
| ®𝑢 |2𝜙 d𝑥 + 2

∫
R

∫
R3

| ®∇ ⊗ ®𝑢 |2𝜙 d𝑥d𝑠

≤
∫
R3
(𝜕𝑡𝜙 + Δ𝜙) | ®𝑢 |2d𝑥d𝑠 + 2

∫
R

∫
R3

𝑝( ®𝑢 · ®∇𝜙)d𝑥d𝑠

+
∫
R

∫
R3

| ®𝑢 |2 ( ®𝑢 · ®∇)𝜙 d𝑥d𝑠 +
∫
R

∫
R3
( ®∇ ∧ ®𝜔) · (𝜙®𝑢)d𝑥d𝑠. (3.2)

Although this estimate is fundamental, it is necessary to fix a convenient test function 𝜙

which will allows us to perform some computations. A particular good choice has been
given by Scheffer in [27]:

Lemma 3.2. Let 0 < 𝑟 <
𝜌

2 < 𝑅 < 1. Let 𝜙 ∈ C∞
0 (R × R3) be a function such that

𝜙(𝑠, 𝑦) = 𝑟2𝜔

(
𝑠 − 𝑡

𝜌2 ,
𝑦 − 𝑥

𝜌

)
𝜃

( 𝑠 − 𝑡

𝑟2

)
𝔤(4𝑟2+𝑡−𝑠) (𝑥 − 𝑦),
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where 𝜔 ∈ C∞
0 (R × R3) is positive function whose support is in 𝑄1 (0, 0) and equal to 1

in 𝑄 1
2
(0, 0). In addition 𝜃 is a smooth function non negative such that 𝜃 = 1 over ]−∞, 1[

and 𝜃 = 0 over ]2, +∞[ and 𝔤𝑡 (·) is the usual heat kernel. Then, we have the following
points.

(1) the function 𝜙 is a bounded non-negative function, and its support is contained
in the parabolic ball 𝑄𝜌, and for all (𝑠, 𝑦) ∈ 𝑄𝑟 (𝑡, 𝑥) we have the lower bound
𝜙(𝑠, 𝑦) ≥ 𝐶

𝑟
,

(2) for all (𝑠, 𝑦) ∈ 𝑄𝜌 (𝑡, 𝑥) with 0 < 𝑠 < 𝑡 + 𝑟2 we have 𝜙(𝑠, 𝑦) ≤ 𝐶
𝑟

,

(3) for all (𝑠, 𝑦) ∈ 𝑄𝜌 (𝑡, 𝑥) with 0 < 𝑠 < 𝑡 + 𝑟2 we have ®∇𝜙(𝑠, 𝑦) ≤ 𝐶

𝑟2 ,

(4) moreover, for all (𝑠, 𝑦) ∈ 𝑄𝜌 (𝑡, 𝑥) with 0 < 𝑠 < 𝑡 + 𝑟2 we have

| (𝜕𝑠 + Δ)𝜙(𝑠, 𝑦) | ≤ 𝐶
𝑟2

𝜌5 .

A detailed proof of this lemma can be found for instance in [6] or in [17].
The strategy is thus the following: by a convenient use of the estimate (3.2) and by the

properties of the function 𝜙 given in the previous lemma, we will obtain (by controlling
the information over small balls by the information over bigger balls) the wished Morrey
information stated in Proposition 3.1.

To do so, it will be useful to introduce the following quantities: for a point (𝑡, 𝑥) ∈ R×R3

and for a real parameter 𝑟 > 0 we write

A𝑟 (𝑡, 𝑥) = sup
𝑡−𝑟2 < 𝑠 < 𝑡+𝑟2

1
𝑟

∫
𝐵(𝑥,𝑟 )

| ®𝑢(𝑠, 𝑦) |2d𝑦,

𝜆𝑟 (𝑡, 𝑥) =
1
𝑟2

∫
𝑄𝑟 (𝑡 ,𝑥 )

| ®𝑢(𝑠, 𝑦) |3d𝑦d𝑠,

𝛼𝑟 (𝑡, 𝑥) =
1
𝑟

∫
𝑄𝑟 (𝑡 ,𝑥 )

���®∇ ⊗ ®𝑢(𝑠, 𝑦)
���2 d𝑦d𝑠,

P𝑟 (𝑡, 𝑥) =
1
𝑟2

∫
𝑄𝑟 (𝑡 ,𝑥 )

|𝑝(𝑠, 𝑦) | 3
2 d𝑦d𝑠,

(3.3)

and when the context is clear we will simply write A𝑟 = A𝑟 (𝑡, 𝑥). Note that the previous
quantities correspond to the information 𝐿∞

𝑡 𝐿2
𝑥 , 𝐿2

𝑡
¤𝐻1
𝑥 , 𝐿3

𝑡 ,𝑥 and 𝐿
3
2
𝑡 ,𝑥 . Note also that for

0 < 𝑟 < 1, we have the relationship between 𝜆𝑟 , A𝑟 and 𝛼𝑟

𝜆
1
3
𝑟 ≤ 𝐶 (A𝑟 + 𝛼𝑟 )

1
2 . (3.4)
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Indeed, using the definition of 𝜆𝑟 given in (3.3) above and by Hölder inequality we have

𝜆
1
3
𝑟 =

1
𝑟

2
3
∥ ®𝑢∥𝐿3

𝑡,𝑥 (𝑄𝑟 ) ≤
𝐶

𝑟
1
2
∥ ®𝑢∥

𝐿
10
3

𝑡,𝑥 (𝑄𝑟 )
.

Since by interpolation we have

∥ ®𝑢(𝑡, ·)∥
𝐿

10
3 (𝐵𝑟 )

≤ ∥ ®𝑢(𝑡, ·)∥
2
5
𝐿2 (𝐵𝑟 )

∥ ®𝑢(𝑡, ·)∥
3
5
𝐿6 (𝐵𝑟 )

,

we can easily deduce that

∥ ®𝑢∥
𝐿

10
3

𝑡,𝑥 (𝑄𝑟 )
≤ ∥ ®𝑢∥

2
5
𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑟 )
∥ ®𝑢∥

3
5
𝐿2
𝑡 𝐿

6
𝑥 (𝑄𝑟 )

.

Now, for the 𝐿2
𝑡 𝐿

6
𝑥 norm of ®𝑢, we use the classical Gagliardo–Nirenberg inequality

(see [4]) to obtain ∥ ®𝑢∥𝐿2
𝑡 𝐿

6
𝑥 (𝑄𝑟 ) ≤ 𝐶 (∥ ®∇ ⊗ ®𝑢∥𝐿2

𝑡 𝐿
2
𝑥 (𝑄𝑟 ) + ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄𝑟 ) ) and using Young’s

inequalities we have

∥ ®𝑢∥
𝐿

10
3

𝑡,𝑥 (𝑄𝑟 )
≤ 𝐶∥ ®𝑢∥

2
5
𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑟 )

(
∥ ®∇ ⊗ ®𝑢∥

3
5
𝐿2
𝑡 𝐿

2
𝑥 (𝑄𝑟 )

+ ∥ ®𝑢∥
3
5
𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑟 )

)
≤ 𝐶

(
∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄𝑟 ) + ∥ ®∇ ⊗ ®𝑢∥𝐿2

𝑡 𝐿
2
𝑥 (𝑄𝑟 )

)
.

Noting that ∥ ®𝑢∥𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑟 ) = 𝑟
1
2 A

1
2
𝑟 and ∥ ®∇ ⊗ ®𝑢∥𝐿2

𝑡 𝐿
2
𝑥 (𝑄𝑟 ) = 𝑟

1
2 𝛼

1
2
𝑟 , we finally obtain (3.4).

We establish now a first relationship between the quantities given in (3.3) that will be
helpful to deduce by an iteration procedure the wished Morrey control.

Lemma 3.3. Under the hypotheses of Theorem 1.2 and with the notations given in (3.3)
we have for any radius 0 < 𝑟 <

𝜌

2 < 1 the inequality

A𝑟 +𝛼𝑟 ≤ 𝐶
𝑟2

𝜌2 A𝜌+
𝜌2

𝑟2 𝛼
1
2
𝜌A𝜌+𝐶

𝜌2

𝑟2 P
2
3
𝜌

(
A𝜌 + 𝛼𝜌

) 1
2 +𝐶 𝜌

3
2

𝑟
∥ ®∇∧ ®𝜔∥𝐿2

𝑡,𝑥 (𝑄𝜌 )𝛼
1
2
𝜌 . (3.5)

Proof. With the support properties of the function 𝜙 stated in the Lemma 3.2 and using
the notations (3.3) above we can rewrite the left hand side of the inequality (3.2) in the
following manner:

A𝑟 + 𝛼𝑟 ≤
∫
R3
(𝜕𝑡𝜙 + Δ𝜙) | ®𝑢 |2d𝑥d𝑠︸                        ︷︷                        ︸

(1)

+2
∫
R

∫
R3

𝑝( ®𝑢 · ®∇𝜙)d𝑥d𝑠︸                      ︷︷                      ︸
(2)

+
∫
R

∫
R3

| ®𝑢 |2 ( ®𝑢 · ®∇)𝜙 d𝑥d𝑠︸                          ︷︷                          ︸
(3)

+
∫
R

∫
R3
( ®∇ ∧ ®𝜔) · (𝜙®𝑢)d𝑥d𝑠︸                            ︷︷                            ︸

(4)

. (3.6)

The terms of the right hand side above will be studied separately. Indeed,
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• For the quantity (1) in (3.6), using the properties of the function 𝜙 given in
Lemma 3.2 and by the definition of the quantity A𝜌 given in (3.3) we have∫

R3
(𝜕𝑡𝜙 + Δ𝜙) | ®𝑢 |2d𝑥d𝑠 ≤ 𝐶

𝑟2

𝜌5

∫
𝑄𝜌

| ®𝑢 |2d𝑥d𝑠 = 𝐶
𝑟2

𝜌5

∫ 𝑡+𝜌2

𝑡−𝜌2

∫
𝐵𝜌

| ®𝑢 |2d𝑥d𝑠 ≤ 𝐶
𝑟2

𝜌2 A𝜌 .

• For the term (2) in (3.6), by the properties of the function 𝜙 given in Lemma 3.2
and by the Hölder inequality, we obtain∫

R

∫
R3

𝑝

(
®𝑢 · ®∇𝜙

)
d𝑥d𝑠 ≤ 𝐶

𝑟2

∫ 𝑡+𝜌2

𝑡−𝜌2

∫
𝐵𝜌

|𝑝 | | ®𝑢 |d𝑥d𝑠 ≤ 𝐶

𝑟2 ∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄𝜌 )

∥ ®𝑢∥𝐿3
𝑡,𝑥 (𝑄𝜌 ) ,

noting that by (3.3) we have

∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄𝜌 )

= 𝜌
4
3 P

2
3
𝜌 and ∥ ®𝑢∥𝐿3

𝑡,𝑥 (𝑄𝜌 ) = 𝜌
2
3𝜆

1
3
𝜌 ,

we can thus write∫
R

∫
R3

𝑝( ®𝑢 · ®∇𝜙)d𝑥d𝑠 ≤ 𝐶

𝑟2

(
𝜌

4
3 P

2
3
𝜌

) (
𝜌

2
3𝜆

1
3
𝜌

)
≤ 𝐶

𝜌2

𝑟2 P
2
3
𝜌

(
A𝜌 + 𝛼𝜌

) 1
2 ,

where in the last estimate we used the control (3.4).

• For the term (3) in (3.6), let us first define the average

( | ®𝑢 |2)𝜌 =
1

|𝐵(𝑥, 𝜌) |

∫
𝐵(𝑥,𝜌)

| ®𝑢(𝑡, 𝑦) |2d𝑦

and since ®𝑢 is divergence free we have
∫
𝐵𝜌

( | ®𝑢 |2)𝜌 ( ®𝑢 · ®∇)𝜙 d𝑥 = 0. Then, we can
write by the properties of the function 𝜙 given in Lemma 3.2 and by the Hölder
inequality:∫

R

∫
R3

| ®𝑢 |2 ( ®𝑢 · ®∇)𝜙 d𝑥d𝑠 =
∫
𝑄𝜌

[
| ®𝑢 |2 − (| ®𝑢 |2)𝜌

]
( ®𝑢 · ®∇)𝜙 d𝑥d𝑠

≤ 𝐶

𝑟2

∫ 𝑡+𝜌2

𝑡−𝜌2

∫
𝐵𝜌

��| ®𝑢 |2 − (| ®𝑢 |2)𝜌 |
�� ®𝑢 |d𝑥d𝑠

≤ 𝐶

𝑟2

∫ 𝑡+𝜌2

𝑡−𝜌2

| ®𝑢 |2 − (| ®𝑢 |2)𝜌

𝐿

3
2 (𝐵𝜌 )

∥ ®𝑢(𝑠, ·)∥𝐿3 (𝐵𝜌 ) d𝑠.
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Now, Poincare’s inequality implies

≤ 𝐶

𝑟2

∫ 𝑡+𝜌2

𝑡−𝜌2

®∇(| ®𝑢(𝑠, ·) |2)
𝐿1 (𝐵𝜌 ) ∥ ®𝑢(𝑠, ·)∥𝐿3 (𝐵𝜌 ) d𝑠

≤ 𝐶

𝑟2

∫ 𝑡+𝜌2

𝑡−𝜌2
∥ ®𝑢(𝑠, ·)∥𝐿2 (𝐵𝜌 )

®∇ ⊗ ®𝑢(𝑠, ·)

𝐿2 (𝐵𝜌 ) ∥ ®𝑢(𝑠, ·)∥𝐿3 (𝐵𝜌 ) d𝑠

≤ 𝐶

𝑟2 ∥ ®𝑢∥𝐿6
𝑡 𝐿

2
𝑥 (𝑄𝜌 )

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄𝜌 ) ∥ ®𝑢∥𝐿3

𝑡,𝑥 (𝑄𝜌 ) ,

where in the last inequality we used the Hölder inequality in the time variable.
We observe now that by the notations given in (3.3) we can write

∥ ®𝑢∥𝐿6
𝑡 𝐿

2
𝑥 (𝑄𝜌 ) ≤ 𝐶𝜌

1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄𝜌 ) ≤ 𝐶𝜌

5
6 A

1
2
𝜌

and ®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄𝜌 ) = 𝜌

1
2 𝛼

1
2
𝜌 , ∥ ®𝑢∥𝐿3

𝑡,𝑥 (𝑄𝜌 ) = 𝜌
2
3𝜆

1
3
𝜌 .

Hence, we obtain, by (3.4):∫
R

∫
R3

| ®𝑢 |2 ( ®𝑢 · ®∇)𝜙 d𝑥d𝑠 ≤ 𝐶
𝜌2

𝑟2 A
1
2
𝜌 𝛼

1
2
𝜌𝜆

1
3
𝜌

≤ 𝐶
𝜌2

𝑟2 A
1
2
𝜌 𝛼

1
2
𝜌 (A𝜌 + 𝛼𝜌)

1
2

≤ 𝐶
𝜌2

𝑟2 𝛼
1
2
𝜌 (A𝜌 + 𝛼𝜌).

• Finally, for the term (4) in (3.6), by the Hölder inequality and by the properties
of the function 𝜙 given in Lemma 3.2 we write∫

R

∫
R3

(®∇ ∧ ®𝜔
)
· (𝜙®𝑢)d𝑥d𝑠

≤
∫ 𝑡+𝜌2

𝑡−𝜌2

𝜙(𝑠, ·)
𝐿3
𝑥 (𝐵𝜌 )

®∇ ∧ ®𝜔(𝑠, ·)

𝐿2
𝑥 (𝐵𝜌 ) ∥ ®𝑢(𝑠, ·)∥𝐿6

𝑥 (𝐵𝜌 )d𝑠

≤ 𝐶
𝜌

𝑟

∫ 𝑡+𝜌2

𝑡−𝜌2

®∇ ∧ ®𝜔(𝑠, ·)

𝐿2
𝑥 (𝑄𝜌 )

®𝑢(𝑠, ·) ¤𝐻1
𝑥 (𝑄𝜌 )d𝑠

≤ 𝐶
𝜌

𝑟

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 ) ∥ ®𝑢∥𝐿2

𝑡
¤𝐻1
𝑥 (𝑄𝜌 ) ,

where we applied the Sobolev inequalities (see [3, Corollary 9.14]) and the
Cauchy–Schwartz inequality in the time variable. Since by (3.3) we have
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∥ ®𝑢∥𝐿2
𝑡
¤𝐻1
𝑥 (𝑄𝜌 ) = 𝜌

1
2 𝛼

1
2
𝜌 , we conclude∫

R

∫
R3

(®∇ ∧ ®𝜔
)
· (𝜙®𝑢)d𝑥d𝑠 ≤ 𝐶

𝜌
3
2

𝑟

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 )𝛼

1
2
𝜌 .

Gathering all these estimates we obtain the inequality (3.5) and this ends the proof of the
Lemma 3.3. □

The inequality (3.5) is important, but it will not be enough for our purposes as we need
to study more in detail the pressure 𝑝. This variable only appears in the first equation of
the system (1.1) and since we have the condition div( ®𝑢) = 0 and the vectorial identity
div( ®∇ ∧ ®𝜔) ≡ 0, by applying the divergence operator to the equation of ®𝑢 in (1.1), we can
write

div(𝜕𝑡 ®𝑢) = div(Δ®𝑢) − div
(
( ®𝑢 · ®∇) ®𝑢

)
− div

(®∇𝑝) + 1
2

div
(®∇ ∧ ®𝜔

)
0 = − div

(
( ®𝑢 · ®∇) ®𝑢

)
− Δ𝑝,

from which we obtain the following equation for the pressure (see also (1.2) above):

−Δ𝑝 = div
(
( ®𝑢 · ®∇) ®𝑢

)
= div

(
div( ®𝑢 ⊗ ®𝑢)

)
=

3∑︁
𝑖, 𝑗=1

𝜕𝑖𝜕 𝑗 (𝑢𝑖𝑢 𝑗 ). (3.7)

Note that this previous equation for the pressure 𝑝 is exactly the same for the system (1.1)
than for the classical Navier–Stokes equation. Thus, by the same ideas given in Proposi-
tion 4.3 of our previous work [7] (see also [6, Proposition 4.2] or [17, Lemma 13.3]) we
obtain the following result for the pressure:

Lemma 3.4. Under the hypotheses of Theorem 1.2 and with the notations given in (3.3)
for any 0 < 𝑟 <

𝜌

2 < 𝑅 we have the inequality

P
2
3
𝑟 ≤ 𝐶

(( 𝜌
𝑟

) (
A𝜌𝛼𝜌

) 1
2 +

(
𝑟

𝜌

) 2
3

P
2
3
𝜌

)
. (3.8)

For the sake of completeness we give the proof of this result.

Proof. We will start by proving the following estimate

∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶

(
𝜎

1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 ) ∥ ®∇ ⊗ ®𝑢∥𝐿2

𝑡,𝑥 (𝑄1 ) + 𝜎2∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄1 )

)
, (3.9)

where 𝑄𝜎 and 𝑄1 are parabolic balls of radius 𝜎 and 1 respectively (the definition of such
balls given in (1.3)). To obtain this inequality we introduce 𝜂 : R3 → [0, 1] a smooth
function supported in the ball 𝐵1 such that 𝜂 ≡ 1 on the ball 𝐵 3

5
and 𝜂 ≡ 0 outside the
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ball 𝐵 4
5
. Note in particular that on 𝑄𝜎 we have the identity 𝑝 = 𝜂𝑝. Now a straightforward

calculation shows that we have the identity

−Δ(𝜂𝑝) = −𝜂Δ𝑝 + (Δ𝜂)𝑝 − 2
3∑︁
𝑖=1

𝜕𝑖 ((𝜕𝑖𝜂)𝑝),

from which we deduce the inequality

∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

= ∥𝜂𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤
 (
−𝜂Δ𝑝

)
(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )︸                  ︷︷                  ︸

(𝑝1 )

+
 (Δ𝜂)𝑝(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )︸                ︷︷                ︸

(𝑝2 )

+ 2
3∑︁
𝑖=1

𝜕𝑖 ((𝜕𝑖𝜂)𝑝)(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )︸                      ︷︷                      ︸

(𝑝3 )

. (3.10)

For the first term of (3.10), since we have the equation (3.7) Δ𝑝 = −∑3
𝑖, 𝑗=1 𝜕𝑖𝜕 𝑗 (𝑢𝑖𝑢 𝑗 )

on 𝑄𝜎 , if we denote by 𝑁𝑖, 𝑗 = 𝑢𝑖 (𝑢 𝑗 − (𝑢 𝑗 )1) where (𝑢 𝑗 )1 is the average of 𝑢 𝑗 over the
ball of radius 1, since ®𝑢 is divergence free we have

∑3
𝑖, 𝑗=1 𝜕𝑖𝜕 𝑗 (𝑢𝑖𝑢 𝑗 ) = 𝑎𝑙 𝑗𝑁𝑖, 𝑗 and thus

we can write

(𝑝1) =
 (
−𝜂Δ𝑝

)
(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶

 1
(−Δ)

©«𝜂
3∑︁

𝑖, 𝑗=1
𝜕𝑖𝜕 𝑗𝑁𝑖, 𝑗

ª®¬

𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶

3∑︁
𝑖, 𝑗=1

 1
(−Δ)

(
𝜕𝑖𝜕 𝑗 (𝜂𝑁𝑖, 𝑗 ) − 𝜕𝑖

(
(𝜕 𝑗𝜂)𝑁𝑖, 𝑗

)
− 𝜕 𝑗

(
(𝜕𝑖𝜂)𝑁𝑖, 𝑗

)
+ 2(𝜕𝑖𝜕 𝑗𝜂)𝑁𝑖, 𝑗

)
𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

(3.11)

Denoting by R𝑖 =
𝜕𝑖√
−Δ

the usual Riesz transforms on R3, by the boundedness of these
operators in Lebesgue spaces and using the support properties of the auxiliary function 𝜂,
we have for the first term above: 𝜕𝑖𝜕 𝑗

(−Δ) 𝜂𝑁𝑖, 𝑗 (𝑡, ·)

𝐿

3
2 (𝐵𝜎 )

≤
R𝑖R 𝑗 (𝜂𝑁𝑖, 𝑗 ) (𝑡, ·)


𝐿

3
2 (R3 )

≤ 𝐶
𝜂𝑁𝑖, 𝑗 (𝑡, ·)


𝐿

3
2 (𝐵1 )

≤ 𝐶∥𝑢𝑖 (𝑡, ·)∥𝐿2 (𝐵1 )
𝑢 𝑗 (𝑡, ·) − (𝑢 𝑗 )1


𝐿6 (𝐵1 )

≤ 𝐶∥ ®𝑢(𝑡, ·)∥𝐿2 (𝐵1 )
®∇ ⊗ ®𝑢(𝑡, ·)


𝐿2 (𝐵1 ) ,

148



Partial suitable solutions for the micropolar equations and regularity properties

where we used Hölder and Poincaré inequalities in the last line. Now taking the 𝐿
3
2 -norm

in the time variable of the previous inequality we obtain 𝜕𝑖𝜕 𝑗

(−Δ) 𝜂𝑁𝑖, 𝑗


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶𝜎
1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 )

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄1 ) . (3.12)

The remaining terms of (3.11) can all be studied in a similar manner. Indeed, noting that
𝜕𝑖𝜂 vanishes on 𝐵 3

5
∪ 𝐵𝑐

4
5

and since 𝐵𝜎 ⊂ 𝐵 1
2
⊂ 𝐵 3

5
, using the integral representation for

the operator 𝜕𝑖
(−Δ) we have for the second term of (3.11) the estimate 𝜕𝑖

(−Δ)
(
(𝜕 𝑗𝜂)𝑁𝑖, 𝑗

)
(𝑡, ·)


𝐿

3
2 (𝐵𝜎 )

≤ 𝐶𝜎2
 𝜕𝑖

(−Δ)
(
(𝜕 𝑗𝜂)𝑁𝑖, 𝑗

)
(𝑡, ·)


𝐿∞ (𝐵𝜎 )

≤ 𝐶 𝜎2

∫{ 3
5 < |𝑦 | < 4

5 }
𝑥𝑖 − 𝑦𝑖

|𝑥 − 𝑦 |3
(
(𝜕 𝑗𝜂)𝑁𝑖, 𝑗

)
(𝑡, 𝑦) d𝑦


𝐿∞ (𝐵𝜎 )

≤ 𝐶 𝜎2 𝑁𝑖, 𝑗 (𝑡, ·)

𝐿1 (𝐵1 )

≤ 𝐶 𝜎2∥𝑢𝑖 (𝑡, ·)∥𝐿2 (𝐵1 )
𝑢 𝑗 (𝑡, ·) − (𝑢 𝑗 )1


𝐿2 (𝐵1 )

≤ 𝐶 ∥ ®𝑢(𝑡, ·)∥𝐿2 (𝐵1 )
®∇ ⊗ ®𝑢(𝑡, ·)


𝐿2 (𝐵1 ) ,

(3.13)

where we used the same ideas as previously and the fact that 0 < 𝜎 < 1, and with the
same arguments as in (3.12) before, taking the 𝐿

3
2 -norm in the time variable, we obtain 𝜕𝑖

(−Δ)
(
(𝜕 𝑗𝜂)𝑁𝑖, 𝑗

)
𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶𝜎
1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 )

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄1 ) . (3.14)

A symmetric argument gives 𝜕 𝑗

(−Δ)
(
(𝜕𝑖𝜂)𝑁𝑖, 𝑗

)
𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶𝜎
1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 )

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄1 ) , (3.15)

and observing that the convolution kernel associated to the operator 1
(−Δ) is 𝐶

|𝑥 | , following
the same ideas we have for the last term of (3.11) the inequality (𝜕𝑖𝜕 𝑗𝜂)𝑁𝑖, 𝑗

(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶𝜎
1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 )

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄1 ) . (3.16)

Therefore, combining the estimates (3.12), (3.14), (3.15) and (3.16) and getting back
to (3.11) we finally have:

(𝑝1) =
 (
−𝜂Δ𝑝

)
(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶

(
𝜎

1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 )

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄1 )

)
. (3.17)
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We continue our study of expression (3.10) and for the term (𝑝2) we first treat the space
variable. Recalling the support properties of the auxiliary function 𝜂 and properties of the
convolution kernel associated to the operator 1

(−Δ) , we can write as before (see (3.13)): (Δ𝜂)𝑝(𝑡, ·)(−Δ)


𝐿

3
2 (𝐵𝜎 )

≤ 𝐶𝜎2∥𝑝(𝑡, ·)∥𝐿1 (𝐵1 ) ≤ 𝐶𝜎2∥𝑝(𝑡, ·)∥
𝐿

3
2 (𝐵1 )

,

and thus, taking the 𝐿
3
2 -norm in the time variable we obtain:

(𝑝2) =
 (Δ𝜂)𝑝(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶𝜎2∥𝑝∥
𝐿
𝑞0
𝑡,𝑥 (𝑄1 ) . (3.18)

For the last term of expression (3.10), following the same ideas developed in (3.13) we
can write 𝜕𝑖

(−Δ) (𝜕𝑖𝜂)𝑝(𝑡, ·)

𝐿

3
2 (𝐵𝜎 )

≤ 𝐶𝜎2 ∥𝑝(𝑡, ·)∥𝐿1 (𝐵1 ) ≤ 𝐶𝜎2∥𝑝(𝑡, ·)∥
𝐿

3
2 (𝐵1 )

,

and we obtain

(𝑝3) =
𝜕𝑖 ((𝜕𝑖𝜂)𝑝)(−Δ)


𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶𝜎2∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄1 )

. (3.19)

Now, gathering the estimates (3.17), (3.18) and (3.19) we obtain the inequality

∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄𝜎 )

≤ 𝐶

(
𝜎

1
3 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 )

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄1 ) + 𝜎2∥𝑝∥

𝐿
3
2
𝑡,𝑥 (𝑄1 )

)
,

which is (3.9). With estimate at hand, it is quite simple to deduce inequality (3.8). Indeed,
if we fix 𝜎 = 𝑟

𝜌
≤ 1

2 and if we introduce the functions 𝑝𝜌 (𝑡, 𝑥) = 𝑝(𝜌2𝑡, 𝜌𝑥) and
®𝑢𝜌 (𝑡, 𝑥) = ®𝑢(𝜌2𝑡, 𝜌𝑥) then from (3.9) we have𝑝𝜌

𝐿
3
2
𝑡,𝑥

(
𝑄 𝑟

𝜌

) ≤ 𝐶

((
𝑟

𝜌

) 1
3 ®𝑢𝜌𝐿∞

𝑡 𝐿2
𝑥 (𝑄1 )

®∇ ⊗ 𝑏𝜌

𝐿2
𝑡,𝑥 (𝑄1 ) +

(
𝑟

𝜌

)2 𝑝𝜌
𝐿

3
2
𝑡,𝑥 (𝑄1 )

)
,

and by a convenient change of variable we obtain

𝜌−
10
3 ∥𝑝∥

𝐿
3
2
𝑡,𝑥 (𝑄𝑟 )

≤ 𝐶

((
𝑟

𝜌

) 1
3

𝜌−
3
2 ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄𝜌 ) 𝜌

− 3
2
®∇ ⊗ ®𝑢


𝐿2
𝑡,𝑥 (𝑄𝜌 ) +

(
𝑟

𝜌

)2
𝜌−

10
3 ∥𝑝∥

𝐿
3
2
𝑡,𝑥 (𝑄𝜌 )

)
.

Now, recalling that by (3.3) we have the identities

𝑟
4
3 P

2
3
𝑟 = ∥𝑝∥

𝐿
3
2
𝑡,𝑥 (𝑄𝑟 )

, 𝜌
1
2 A

1
2
𝜌 = ∥ ®𝑢∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄𝜌 ) and 𝜌

1
2 𝛼

1
2
𝜌 =

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄𝜌 ) ,
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we obtain

P
2
3
𝑟 ≤ 𝐶

(( 𝜌
𝑟

) (
A𝜌𝛽𝜌

) 1
2 +

(
𝑟

𝜌

) 2
3

P
2
3
𝜌

)
,

and this finishes the proof of Lemma 3.4. □

Now, with the estimates (3.5) and (3.8) obtained in the previous lines, we will set
up a general inequality that will help us to deduce the gain of integrability stated in
Proposition 3.1. For this, we introduce the notations

A𝑟 =
1

𝑟
2
(
1− 5

𝜏0

) (A𝑟 + 𝛼𝑟 ) ,

P𝑟 =
1

𝑟
3
2

(
1− 5

𝜏0

) P𝑟 and O𝑟 = A𝑟 +
((

𝑟

𝜌

) 15
𝜏0

− 15
2

P𝑟

) 4
3

,

(3.20)

and we have the following result:

Lemma 3.5. Under the hypotheses of Theorem 1.2, for 0 < 𝑟 <
𝜌

2 < 𝑅 there exists a
constant 𝜖 > 0 such that

O𝑟 (𝑡0, 𝑥0) ≤
1
2
O𝜌 (𝑡0, 𝑥0) + 𝜖, (3.21)

where the point (𝑡0, 𝑥0) ∈ 𝑄𝑅 is given by the hypothesis (1.5).

Note that this result allows us to control the information over smaller parabolic balls by
the information over bigger parabolic balls and this will be the key to obtain the whished
gain of integrability.

Proof. First, by the estimate (3.5) we can write

A𝑟 =
1

𝑟
2
(
1− 5

𝜏0

) (A𝑟 + 𝛼𝑟 )

≤ 𝐶

𝑟
2
(
1− 5

𝜏0

)
(
𝑟2

𝜌2 A𝜌 +
𝜌2

𝑟2 𝛼
1
2
𝜌A𝜌 +

𝜌2

𝑟2 P
2
3
𝜌 (A𝜌 + 𝛼𝜌)

1
2

+ 𝜌
3
2

𝑟

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 )𝛼

1
2
𝜌

)
, (3.22)

and we will treat each one of the previous terms separately. Indeed,

• For the first term of (3.22) we have

1

𝑟
2
(
1− 5

𝜏0

) (
𝑟2

𝜌2 A𝜌

)
≤ 1

𝑟
2
(
1− 5

𝜏0

) 𝑟2

𝜌2 𝜌
2
(
1− 5

𝜏0

)
A𝜌 =

(
𝑟

𝜌

) 10
𝜏0
A𝜌 .
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• For the second term of (3.22), using the definition of A𝜌 given in (3.20), we
obtain

1

𝑟
2
(
1− 5

𝜏0

) (
𝜌2

𝑟2 𝛼
1
2
𝜌A𝜌

)
≤ 1

𝑟
2
(
1− 5

𝜏0

) (
𝜌2

𝑟2 𝛼
1
2
𝜌 𝜌

2
(
1− 5

𝜏0

)
A𝜌

)
=

( 𝜌
𝑟

)4− 10
𝜏0 A𝜌𝛼

1
2
𝜌 .

• The third term of (3.22) follows essentially the same arguments as above and by
the definition of the quantities A𝜌 and P𝜌 given in (3.20) we can write

1

𝑟
2
(
1− 5

𝜏0

) (
𝜌2

𝑟2 P
2
3
𝜌

(
A𝜌 + 𝛼𝜌

) 1
2

)
≤

( 𝜌
𝑟

)4− 10
𝜏0 P

2
3
𝜌A

1
2
𝜌 .

• Finally, for the last term of (3.22), we have

1

𝑟
2
(
1− 5

𝜏0

)
(
𝜌

3
2

𝑟

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 )𝛼

1
2
𝜌

)
≤

( 𝜌
𝑟

)3− 10
𝜏0

𝜌
10
𝜏0

− 3
2 𝛼

1
2
𝜌

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 ) .

Thus, gathering all these estimates, we have

A𝑟 ≤ 𝐶

((
𝑟

𝜌

) 10
𝜏0
A𝜌 +

( 𝜌
𝑟

)4− 10
𝜏0 A𝜌𝛼

1
2
𝜌 +

( 𝜌
𝑟

)4− 10
𝜏0 P

2
3
𝜌A

1
2
𝜌

+
( 𝜌
𝑟

)3− 10
𝜏0

𝜌
10
𝜏0

− 3
2 𝛼

1
2
𝜌

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 )

)
. (3.23)

Now, for the pressure, from the inequality (3.8) we can write

P𝑟 =
1

𝑟
3
2

(
1− 5

𝜏0

) P𝑟 ≤ 𝐶

𝑟
3
2

(
1− 5

𝜏0

) (( 𝜌
𝑟

) 3
2 A

3
4
𝜌 𝛼

3
4
𝜌 +

(
𝑟

𝜌

)
P𝜌

)
,

and by the Young inequality and using the definition of A𝜌 given in (3.20) we obtain for
the first term of the right-hand side above:

1

𝑟
3
2

(
1− 5

𝜏0

) ( 𝜌
𝑟

) 3
2 A

3
4
𝜌 𝛼

3
4
𝜌 ≤ 1

𝑟
3
2

(
1− 5

𝜏0

) ( 𝜌
𝑟

) 3
2
𝜌

3
2

(
1− 5

𝜏0

)
(A𝜌𝛼𝜌)

3
4 =

( 𝜌
𝑟

)3− 15
2𝜏0 (
A𝜌𝛼𝜌

) 3
4 ,

and using the fact that 1

𝑟
3
2 (1− 5

𝜏0
)
( 𝑟
𝜌
)P𝜌 = ( 𝜌

𝑟
)

1
2 −

15
2𝜏0 P𝜌 (by the definition of P𝜌 given

in (3.20)), we conclude that

P𝑟 ≤ 𝐶

(( 𝜌
𝑟

)3− 15
2𝜏0 (
A𝜌𝛼𝜌

) 3
4 +

( 𝜌
𝑟

) 1
2 −

15
2𝜏0 P𝜌

)
. (3.24)
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With the estimates (3.23) and (3.24) at hand, we will now introduce a relationship between
the parameters 𝑟 and 𝜌: indeed, let us fix 0 < 𝜅 ≪ 1

2 a real number and consider 𝑟 = 𝜅𝜌,
then, by the definition of the quantity O𝑟 given in (3.20) we obtain:

O𝑟 = A𝑟 +
(
𝜅

15
𝜏0

− 15
2 P𝑟

) 4
3

≤ 𝐶

(
𝜅

10
𝜏0 A𝜌 + 𝜅

10
𝜏0

−4
A𝜌𝛼

1
2
𝜌︸                     ︷︷                     ︸

(1)

+ 𝜅
10
𝜏0

−4
P

2
3
𝜌A

1
2
𝜌︸        ︷︷        ︸

(2)

+ 𝜅
10
𝜏0

−3
𝜌

10
𝜏0

− 3
2 𝛼

1
2
𝜌

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 )︸                                   ︷︷                                   ︸

(3)

)

+ 𝐶

(
𝜅

45
2𝜏0

− 21
2

(
A𝜌𝛼𝜌

) 3
4 + 𝜅

45
2𝜏0

−8
P𝜌

) 4
3

︸                                     ︷︷                                     ︸
(4)

. (3.25)

We will rewrite now each one of the previous terms:

• Since by (3.20) we have A𝜌 ≤ O𝜌, it is then easy to see that the term (1) above
can be controlled in the following manner:

𝜅
10
𝜏0 A𝜌 + 𝜅

10
𝜏0

−4
A𝜌𝛼

1
2
𝜌 ≤

(
𝜅

10
𝜏0 + 𝜅

10
𝜏0

−4
𝛼

1
2
𝜌

)
O𝜌 .

• For the quantity (2) in (3.25), using Young’s inequality and the relationships
given in (3.20), we observe that

𝜅
10
𝜏0

−4
P

2
3
𝜌A

1
2
𝜌 = 𝜅

10
𝜏0

−4
(
𝜅

5
(

1
𝜏0

− 1
2

)
P

2
3
𝜌 × 𝜅

5
(

1
2 −

1
𝜏0

)
A

1
2
𝜌

)
≤ 𝜅

10
𝜏0

−4
(
𝜅

10
(

1
2 −

1
𝜏0

)
A𝜌 + 𝜅

10( 1
𝜏0

− 1
2 )P

4
3
𝜌

)
≤ 𝜅

(
A𝜌 +

(
𝜅

15
𝜏0

− 15
2 P𝜌

) 4
3
)
≤ 𝜅O𝜌 .

• For the term (3) of (3.25), using the fact that 10
𝜏0

> 3
2 (recall the hypothesis of

Proposition 3.1: we have 5
1−𝛼

< 𝜏0 < 20
3 ) and that 0 < 𝜌 < 𝑅 < 1, we obtain

𝜌
10
𝜏0

− 3
2 < 1, and thus

𝜅
10
𝜏0

−3
𝜌

10
𝜏0

− 3
2 𝛼

1
2
𝜌

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 ) ≤ 𝜅

10
𝜏0

−3
𝛼

1
2
𝜌

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 ) .
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• For the last term of (3.25), since (𝜅
15
𝜏0

− 15
2 P𝜌)

4
3 ≤ O𝜌 and A𝜌 ≤ O𝜌, we have(

𝜅
45

2𝜏0
− 21

2
(
A𝜌𝛼𝜌

) 3
4 + 𝜅

45
2𝜏0

−8
P𝜌

) 4
3 ≤ 𝐶

(
𝜅

30
𝜏0

−14
A𝜌𝛼𝜌 +

(
𝜅

45
2𝜏0

−8
P𝜌

) 4
3
)

≤ 𝐶

(
𝜅

30
𝜏0

−14
𝛼𝜌 + 𝜅

10
𝜏0

− 2
3
)
O𝜌 .

Gathering these estimates we finally obtain

O𝑟 ≤
(
𝜅

10
𝜏0 + 𝜅

10
𝜏0

−4
𝛼

1
2
𝜌 + 𝜅 + 𝜅

30
𝜏0

−14
𝛼𝜌 + 𝜅

10
𝜏0

− 2
3

)
O𝜌 + 𝜅

10
𝜏0

−3
𝛼

1
2
𝜌

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 ) . (3.26)

Futhermore, we claim that we have(
𝜅

10
𝜏0 + 𝜅

10
𝜏0

−4
𝛼

1
2
𝜌 + 𝜅 + 𝜅

30
𝜏0

−14
𝛼𝜌 + 𝜅

10
𝜏0

− 2
3

)
≤ 1

2
. (3.27)

Indeed, since 𝜅 = 𝑟
𝜌
≪ 1

2 is a fixed small parameter and since 10
𝜏0

− 2
3 > 0 (recall again

that 5
1−𝛼

< 𝜏0 < 20
3 ), then the quantities 𝜅

10
𝜏0 , 𝜅 and 𝜅

10
𝜏0

− 2
3 in the previous formula

are small. Now, using the fact that we have the control 𝛼𝜌 ≤ 𝜖∗ which is given in the

hypothesis (1.5) where 𝜖∗ > 0 is small enough, then the terms 𝜅
10
𝜏0

−4
𝛼

1
2
𝜌 and 𝜅

30
𝜏0

−14
𝛼𝜌

can be made small enough and thus we obtain (3.27). To continue, noting that the quantity
∥ ®∇ ∧ ®𝜔∥𝐿2

𝑡,𝑥 (𝑄𝜌 ) is bounded since ®𝜔 ∈ 𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅) ∩ 𝐿2
𝑡
¤𝐻1
𝑥 (𝑄𝑅), we can apply the same

ideas used previously (i.e. 𝛼𝜌 ≤ 𝜖∗ ≪ 1) to obtain

𝜅
10
𝜏0

−3
𝛼

1
2
𝜌

®∇ ∧ ®𝜔

𝐿2
𝑡,𝑥 (𝑄𝜌 ) < 𝜖.

Then, with these estimates at hand and coming back to (3.26) we conclude that O𝑟 ≤
1
2O𝜌 + 𝜖 and Lemma 3.5 is proven. □

Lemma 3.5 paved the way to obtain some Morrey information for the velocity ®𝑢 that
will be crucial. Indeed, from the definition of Morrey spaces given in (2.1) we only need
to prove that for all radius 𝑟 > 0 such that 𝑟 < 𝑅1 ≤ 𝑅

2 and (𝑡, 𝑥) ∈ 𝑄𝑅1 (𝑡0, 𝑥0), we have∫
𝑄𝑟 (𝑡 ,𝑥 )

| ®𝑢 |3d𝑦d𝑠 ≤ 𝐶𝑟
5
(
1− 3

𝜏0

)
, (3.28)

and this will imply that 1𝑄𝑅1
®𝑢 ∈ M3,𝜏0 (R × R3). In order to obtain the control (3.28), by

the definitions given in (3.3) and by the estimate (3.4), we observe that∫
𝑄𝑟 (𝑡 ,𝑥 )

| ®𝑢 |3d𝑦d𝑠 = 𝑟2𝜆𝑟 (𝑡, 𝑥) ≤ 𝑟2 (A𝑟 (𝑡, 𝑥) + 𝛼𝑟 (𝑡, 𝑥))
3
2 .
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Hence, it is then enough to prove for all 0 < 𝑟 < 𝑅1 < 𝑅
2 < 𝑅 < 1 and (𝑡, 𝑥) ∈ 𝑄𝑅1 that

one has the control

A𝑟 (𝑡, 𝑥) + 𝛼𝑟 (𝑡, 𝑥) ≤ 𝐶𝑟
2
(
1− 5

𝜏0

)
.

Recalling the definition of the quantity A𝑟 given in (3.20), we easily see that the
condition (3.28) above is equivalent to prove that there exists some 𝑅1 and 0 < 𝜅 ≪ 1

2
such that for all 𝑛 ∈ N and (𝑡, 𝑥) ∈ 𝑄𝑅1 (𝑡0, 𝑥0), we have estimates:

A𝜅𝑛𝑅1 (𝑡, 𝑥) ≤ 𝐶. (3.29)

Note that, for any radius 𝑟 such that 0 < 𝑟 < 𝑅1 < min
{
𝑅
2 , dist(𝜕𝑄𝑅, (𝑡0, 𝑥0))

}
(and since

we have 𝑄𝑅1 (𝑡0, 𝑥0) ⊂ 𝑄𝑅) by the hypotheses of the Theorem 1.2, we have the bounds

∥ ®𝑢∥𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑟 (𝑡0 ,𝑥0 ) ) ≤ ∥ ®𝑢∥𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅 ) < +∞,®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄𝑟 (𝑡0 ,𝑥0 ) ) ≤

®∇ ⊗ ®𝑢

𝐿2
𝑡,𝑥 (𝑄𝑅 ) < +∞,

and
∥𝑝∥

𝐿
3
2
𝑡,𝑥 (𝑄𝑟 (𝑡0 ,𝑥0 ) )

≤ ∥𝑝∥
𝐿

3
2
𝑡,𝑥 (𝑄𝑅 )

< +∞.

Then, by the notations introduced in (3.3), we have the uniform bounds sup0<𝑟<𝑅{𝑟A𝑟 ,

𝑟𝛼𝑟 , 𝑟
2P𝑟 } < +∞ from which we can deduce by the definition of the quantities A𝜌 (𝑡0, 𝑥0)

and P𝜌 (𝑡0, 𝑥0) given in (3.20), the uniform bounds

sup
0 < 𝑟 < 𝑅

𝑟
3− 10

𝜏0 A𝑟 (𝑡0, 𝑥0) < +∞, and sup
0 < 𝑟 < 𝑅

𝑟
5− 3

2

(
1+ 5

𝜏0

)
P𝑟 (𝑡0, 𝑥0) < +∞.

Thus, there exists a radius 0 < 𝑟0 < 𝑅 small such that, by the estimates above, the
quantities A𝑟0 and P𝑟0 are bounded: indeed, recall that we have 𝜏0 > 5

1−𝛼
> 5 (where

0 < 𝛼 ≪ 1) and this implies that all the powers of 𝑟 in the expression above are positive.
As a consequence of this fact, by (3.20) the quantity O𝑟0 is itself bounded. Remark
also that, if 𝑟0 is small enough, then the inequality (3.21) holds true and we can write
O𝜅𝑟0 (𝑡0, 𝑥0) ≤ 1

2O𝑟0 (𝑡0, 𝑥0) + 𝜖 . We can iterate this process and we obtain for all 𝑛 > 1,

O𝜅𝑛𝑟0 (𝑡0, 𝑥0) ≤
1
2𝑛
O𝑟0 (𝑡0, 𝑥0) + 𝜖

𝑛−1∑︁
𝑗=0

2− 𝑗 ,

and therefore there exists 𝑁 ≥ 1 such that for all 𝑛 ≥ 𝑁 we have O𝜅𝑛𝑟0 (𝑡0, 𝑥0) ≤ 4𝜖 from
which we obtain (using the definition of O𝑟 given in (3.20)) that

A𝜅𝑁 𝑟0 (𝑡0, 𝑥0) ≤
1
8
𝐶 and P𝜅𝑁 𝑟0 (𝑡0, 𝑥0) ≤

1
32

𝐶.

This information is centered at the point (𝑡0, 𝑥0), in order to treat the uncentered bound, we
can let 1

2 𝜅
𝑁𝑟0 to be the radius 𝑅1 we want to find, thus for all points (𝑡, 𝑥) ∈ 𝑄𝑅1 (𝑡0, 𝑥0)
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we have that 𝑄𝑅1 ⊂ 𝑄2𝑅1 (𝑡0, 𝑥0), which implies

A𝑅1 (𝑡, 𝑥) ≤ 23− 10
𝜏0 A2𝑅1 (𝑡0, 𝑥0) ≤ 8A2𝑅1 (𝑡0, 𝑥0) ≤ 8A𝜅𝑁𝜌 (𝑡0, 𝑥0) < 𝐶,

and P𝑅1 (𝑡, 𝑥) ≤ 25− 3
2 (1+

5
𝜏0

)
P2𝑅1 (𝑡0, 𝑥0) ≤ 32P2𝑅1 (𝑡0, 𝑥0) ≤ 8P𝜅𝑁 𝑟 (𝑡0, 𝑥0) < 𝐶. Having

obtained these bounds, by the definition of O𝑅1 , we thus get O𝑅1 (𝑡, 𝑥) ≤ 𝐶. Applying
the Lemma 3.5 and iterating once more, we find that the same will be true for 𝜅𝑅1 and
then, for all 𝜅𝑛𝑅1, 𝑛 ∈ N. Since by definition we have A𝜅𝑛𝑅1 (𝑡, 𝑥) ≤ O𝜅𝑛𝑅1 (𝑡, 𝑥) we have
finally obtained the estimate A𝜅𝑛𝑅1 (𝑡, 𝑥) ≤ 𝐶 and the inequality (3.29) is proven which
implies the Proposition 3.1. □

Corollary 3.6. Under the hypotheses of Proposition 3.1, we also have the following local
control:

1𝑄𝑅1 (𝑡0 ,𝑥0 ) ®∇ ⊗ ®𝑢 ∈ M2,𝜏1
𝑡 ,𝑥

(
R × R3) , with

1
𝜏1

=
1
𝜏0

+ 1
5
. (3.30)

Proof. In the previous results we have proved the estimate (3.29). Let us recall now
that, by the definition of the quantity A𝑟 given in (3.20), we can easily deduce for all
0 < 𝑟 ≤ 𝑅1 and (𝑡, 𝑥) ∈ 𝑄𝑅1 the control 𝛼𝑟 ≤ 𝐶𝑟

2(1− 5
𝜏0

) which can we rewritten as

1
𝑟

(∫
𝑄𝑟 (𝑡 ,𝑥 )

��®∇ ⊗ ®𝑢
��2d𝑦d𝑠

)
≤ 𝐶𝑟

2
(
1− 5

𝜏0

)
.

Thus, since 1
𝜏1

= 1
𝜏0

+ 1
5 , for all 0 < 𝑟 ≤ 𝑅1 and (𝑡, 𝑥) ∈ 𝑄𝑅1 (𝑡0, 𝑥0), we have the estimate∫

𝑄𝑟

��®∇ ⊗ ®𝑢
��2d𝑦d𝑠 ≤ 𝐶𝑟

3− 10
𝜏0 = 𝐶𝑟

5
(
1− 2

𝜏1

)
,

and by the definition of Morrey spaces given in (2.1), we obtain that

1𝑄𝑅1 (𝑡0 ,𝑥0 ) ®∇ ⊗ ®𝑢 ∈ M2,𝜏1
𝑡 ,𝑥

(
R × R3) . □

4. A (second) partial gain of information for the variable ®𝑢

This first gain of integrability information stated in Proposition 3.1 is fundamental for our
theory to work, however it is not enough since we only obtain a “small” control1 for the
variable ®𝑢 and without any information on the variable ®𝜔 we can not go very far: now we
will see how to obtain some further control on ®𝜔 and how it is possible to reinject this
information in the study of the variable ®𝑢. Indeed, in our recent article [8] we proved the
following result which gives some mild control over the variable ®𝜔:

1In terms of the indexes of the Morrey spaces involved in Proposition 3.1.
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Theorem 4.1. Let ( ®𝑢, 𝑝, ®𝜔) be a weak solution of the micropolar equations (1.1) over
a parabolic ball 𝑄𝑅 of the form (1.3) for some fixed radius 𝑅 > 0. Assume that
®𝑢, ®𝜔 ∈ 𝐿∞

𝑡 𝐿2
𝑥 ∩ 𝐿2

𝑡
¤𝐻1
𝑥 (𝑄𝑅) and 𝑝 ∈ D′

𝑡 ,𝑥 (𝑄𝑅). Suppose in addition that for some
0 < 𝑅1 < 𝑅 we have

1𝑄𝑅1
®𝑢 ∈ M 𝑝0 ,𝑞0

𝑡 ,𝑥

(
R × R3) 𝑤𝑖𝑡ℎ 2 < 𝑝0 ≤ 𝑞0, 5 < 𝑞0 ≤ 6, (4.1)

then

(1) for a parabolic ball 𝑄𝔯1 , with 0 < 𝔯1 < 𝑅1 we have

1𝑄𝔯1
®𝑢 ∈ 𝐿

𝑞0
𝑡 ,𝑥

(
R × R3) , 5 < 𝑞0 ≤ 6,

(2) for a parabolic ball 𝑄𝔯2 , with 0 < 𝔯2 < 𝔯1 < 𝑅1 we have

1𝑄𝔯2
®𝜔 ∈ 𝐿

𝑞0
𝑡 ,𝑥

(
R × R3) ,

for 5 < 𝑞0 ≤ 6.

As we can see, this result gives an interesting improvement of integrability for both
variables ®𝑢 and ®𝜔 as long as we have the hypothesis (4.1), but this is precisely the
conclusion of Proposition 3.1: indeed, over a small parabolic ball 𝑄𝑅1 (𝑡0, 𝑥0) we do have
1𝑄𝑅1 (𝑡0 ,𝑥0 ) ®𝑢 ∈ M3,𝜏0

𝑡 ,𝑥 (R × R3) and it is enough to remark that we have here 𝑝0 = 3 and
𝑞0 = 𝜏0 with 5

1−𝛼
< 𝜏0 < 20

3 and this last parameter can be chosen such that 𝜏0 = 6 < 20
3 .

Thus, we deduce that

1𝑄𝔯1 (𝑡0 ,𝑥0 ) ®𝑢 ∈ 𝐿6
𝑡 ,𝑥

(
R × R3) and 1𝑄𝔯2 (𝑡0 ,𝑥0 ) ®𝜔 ∈ 𝐿6

𝑡 ,𝑥

(
R × R3) , (4.2)

where 𝔯2 < 𝔯1 < 𝑅1 < 𝑅 < 1.
Note that from the initial setting ®𝑢, ®𝜔 ∈ 𝐿∞

𝑡 𝐿2
𝑥 ∩ 𝐿2

𝑡
¤𝐻1
𝑥 , the controls stated in (4.2)

provide a better integrability information and we will see now how to improve the Morrey
information given in Proposition 3.1 for the variable ®𝑢:

Proposition 4.2. Under the hypotheses of Theorem 1.2 and within the framework of
Proposition 3.1, there exists a radius 𝑅2 with 0 < 𝑅2 < 𝔯2 < 𝔯1 < 𝑅1 < 𝑅 < 1 such that

1𝑄𝑅2 (𝑡0 ,𝑥0 ) ®𝑢 ∈ M3,𝜎
𝑡,𝑥

(
R × R3) ,

for some 𝜎 close to 𝜏0 = 6 such that 𝜏0 < 𝜎.

Proof of the Proposition 4.2. In order to obtain this small additional gain of integrability
we will first localize the variable ®𝑢 in a suitable manner and then we will study its
evolution: the wished result will then be deduced from the Duhamel formula and from all
the available information over ®𝑢. Let us start fixing the parameters ℜ𝑐,ℜ𝑏,ℜ𝑎 such that

0 < 𝑅2 < ℜ𝑐 < ℜ𝑏 < ℜ𝑎 < 𝔯2 < 𝔯1 < 𝑅1,
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with the associated parabolic balls 𝑄𝑅2 ⊂ 𝑄ℜ𝑐
⊂ 𝑄ℜ𝑏

⊂ 𝑄ℜ𝑎
⊂ 𝑄𝑅1 (all centered in the

point (𝑡0, 𝑥0)). Consider now 𝜙, 𝜓 : R × R3 → R two non-negative functions such that
𝜙, 𝜓 ∈ C∞

0 (R × R3) and such that

𝜙 ≡ 1 over 𝑄ℜ𝑐
, supp(𝜙) ⊂ 𝑄ℜ𝑏

and 𝜓 ≡ 1 over 𝑄ℜ𝑎
, supp(𝜓) ⊂ 𝑄𝔯2 .

(4.3)

Using these auxiliar functions we will study the evolution of the variable ®𝑣 = 𝜙 ®𝑢 given
by the system {

𝜕𝑡 ®𝑣 = Δ®𝑣 + ®𝑉,
®𝑣(0, 𝑥) = 0,

(4.4)

where we have

®𝑉 = (𝜕𝑡𝜙 − Δ𝜙) ®𝑢 − 2
3∑︁
𝑖=1

(𝜕𝑖𝜙) (𝜕𝑖 ®𝑢) − 𝜙
(
®𝑢 · ®∇

)
®𝑢 − 2𝜙®∇𝑝 + 𝜙

(®∇ ∧ ®𝜔
)
. (4.5)

We will now rewrite the term 𝜙®∇𝑝 above in order to avoid a direct derivative over the
pressure. Indeed, as we have the identity 𝑝 = 𝜓𝑝 over 𝑄ℜ𝑎

, then over the smaller ball
𝑄𝑅2 (recalling that 𝜓 = 1 over 𝑄𝑅2 by (4.3) since 𝑄𝑅2 ⊂ 𝑄ℜ𝑎

), we can write

−Δ(𝜓𝑝) = −𝜓Δ𝑝 + (Δ𝜓)𝑝 − 2
3∑︁
𝑖=1

𝜕𝑖 ((𝜕𝑖𝜓)𝑝)

from which we deduce the identity

𝜙®∇𝑝 = 𝜙
®∇(−𝜓Δ𝑝)
(−Δ) + 𝜙

®∇((Δ𝜓)𝑝)
(−Δ) − 2

3∑︁
𝑖=1

𝜙
®∇(𝜕𝑖 ((𝜕𝑖𝜓)𝑝))

(−Δ) . (4.6)

At this point we recall that we have by (1.2) the following equation for the pressure
Δ𝑝 = −∑3

𝑖, 𝑗=1 𝜕𝑖𝜕 𝑗 (𝑢𝑖𝑢 𝑗 ) and thus, the first term of the right-hand side of the previous
formula can be written in the following manner:

𝜙
®∇(−𝜓Δ𝑝)
(−Δ) = 𝜙

®∇
(−Δ)

©«
3∑︁

𝑖, 𝑗=1
𝜓
(
𝜕𝑖𝜕 𝑗𝑢𝑖𝑢 𝑗

)ª®¬
=

3∑︁
𝑖, 𝑗=1

𝜙
®∇

(−Δ)

(
𝜕𝑖𝜕 𝑗

(
𝜓𝑢𝑖𝑢 𝑗

) )
−

3∑︁
𝑖, 𝑗=1

𝜙
®∇

(−Δ)

(
𝜕𝑖

(
(𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗

)
+ 𝜕 𝑗

(
(𝜕𝑖𝜓)𝑢𝑖𝑢 𝑗

)
− (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )

)
,
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Recalling that by construction of the auxiliar functions 𝜙, 𝜓 given in (4.3) we have the
identity 𝜙𝜓 = 𝜙, we can write for the first term above:

𝜙
®∇

(−Δ) 𝜕𝑖𝜕 𝑗 (𝜓𝑢𝑖𝑢 𝑗 ) =
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

]
(𝜓𝑢𝑖𝑢 𝑗 ) +

®∇𝜕𝑖𝜕 𝑗

(−Δ)
(
𝜙𝑢𝑖𝑢 𝑗

)
,

and we finally obtain the following expression for (4.6):

𝜙®∇𝑝 =

3∑︁
𝑖, 𝑗=1

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

]
(𝜓𝑢𝑖𝑢 𝑗 ) +

3∑︁
𝑖, 𝑗=1

®∇𝜕𝑖𝜕 𝑗

(−Δ)
(
𝜙𝑢𝑖𝑢 𝑗

)
−

3∑︁
𝑖, 𝑗=1

𝜙
®∇

(−Δ)

(
𝜕𝑖

(
(𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗

)
+ 𝜕 𝑗

(
(𝜕𝑖𝜓)𝑢𝑖𝑢 𝑗

)
− (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )

)
+ 𝜙

®∇((Δ𝜓)𝑝)
(−Δ) − 2

3∑︁
𝑖=1

𝜙
®∇(𝜕𝑖 ((𝜕𝑖𝜓)𝑝))

(−Δ) .

With this expression for the term that contains the pressure 𝑝, we obtain the (lengthy)
formula for (4.5):

®𝑉 = (𝜕𝑡𝜙 − Δ𝜙) ®𝑢︸         ︷︷         ︸
(1)

−2
3∑︁
𝑖=1

(𝜕𝑖𝜙) (𝜕𝑖 ®𝑢)︸       ︷︷       ︸
(2)

− 𝜙
(
®𝑢 · ®∇

)
®𝑢︸     ︷︷     ︸

3

−
3∑︁

𝑖, 𝑗=1

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

)
︸                    ︷︷                    ︸

(4)

+
3∑︁

𝑖, 𝑗=1

®∇𝜕𝑖𝜕 𝑗

(−Δ)
(
𝜙𝑢𝑖𝑢 𝑗

)
︸            ︷︷            ︸

(5)

−
3∑︁

𝑖, 𝑗=1

𝜙®∇
(−Δ)

[
𝜕𝑖

(
(𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗

)︸            ︷︷            ︸
(6)

+ 𝜕 𝑗

(
(𝜕𝑖𝜓)𝑢𝑖𝑢 𝑗

)︸            ︷︷            ︸
(7)

− (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )︸            ︷︷            ︸
(8)

]

+ 2 𝜙
®∇((Δ𝜓)𝑝)

(−Δ)︸         ︷︷         ︸
(9)

−2
3∑︁
𝑖=1

𝜙
®∇
(
𝜕𝑖 ((𝜕𝑖𝜓)𝑝)

)
(−Δ)︸               ︷︷               ︸
(10)

+ 𝜙
(®∇ ∧ ®𝜔

)︸     ︷︷     ︸
(11)

. (4.7)

Thus, by the Duhamel formula, the solution ®𝑣 of the equation (4.4) is given by

®𝑣 =

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ ®𝑉 (𝑠, ·)d𝑠 =

11∑︁
𝑘=1

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ ®𝑉𝑘 (𝑠, ·)d𝑠 =

11∑︁
𝑘=1

®V𝑘 .

Since ®𝑣 = 𝜙®𝑢, and due to the support properties of 𝜙 (see (4.3)), we have 1𝑄𝑅2
®𝑣 = 1𝑄𝑅2

®𝑢
and to conclude that 1𝑄𝑅2

®𝑢 ∈ M3,𝜎
𝑡,𝑥 (R × R3) we will study 1𝑄𝑅2

®V𝑘 for all 1 ≤ 𝑘 ≤ 11.
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• For ®V1, by the term (1) in (4.7) we have��1𝑄𝑅2
®V1 (𝑡, 𝑥)

�� = ����1𝑄𝑅2

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ

[
(𝜕𝑡𝜙 − Δ𝜙) ®𝑢

]
(𝑠, 𝑥)d𝑠

���� , (4.8)

since the convolution kernel of the semi-group 𝑒 (𝑡−𝑠)Δ is the usual 3D heat kernel 𝔤𝑡 , we
can write by the decay properties of the heat kernel as well as the properties of the test
function 𝜙 (see (4.3)), the estimate��1𝑄𝑅2

®V1 (𝑡, 𝑥)
�� ≤ 𝐶1𝑄𝑅2

∫
R

∫
R3

1(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)3

��1𝑄ℜ𝑏
®𝑢(𝑠, 𝑦)

��d𝑦d𝑠,

Now, recalling the definition of the parabolic Riesz potential given in (2.2) and since
𝑄𝑅2 ⊂ 𝑄ℜ𝑏

we obtain the pointwise estimate��1𝑄𝑅2
®V1 (𝑡, 𝑥)

�� ≤ 𝐶1𝑄ℜ𝑏
L2

(��1𝑄ℜ𝑏
®𝑢
��) (𝑡, 𝑥), (4.9)

and taking Morrey M3,𝜎
𝑡,𝑥 norm we obtain1𝑄𝑅2

®𝑉1 (𝑡, 𝑥)

M3,𝜎

𝑡,𝑥
≤ 𝐶

1𝑄ℜ𝑏
L2

(��1𝑄ℜ𝑏
®𝑢
��)

M3,𝜎
𝑡,𝑥

.

Now, for some 2 < 𝑞 < 5
2 we set 𝜆 = 1 − 2𝑞

5 . Then, we have 3 ≤ 3
𝜆

and 𝜎 ≤ 𝑞

𝜆
. Thus, by

Lemma 2.2 and by Lemma 2.3 we can write:1𝑄ℜ𝑏
L2

(��1𝑄ℜ𝑏
®𝑢
��)

M3,𝜎
𝑡,𝑥

≤ 𝐶

L2
(��1𝑄ℜ𝑏

®𝑢
��)

M
3
𝜆
,
𝑞
𝜆

𝑡,𝑥

≤ 𝐶
1𝑄ℜ𝑏

®𝑢

M3,𝑞

𝑡,𝑥
≤ 𝐶

1𝑄𝑅1
®𝑢

M3,𝜏0

𝑡,𝑥

< +∞,

where in the last estimate we applied again Lemma 2.2 (noting that 𝑞 < 𝜏0 = 6) and we
used the estimates over ®𝑢 available in (3.1).

• For ®V2, using the expression (2) in (4.7) we write (𝜕𝑖𝜙) (𝜕𝑖 ®𝑢) = 𝜕𝑖 ((𝜕𝑖𝜙) ®𝑢) − (𝜕2
𝑖
𝜙) ®𝑢

and we have���1𝑄𝑅2
®V2 (𝑡, 𝑥)

���
≤

3∑︁
𝑖=1

����1𝑄𝑅2

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ𝜕𝑖

(
(𝜕𝑖𝜙) ®𝑢

)
d𝑠

���� + ����1𝑄𝑅2

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ

[(
𝜕2
𝑖 𝜙

)
®𝑢
]

d𝑠
���� . (4.10)

Remark that the second term of the right-hand side of (4.10) can be treated in the same
manner as the term ®V1 so we will only study the first term: by the properties of the heat
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kernel and by the definition of the Riesz potential L1 (see (2.2)), we obtain

𝐴2 :=
����1𝑄𝑅2

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ𝜕𝑖

(
(𝜕𝑖𝜙) ®𝑢

)
d𝑠

����
=

����1𝑄𝑅2

∫ 𝑡

0

∫
R3

𝜕𝑖𝔤𝑡−𝑠 (𝑥 − 𝑦) (𝜕𝑖𝜙) ®𝑢(𝑠, 𝑦)d𝑦d𝑠
����

≤𝐶1𝑄𝑅2

∫
R

∫
R3

���1𝑄ℜ𝑏
®𝑢(𝑠, 𝑦)

���(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)4 d𝑦d𝑠

≤𝐶1𝑄𝑅2

(
L1

(��1𝑄ℜ𝑏
®𝑢
��) ) (𝑡, 𝑥).

(4.11)

Taking the Morrey M3,𝜎
𝑡,𝑥 norm we obtain

∥𝐴2∥M3,𝜎
𝑡,𝑥

≤ 𝐶

1𝑄𝑅2

(
L1

(��1𝑄ℜ𝑏
®𝑢
��) )

M3,𝜎
𝑡,𝑥

.

Now, for some 4 ≤ 𝑞 < 5 < 𝜏0 = 6 we define 𝜆 = 1 − 𝑞

5 , noting that 3 ≤ 3
𝜆

and 𝜎 ≤ 𝑞

𝜆
,

by Lemma 2.3, we can write1𝑄𝑅2

(
L1

(��1𝑄ℜ𝑏
®𝑢
��) )

M3,𝜎
𝑡,𝑥

≤ 𝐶

L1
(��1𝑄ℜ𝑏

®𝑢
��)

M
3
𝜆
,
𝑞
𝜆

𝑡,𝑥

≤ 𝐶

1𝑄ℜ𝑏
®𝑢

M3,𝑞

𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

®𝑢

M3,𝜏0

𝑡,𝑥

< +∞,

from which we deduce that ∥1𝑄𝑅2
®V2∥M3,𝜎

𝑡,𝑥
< +∞.

• For the term ®V3, by the same arguments given to obtain the pointwise estimate (4.9),
we have ���1𝑄𝑅2

®V3 (𝑡, 𝑥)
��� = ����1𝑄𝑅2

∫ 𝑡

0

∫
R3

𝔤𝑡−𝑠 (𝑥 − 𝑦)
[
𝜙

(
( ®𝑢 · ®∇) ®𝑢

)]
(𝑠, 𝑦)d𝑦d𝑠

����
≤ 𝐶1𝑄𝑅2

L2

(���1𝑄ℜ𝑏

(
( ®𝑢 · ®∇) ®𝑢

)���) (𝑡, 𝑥),
(recall (4.3)) from which we deduce1𝑄𝑅2

®V3


M3,𝜎

𝑡,𝑥

≤ 𝐶

1𝑄𝑅2
L2

(���1𝑄ℜ𝑏
( ®𝑢 · ®∇) ®𝑢

���)
M3,𝜎

𝑡,𝑥

. (4.12)

We set now 5
3−𝛼

< 𝑞 < 5
2 and 𝜆 = 1 − 2𝑞

5 . Since 3 ≤ 6
5𝜆 and 𝜏0 = 6 < 𝜎 ≤ 𝑞

𝜆
, applying

Lemma 2.2 and Lemma 2.3 we have1𝑄𝑅2
L2

(���1𝑄ℜ𝑏
( ®𝑢 · ®∇) ®𝑢

���)
M3,𝜎

𝑡,𝑥

≤ 𝐶

1𝑄𝑅2
L2

(���1𝑄ℜ𝑏
( ®𝑢 · ®∇) ®𝑢

���)
M

6
5𝜆 ,

𝑞
𝜆

𝑡,𝑥

≤ 𝐶

1𝑄ℜ𝑏
( ®𝑢 · ®∇) ®𝑢


M

6
5 ,𝑞

𝑡,𝑥

.
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Recall that we have 𝜏0 = 6 < 𝜎 and by the Hölder inequality in Morrey spaces (see
Lemma 2.1) we obtain1𝑄ℜ𝑏

( ®𝑢 · ®∇) ®𝑢

M

6
5 ,𝑞

𝑡,𝑥

≤
1𝑄𝑅1

®𝑢

M3,𝜏0

𝑡,𝑥

1𝑄𝑅1
®∇ ⊗ ®𝑢


M2,𝜏1

𝑡,𝑥

< +∞,

where 1
𝑞
= 1

𝜏0
+ 1

𝜏1
= 2

𝜏0
+ 1

5 . These two last quantities are bounded by (3.1) and (3.30).
Note that the condition 𝜏0 = 6 < 𝜎 and the relationship 1

𝑞
= 2

𝜏0
+ 1

5 are compatible with
the fact that 5

3−𝛼
< 𝑞 < 5

2 (recall that 0 < 𝛼 < 1
24 ).

• The term ®V4 is the most technical one. Indeed, by the expression of ®𝑉4 given in (4.7),
we write

���1𝑄𝑅2
®V4

��� ≤ 3∑︁
𝑖, 𝑗=1

1𝑄𝑅2

∫
R

∫
R3

���� [𝜙, ®∇𝜕𝑖𝜕𝑗

(−Δ)

]
(𝜓𝑢𝑖𝑢 𝑗 ) (𝑠, 𝑦)

����(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)3 d𝑦d𝑠

≤
3∑︁

𝑖, 𝑗=1
1𝑄𝑅2

L2

(�����
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

) �����
)
,

and taking the M3,𝜎
𝑡,𝑥 -norm we have

1𝑄𝑅2
®V4


M3,𝜎

𝑡,𝑥

≤
3∑︁

𝑖, 𝑗=1

1𝑄𝑅2
L2

(�����
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

) �����
)

M3,𝜎
𝑡,𝑥

.

If we set 1
𝑞
= 2

𝜏0
+ 1

5 and 𝜆 = 1 − 2𝑞
5 then we have 3 ≤ 3

2𝜆 and for

𝜎 ≤ 𝑞

𝜆
=

5𝜏0
10 − 𝜏0

, (4.13)

by Lemmas 2.2 and 2.3 we obtain:1𝑄𝑅2
L2

(�����
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

]
(𝜓𝑢𝑖𝑢 𝑗 )

�����
)

M3,𝜎
𝑡,𝑥

≤ 𝐶

1𝑄𝑅2
L2

(�����
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

) �����
)

M
3

2𝜆 ,
𝑞
𝜆

𝑡,𝑥

≤ 𝐶


[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

]
(𝜓𝑢𝑖𝑢 𝑗 )


M

3
2 ,𝑞

𝑡,𝑥

,
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We will study this norm and by the definition of Morrey spaces (2.1), if we introduce a
threshold 𝔯 =

ℜ𝑏−𝑅2
2 , we have


[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

)
3
2

M
3
2 ,𝑞

𝑡,𝑥

≤ sup
(𝔱,𝑥 )
0<𝑟<𝔯

1

𝑟
5
(
1− 3

2𝑞

) ∫
𝑄𝑟 (𝔱,𝑥 )

�����
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

) �����
3
2

d𝑥d𝑡

+ sup
(𝔱,𝑥 )
𝔯<𝑟

1

𝑟
5
(
1− 3

2𝑞

) ∫
𝑄𝑟 (𝔱,𝑥 )

�����
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

) �����
3
2

d𝑥d𝑡. (4.14)

Now, we study the second term of the right-hand side above, which is easy to handle as
we have 𝔯 < 𝑟 and we can write

sup
(𝔱,𝑥 ) ∈ R×R3

𝔯<𝑟

1

𝑟
5(1− 3

2𝑞 )

∫
𝑄𝑟 (𝔱,𝑥 )

�����
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

]
(𝜓𝑢𝑖𝑢 𝑗 )

�����
3
2

d𝑥d𝑡

≤ 𝐶𝔯


[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

)
3
2

𝐿
3
2
𝑡,𝑥

,

and since 𝜙 is a regular function and
®∇𝜕𝑖𝜕𝑗

(−Δ) is a Calderón–Zydmund operator, by the

Calderón commutator theorem (see the book [16]), we have that the operator
[
𝜙,

®∇𝜕𝑖𝜕𝑗

(−Δ)
]

is bounded in the space 𝐿
3
2
𝑡 ,𝑥 and we can write (using the support properties of 𝜓 given

in (4.3) and the information given in (3.1)):
[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

)
𝐿

3
2
𝑡,𝑥

≤ 𝐶
𝜓𝑢𝑖𝑢 𝑗


𝐿

3
2
𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

𝑢𝑖𝑢 𝑗


M

3
2 , 3

2
𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

®𝑢

M3,3

𝑡,𝑥

1𝑄𝑅1
®𝑢

M3,3

𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

®𝑢

M3,𝜏0

𝑡,𝑥

1𝑄𝑅1
®𝑢

M3,𝜏0

𝑡,𝑥

< +∞,

where in the last line we used Hölder inequalities in Morrey spaces and we applied
Lemma 2.2.

The first term of the right-hand side of (4.14) requires some extra computations: indeed,
as we are interested to obtain information over the parabolic ball 𝑄𝑟 (𝔱, 𝑥) we can write
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for some 0 < 𝑟 < 𝔯:

1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
𝜓𝑢𝑖𝑢 𝑗

)
= 1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
1𝑄2𝑟𝜓𝑢𝑖𝑢 𝑗

)
+ 1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
(I − 1𝑄2𝑟 )𝜓𝑢𝑖𝑢 𝑗

)
, (4.15)

and as before we will study the 𝐿
3
2
𝑡 ,𝑥 norm of these two terms. For the first quantity in

the right-hand side of (4.15), by the Calderón commutator theorem, by the definition of
Morrey spaces and by the Hölder inequalities we have1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
1𝑄2𝑟𝜓𝑢𝑖𝑢 𝑗

)
3
2

𝐿
3
2
𝑡,𝑥

≤ 𝐶
1𝑄2𝑟𝜓𝑢𝑖𝑢 𝑗

 3
2

𝐿
3
2
𝑡,𝑥

≤ 𝐶𝑟
5
(
1− 3

𝜏0

)1𝑄𝑅1
𝑢𝑖𝑢 𝑗

 3
2

M
3
2 ,

𝜏0
2

𝑡,𝑥

≤ 𝐶𝑟
5
(
1− 3

𝜏0

)1𝑄𝑅1
®𝑢
 3

2

M3,𝜏0
𝑡,𝑥

1𝑄𝑅1
®𝑢
 3

2

M3,𝜏0
𝑡,𝑥

,

for all 0 < 𝑟 < 𝔯, from which we deduce that

sup
(𝔱,𝑥 )

0 <𝑟 < 𝔯

1

𝑟
5
(
1− 3

2𝑞

) ∫
𝑄𝑟 (𝔱,𝑥 )

�����1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
1𝑄2𝑟𝜓𝑢𝑖𝑢 𝑗

) �����
3
2

d𝑥d𝑡

≤ 𝐶
1𝑄𝑅1

®𝑢
 3

2

M3,𝜏0
𝑡,𝑥

1𝑄𝑅1
®𝑢
 3

2

M3,𝜏0
𝑡,𝑥

< +∞.

We study now the second term of the right-hand side of (4.15) and for this we consider
the following operator:

𝑇 : 𝑓 ↦−→
(
1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

−Δ

] (
I − 1𝑄2𝑟

)
𝜓

)
𝑓 ,

and by the properties of the convolution kernel of the operator 1
(−Δ) we obtain

|𝑇 ( 𝑓 ) (𝑥) | ≤ 𝐶1𝑄𝑟
(𝑥)

∫
R3

(I − 1𝑄2𝑟 ) (𝑦)1𝑄𝑅1
(𝑦) | 𝑓 (𝑦) | |𝜙(𝑥) − 𝜙(𝑦) |

|𝑥 − 𝑦 |4
d𝑦.
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Recalling that 0 < 𝑟 < 𝔯 =
ℜ𝑏−𝑅2

2 , by the support properties of the test function 𝜙

(see (4.3)), the integral above is meaningful if |𝑥 − 𝑦 | > 𝑟 and thus we can write

1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] ( (
I − 1𝑄2𝑟

)
𝜓𝑢𝑖𝑢 𝑗

)
3
2

𝐿
3
2
𝑡,𝑥

≤ 𝐶

1𝑄𝑟

∫
R3

1 |𝑥−𝑦 | > 𝑟

|𝑥 − 𝑦 |4
(
I − 1𝑄2𝑟

)
(𝑦)1𝑄𝑅1

(𝑦) |𝑢𝑖𝑢 𝑗 |d𝑦
 3

2

𝐿
3
2
𝑡,𝑥

≤ 𝐶

(∫
|𝑦 |>𝑟

1
|𝑦 |4

1𝑄𝑅1
|𝑢𝑖𝑢 𝑗 | (· − 𝑦)


𝐿

3
2
𝑡,𝑥 (𝑄𝑟 )

𝑑𝑦

) 3
2

≤ 𝐶𝑟−
3
2

1𝑄𝑅1
𝑢𝑖𝑢 𝑗

 3
2

𝐿
3
2
𝑡,𝑥 (𝑄𝑟 )

,

with this estimate at hand and using the definition of Morrey spaces, we can write

∫
𝑄𝑟 (𝔱,𝑥 )

�����1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
(I − 1𝑄2𝑟 )𝜓𝑢𝑖𝑢 𝑗

) �����
3
2

d𝑥d𝑡 ≤ 𝐶𝑟−
3
2 𝑟

5
(
1− 3

𝜏0

) 1𝑄𝑅1
𝑢𝑖𝑢 𝑗

 3
2

M
3
2 ,

𝜏0
2

𝑡,𝑥

≤ 𝐶𝑟
5
(
1− 3

2𝑞

) 1𝑄𝑅1
𝑢𝑖𝑢 𝑗

 3
2

M
3
2 ,

𝜏0
2

𝑡,𝑥

,

where in the last inequality we used the fact that 1
𝑞
= 2

𝜏0
+ 1

5 , which implies 𝑟− 3
2 𝑟

5(1− 3
𝜏0

)
=

𝑟
5(1− 3

2𝑞 ) . Thus we finally obtain

sup
(𝔱,𝑥 )

0 <𝑟 < 𝔯

1

𝑟
5
(
1− 3

2𝑞

) ∫
𝑄𝑟 (𝔱,𝑥 )

�����1𝑄𝑟

[
𝜙,

®∇𝜕𝑖𝜕 𝑗

(−Δ)

] (
(I − 1𝑄2𝑟 )𝜓𝑢𝑖𝑢 𝑗

) �����
3
2

d𝑥d𝑡

≤ 𝐶
1𝑄𝑅1

®𝑢
 3

2

M3,𝜏0
𝑡,𝑥

1𝑄𝑅1
®𝑢
 3

2

M3,𝜏0
𝑡,𝑥

< +∞.

We have proven that all the term in (4.14) are bounded and we can conclude that
∥1𝑄𝑅2

®V4∥M3,𝜎
𝑡,𝑥

< +∞.

Remark 4.3. The condition (4.13) implies an upper bound for 𝜎 depending on the current
Morrey information of ®𝑢, which a priori is close to 𝜏0 = 6. Nevertheless it is clear that
whether we obtain a better Morrey information on integrability for ®𝑢, the value of 𝜎 can
increase.
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• For the quantity ®V5, based in the expression (4.7) we write���1𝑄𝑅2
®V5 (𝑡, 𝑥)

��� ≤ 𝐶

3∑︁
𝑖, 𝑗=1

1𝑄𝑅2

∫
R

∫
R3

|R𝑖R 𝑗 (𝜙𝑢𝑖𝑢 𝑗 ) (𝑠, 𝑦) |(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)4 d𝑦d𝑠

≤ 𝐶

3∑︁
𝑖, 𝑗=1

1𝑄𝑅2
L1

(��R𝑖R 𝑗 (𝜙𝑢𝑖𝑢 𝑗 )
��) (𝑡, 𝑥),

where we used the decaying properties of the heat kernel (recall that R𝑖 =
𝜕𝑖√
−Δ

are the
Riesz transforms). Now taking the Morrey M3,𝜎

𝑡,𝑥 norm and by Lemma 2.2 (with 𝜈 =
4𝜏0+5

5𝜏0
,

𝑝 = 3, 𝑞 = 𝜏0 such that 𝑝

𝜈
> 3 and 𝑞

𝜈
> 𝜎 which is compatible with the condition 𝜏0 < 𝜎)

we have 1𝑄𝑅2
®𝑉5


M3,𝜎

𝑡,𝑥

≤ 𝐶

3∑︁
𝑖, 𝑗=1

1𝑄𝑅2
L1

(
|R𝑖R 𝑗 (𝜙𝑢𝑖𝑢 𝑗 ) |

)
M

𝑝
𝜈 ,

𝑞
𝜈

𝑡,𝑥

Then by Lemma 2.3 with 𝜆 = 1 − 𝜏0/2
5 (recall 𝜏0 = 6 < 10 so that 𝜈 > 2𝜆) and by the

boundedness of Riesz transforms in Morrey spaces we obtain:1𝑄𝑅2
L1

(��R𝑖R 𝑗 (𝜙𝑢𝑖𝑢 𝑗 )
��)

M
𝑝
𝜈 ,

𝑞
𝜈

𝑡,𝑥

≤ 𝐶
L1

(��R𝑖R 𝑗 (𝜙𝑢𝑖𝑢 𝑗 )
��)

M
𝑝

2𝜆 ,
𝑞
2𝜆

𝑡,𝑥

≤ 𝐶
R𝑖R 𝑗 (𝜙𝑢𝑖𝑢 𝑗 )


M

3
2 ,

𝜏0
2

𝑡,𝑥

≤
1𝑄𝑅1

𝑢𝑖𝑢 𝑗


M

3
2 ,

𝜏0
2

𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

®𝑢

M3,𝜏0

𝑡,𝑥

1𝑄𝑅1
®𝑢

M3,𝜏0

𝑡,𝑥

< +∞,

and we obtain ∥1𝑄𝑅2
®V5∥M3,𝜎

𝑡,𝑥
< +∞.

• For the term ®V6 and following the same ideas we have

���1𝑄𝑅2
®V6

��� ≤ 𝐶

3∑︁
𝑖, 𝑗=1

1𝑄𝑅2

∫
R

∫
R3

��� 𝜙 ®∇𝜕𝑖
(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗 (𝑠, 𝑦)

���(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)3 d𝑦d𝑠

= 𝐶

3∑︁
𝑖, 𝑗=1

1𝑄𝑅2
L2

(�����𝜙®∇𝜕𝑖(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗

�����
)
.
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For 2 < 𝑞 < 5
2 , define 𝜆 = 1 − 2𝑞

5 , we thus have 3 ≤ 3
2𝜆 and 𝜎 ≤ 𝑞

𝜆
. Then, by

Lemma 2.2 and Lemma 2.3 we can write1𝑄𝑅2
L2

�����𝜙®∇𝜕𝑖(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗

�����

M3,𝜎

𝑡,𝑥

≤ 𝐶

1𝑄𝑅2
L2

�����𝜙®∇𝜕𝑖(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗

�����

M

3
2𝜆 ,

𝑞
𝜆

𝑡,𝑥

≤ 𝐶

𝜙®∇𝜕𝑖(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗


M

3
2 ,𝑞

𝑡,𝑥

,

but since the operator 𝜙 ®∇𝜕𝑖
(−Δ) is bounded in Morrey spaces and since 2 < 𝑞 < 5

2 <
𝜏0
2 = 3 (since 𝜏0 = 6), one has by Lemma 2.2 and by the Hölder inequalities𝜙®∇𝜕𝑖(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗


M

3
2 ,𝑞

𝑡,𝑥

≤ 𝐶

1𝑄𝑅1
𝑢𝑖𝑢 𝑗


M

3
2 ,𝑞

𝑡,𝑥

≤ 𝐶

1𝑄𝑅1
𝑢𝑖𝑢 𝑗


M

3
2 ,

𝜏0
2

𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

®𝑢

M3,𝜏0

𝑡,𝑥

1𝑄𝑅1
®𝑢

M3,𝜏0

𝑡,𝑥

,

from which we deduce ∥1𝑄𝑅2
®V6∥M3,𝜎

𝑡,𝑥
< +∞. Note that the same computations can be

performed to obtain that ∥1𝑄𝑅2
®V7∥M3,𝜎

𝑡,𝑥
< +∞.

• The quantity ®V8 based in the term (8) of (4.7) is treated in the following manner: we
first write1𝑄𝑅2

®V8


M3,𝜎

𝑡,𝑥

≤ 𝐶

3∑︁
𝑖, 𝑗=1

1𝑄𝑅2

(
L2

�����𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )

�����
)

M3,𝜎
𝑡,𝑥

.

We set 1 < 𝜈 < 3
2 , 2𝜈 < 𝑞 < 5𝜈

2 and 𝜆 = 1 − 2𝑞
5𝜈 , thus we have 3 ≤ 𝜈

𝜆
and 𝜎 ≤ 𝑞

𝜆
, then, by

Lemma 2.2 and by Lemma 2.3 we can write1𝑄𝑅2

(
L2

�����𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )

�����
)

M3,𝜎
𝑡,𝑥

≤ 𝐶

1𝑄𝑅2

(
L2

�����𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )

�����
)

M
𝜈
𝜆
,
𝑞
𝜆

𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )


M𝜈,𝑞

𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )


M

𝜈, 5𝜈
2

𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )


𝐿𝜈
𝑡 𝐿

∞
𝑥

(4.16)

where in the last estimate we used the space inclusion 𝐿𝜈
𝑡 𝐿

∞
𝑥 ⊂ M𝜈, 5𝜈

2
𝑡 ,𝑥 .
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Remark 4.4. Note that if the parameter 𝑞 above is close to the value 5𝜈
2 , then 𝜆 = 1 − 2𝑞

5𝜈
is close to 0 and thus the value 𝑞

𝜆
can be made very big: in the estimates (4.16) we can

consider a Morrey space M3,𝜎
𝑡,𝑥 with 𝜎 ≫ 1.

Let us focus now in the 𝐿∞ norm above (i.e. without considering the time variable).
Remark that due to the support properties of the auxiliary function 𝜓 given in (4.3)
we have supp(𝜕𝑖𝜕 𝑗𝜓) ⊂ 𝑄𝑅1 \ 𝑄ℜ𝑎

and recall by (4.3) we have supp 𝜙 = 𝑄ℜ𝑏
where

ℜ𝑏 < ℜ𝑎 < 𝑅1, thus by the properties of the kernel of the operator ®∇
(−Δ) we can write�����𝜙 ®∇

(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )
�����

≤ 𝐶

����∫
R3

1
|𝑥 − 𝑦 |2

1𝑄ℜ𝑏
(𝑥)1𝑄𝑅1\𝑄ℜ𝑎

(𝑦) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 ) (·, 𝑦)d𝑦
����

≤ 𝐶

����∫
R3

1 |𝑥−𝑦 |> (ℜ𝑎−ℜ𝑏 )

|𝑥 − 𝑦 |2
1𝑄ℜ𝑏

(𝑥)1𝑄𝑅1\𝑄ℜ𝑎
(𝑦) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 ) (·, 𝑦)d𝑦

���� , (4.17)

and the previous expression is nothing but the convolution between the function
(𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 ) and a 𝐿∞-function, thus we have𝜙 ®∇

(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 ) (𝑡, ·)

𝐿∞

≤ 𝐶∥(𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 ) (𝑡, ·)∥𝐿1

≤ 𝐶∥1𝑄𝑅1
(𝑢𝑖𝑢 𝑗 ) (𝑡, ·)∥𝐿𝜈 ,

(4.18)

and taking the 𝐿𝜈-norm in the time variable we obtain𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )


𝐿𝜈
𝑡 𝐿

∞
𝑥

≤ 𝐶
1𝑄𝑅1

𝑢𝑖𝑢 𝑗


𝐿𝜈
𝑡,𝑥

≤ 𝐶∥1𝑄𝑅1
®𝑢∥M3,𝜏0

𝑡,𝑥

1𝑄𝑅1
®𝑢

M3,𝜏0

𝑡,𝑥

< +∞,

where we used the fact that 1 < 𝜈 < 3
2 <

𝜏0
2 and we applied Hölder’s inequality. Gathering

together all these estimates we obtain ∥1𝑄𝑅2
®V8∥M3,𝜎

𝑡,𝑥
< +∞.

• The quantity ®V9 based in the term (9) of (4.7) can be treated in a similar manner.
Indeed, by the same arguments displayed to deduce (4.16), we can write (recall that
1 < 𝜈 < 3

2 ): 1𝑄𝑅2
®V9


M3,𝜎

𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(−Δ) ((Δ𝜓)𝑝)


𝐿𝜈
𝑡 𝐿

∞
𝑥

,
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and if we study the 𝐿∞-norm in the space variable of this term, by the same ideas used
in (4.17)–(4.18) we obtain𝜙 ®∇

(−Δ) ((Δ𝜓)𝑝) (𝑡, ·)

𝐿∞

≤ 𝐶∥(Δ𝜓)𝑝(𝑡, ·)∥𝐿1 ≤ 𝐶
1𝑄𝑅1

𝑝(𝑡, ·)

𝐿𝜈 .

Thus, taking the 𝐿𝜈-norm in the time variable we have1𝑄𝑅2
®V9


M3,𝜎

𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(−Δ) ((Δ𝜓)𝑝)


𝐿𝜈
𝑡 𝐿

∞
𝑥

≤ 𝐶
1𝑄𝑅1

𝑝

𝐿𝜈
𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

𝑝

𝐿

3
2
𝑡,𝑥

< +∞.

• The study of the quantity ®V10 follows almost the same lines as the terms ®V8 and ®V9.
However instead of (4.17) we have�����𝜙 ®∇𝜕𝑖

(−Δ) ((𝜕𝑖𝜓)𝑝)
����� ≤ 𝐶

����∫
R3

1 |𝑥−𝑦 |> (ℜ𝑎−ℜ𝑏 )

|𝑥 − 𝑦 |3
1𝑄ℜ𝑏

(𝑥)1𝑄𝑅1\𝑄ℜ𝑎
(𝑦) (𝜕𝑖𝜓)𝑝(𝑡, 𝑦) d𝑦

���� ,
and thus we can write:1𝑄𝑅2

®V10


M3,𝜎

𝑡,𝑥

≤
𝜙 ®∇𝜕𝑖

(−Δ) (((𝜕𝑖𝜓)𝑝)

𝐿𝜈
𝑡 𝐿

∞
𝑥

≤ 𝐶
1𝑄𝑅1

𝑝

𝐿𝜈
𝑡,𝑥

≤ 𝐶
1𝑄𝑅1

𝑝

𝐿

3
2
𝑡,𝑥

< +∞.

Note that, by the same reason given in the Remark 4.4, in the study of the terms that
contain the pressure (i.e. ®V9 and ®V10) we can consider a Morrey space M3,𝜎

𝑡,𝑥 with 𝜎 ≫ 1.
But this is not the case anymore for the last term below.

• Finally, for the term ®V11 based in the term (11) of (4.7) we write:���1𝑄𝑅2
®V11

��� = ����1𝑄𝑅2

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ

[
𝜙( ®∇ ∧ ®𝜔)

]
(𝑠, 𝑥)d𝑠

����
≤

����1𝑄𝑅2

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ ®∇ ∧ (𝜙 ®𝜔) (𝑠, 𝑥)d𝑠

���� + ����1𝑄𝑅2

∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ ( ®∇𝜙) ∧ ®𝜔(𝑠, 𝑥)d𝑠

����
≤ V𝑎 + V𝑏,

for the first term above, and following the ideas given in (4.11), we have the following
estimate with the Riesz potential L1, and by Lemma 2.2 we can write

∥V𝑎∥M3,𝜎
𝑡,𝑥

≤ 𝐶

1𝑄𝑅2

(
L1

(���1𝑄ℜ𝑏
®𝜔
���) )

M3,𝜎
𝑡,𝑥

≤ 𝐶

L1

(���1𝑄ℜ𝑏
®𝜔
���)

M120,120
𝑡,𝑥

=

L1

(���1𝑄ℜ𝑏
®𝜔
���)

M
𝑞
𝜆
,
𝑞
𝜆

𝑡,𝑥

,
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where 𝑞 = 24
5 and 𝜆 = 1

25 . Thus, since 1 < 5
𝑞

and since 𝜆 = 1 − 𝑞

5 we can apply the
Lemma 2.3 to obtain thatL1

(���1𝑄ℜ𝑏
®𝜔
���)

M
𝑞
𝜆
,
𝑞
𝜆

𝑡,𝑥

≤ 𝐶

1𝑄ℜ𝑏
®𝜔

M𝑞,𝑞

𝑡,𝑥

= 𝐶

1𝑄ℜ𝑏
®𝜔

M

24
5 , 24

5
𝑡,𝑥

≤ 𝐶

1𝑄ℜ𝑏
®𝜔

M6,6

𝑡,𝑥

= 𝐶

1𝑄ℜ𝑏
®𝜔

𝐿6
𝑡,𝑥

< +∞.

Now, for the term V𝑏 above, using the same ideas as in (4.8)-(4.9) and applying again
the Lemma 2.2, we obtain

∥V𝑏∥M3,𝜎
𝑡,𝑥

≤ 𝐶

1𝑄𝑅2

(
L2

(���1𝑄ℜ𝑏
®𝜔
���) )

M3,𝜎
𝑡,𝑥

≤ 𝐶

1𝑄𝑅2

(
L2

(���1𝑄ℜ𝑏
®𝜔
���) )

M60,60
𝑡,𝑥

≤ 𝐶

L2

(���1𝑄ℜ𝑏
®𝜔
���)

M
𝑞
𝜆
,
𝑞
𝜆

𝑡,𝑥

,

(4.19)

where this time 𝑞 = 12
5 and 𝜆 = 1

25 . Since we have 2 < 5
𝑞

and 𝜆 = 1 − 2𝑞
5 , we apply

Lemma 2.3 and we have

𝐶

L2

(���1𝑄ℜ𝑏
®𝜔
���)

M
𝑞
𝜆
,
𝑞
𝜆

𝑡,𝑥

≤ 𝐶

1𝑄ℜ𝑏
®𝜔

M𝑞,𝑞

𝑡,𝑥

= 𝐶

1𝑄ℜ𝑏
®𝜔

M

12
5 , 12

5
𝑡,𝑥

≤
1𝑄ℜ𝑏

®𝜔

M6,6

𝑡,𝑥

=

1𝑄ℜ𝑏
®𝜔

𝐿6
𝑡,𝑥

< +∞.

We can thus conclude that 1𝑄𝑅2
®V11


M3,𝜎

𝑡,𝑥

< +∞.

With all these estimates Proposition 4.2 is now proven. □

Remark 4.5. Note that the value of the index 𝜎 of the Morrey space M3,𝜎
𝑡,𝑥 (R × R3) is

potentially bounded by the information available over ®𝜔 and the maximal possible value
for this parameter is close to 𝜎 = 60 (see the expression (4.19) above).

This result gives a small gain of integrability as we pass from an information on the
Morrey space M3,𝜏0

𝑡 ,𝑥 to a control over the space M3,𝜎
𝑡,𝑥 with 𝜏0 < 𝜎 with 𝜎 close to 𝜏0.

This is of course not enough and we need to repeat the arguments above in order to obtain
a better control. In this sense we have the following proposition:

Proposition 4.6. Under the hypotheses of Theorem 1.2 and within the framework of
Proposition 3.1, there exists a radius 𝑅2 with 0 < 𝑅2 < 𝑅2 such that

1𝑄�̄�2
(𝑡0 ,𝑥0 ) ®𝑢 ∈ M3,60

𝑡 ,𝑥

(
R × R3) , (4.20)
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Proof. By the Proposition 4.2 above it follows that 1𝑄𝑅2
®𝑢 ∈ M3,𝜎

𝑡,𝑥 (R × R3) with 𝜎 very
close to 𝜏0 (say 𝜎 = 𝜏0 + 𝜖). Hence, with the information 1𝑄𝑅2

®𝑢 ∈ M3,𝜏0+𝜖
𝑡 ,𝑥 (R × R3) at

hand, we can reapply the Proposition 4.2 to obtain for some smaller radius 𝑅2 < 𝑅2 that
1𝑄�̄�2

®𝑢 ∈ M3,𝜎1
𝑡 ,𝑥 (R × R3) where 𝜎1 = 𝜎 + 𝜖 = 𝜏0 + 2𝜖 . Iterating these arguments as long

as necessary, we obtain the information 1𝑄𝑅2
®𝑢 ∈ M3,60

𝑡 ,𝑥 (R ×R3) where the value 𝜎 = 60
is fixed by the information available for the quantity ®𝜔 which is the only term that is fixed:
see the computation leading to the estimate (4.19) and Remark 4.5. Let us note that a
slight abuse of language has been used for the radius 𝑅2: at each iteration this radius is
smaller and smaller, but in order to maintain the notations we still denote the final radius
by 𝑅2. □

5. A first gain of information for the variable ®𝜔

Note that the Proposition 4.6 and the Corollary 3.6 give interesting control (on a small
neighborhood of a point (𝑡0, 𝑥0)) for the variable ®𝑢. Remark also that Theorem 4.1 gives
some information for the variable ®𝜔:

1𝑄�̄�2
(𝑡0 ,𝑥0 ) ®𝑢 ∈ M3,60

𝑡 ,𝑥

(
R × R3) , 1𝑄𝔯1 (𝑡0 ,𝑥0 ) ®𝑢 ∈ 𝐿6

𝑡 ,𝑥

(
R × R3) ,

1𝑄𝑅1 (𝑡0 ,𝑥0 ) ®∇ ⊗ ®𝑢 ∈ M2,𝜏1
𝑡 ,𝑥

(
R × R3) , 1𝑄𝔯2 (𝑡0 ,𝑥0 ) ®𝜔 ∈ 𝐿6

𝑡 ,𝑥

(
R × R3) , (5.1)

where
0 < 𝑅2 < 𝑅2 < 𝔯2 < 𝔯1 < 𝑅1 < 𝑅 < 1, (5.2)

with 𝜏0 = 6 and 𝜏1 = 30
11 (which is given by the condition 1

𝜏1
= 1

𝜏0
+ 1

5 , see the Corollary 3.6).
Note that we have 120

45 < 𝜏1 = 30
11 .

We will exploit all this information in order to derive some Morrey control for the
variable div( ®𝜔), indeed, we have:

Proposition 5.1. Under the general hypotheses of Theorem 1.2, if we have the controls (5.1)
over ®𝑢 and ®𝜔 then we have, for some radius 0 < 𝑅3 < 𝑅2, we have

1𝑄𝑅3 (𝑡0 ,𝑥0 ) div( ®𝜔) ∈ M
6
5 ,

60
11

𝑡 ,𝑥

(
R × R3) .

Proof. We first apply the divergence operator to the equation satisfied by ®𝜔 (see the
system (1.1)) and since we have the identities div( ®∇ div( ®𝜔)) = Δ ®𝜔 and div( ®∇ ∧ ®𝑢) ≡ 0,
we obtain

𝜕𝑡 div( ®𝜔) = 2Δ div( ®𝜔) − div( ®𝜔) − div
(
( ®𝑢 · ®∇) ®𝜔

)
.

Consider now 𝜙 : R × R3 → R a non-negative function such that 𝜙 ∈ C∞
0 (R × R3) and

such that
𝜙 ≡ 1 over 𝑄𝜌𝑏 (𝑡0, 𝑥0), supp(𝜙) ⊂ 𝑄𝜌𝑎 (𝑡0, 𝑥0), (5.3)
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where we have

0 < 𝑅3 < 𝜌𝑏 < 𝜌𝑎 < 𝑅2, (5.4)

where the radius 𝑅2 is fixed in (5.2). With the help of this auxiliar function we define the
variable W by

W = 𝜙 div( ®𝜔),

note that, due to the support properties of the function 𝜙 we have 1𝑄𝑅3
W = 1𝑄𝑅3

div( ®𝜔).
If we study the evolution of W we obtain:

𝜕𝑡W = (𝜕𝑡𝜙) div( ®𝜔) + 𝜙

(
2Δ div( ®𝜔) − div( ®𝜔) − div(( ®𝑢 · ®∇) ®𝜔)

)
= 2ΔW + (𝜕𝑡𝜙 + 2Δ𝜙 − 𝜙) div( ®𝜔) − 4

3∑︁
𝑖=1

𝜕𝑖
(
(𝜕𝑖𝜙) div( ®𝜔)

)
− 𝜙 div(( ®𝑢 · ®∇) ®𝜔),

where we used the identity

𝜙Δ div( ®𝜔) = Δ(𝜙 div( ®𝜔)) + Δ𝜙 div( ®𝜔) − 2
3∑︁
𝑖=1

𝜕𝑖
(
(𝜕𝑖𝜙) div( ®𝜔)

)
.

Recall now that we also have the identity (since div( ®𝑢) = 0):

𝜙 div(( ®𝑢 · ®∇) ®𝜔) = 𝜙 div
(
div( ®𝜔 ⊗ ®𝑢)

)
= div

(
div(𝜙 ®𝜔 ⊗ ®𝑢)

)
− div( ®𝜔 ⊗ ®𝑢 · ®∇𝜙) − ®∇𝜙 · div( ®𝜔 ⊗ ®𝑢),

and we obtain

𝜕𝑡W = 2ΔW+ (𝜕𝑡𝜙 + 2Δ𝜙 − 𝜙) div( ®𝜔) − 4
3∑︁
𝑖=1

𝜕𝑖
(
(𝜕𝑖𝜙) div( ®𝜔)

)
− div

(
div(𝜙 ®𝜔 ⊗ ®𝑢)

)
+ div( ®𝜔 ⊗ ®𝑢 · ®∇𝜙) + ®∇𝜙 · div( ®𝜔 ⊗ ®𝑢).
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Thus, since we have W(0, ·) = 0 (by the properties of the localizing function 𝜙 given
in (5.3)), applying the Duhamel formula we can write:

W(𝑡, 𝑥)

=

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ (𝜕𝑡𝜙 + 2Δ𝜙 − 𝜙) div( ®𝜔)d𝑠︸                                             ︷︷                                             ︸

W1

− 4
3∑︁
𝑖=1

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖

(
(𝜕𝑖𝜙) div( ®𝜔)

)
d𝑠︸                                   ︷︷                                   ︸

W2

−
∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ div

(
div(𝜙 ®𝜔 ⊗ ®𝑢)

)
d𝑠︸                                     ︷︷                                     ︸

W3

+
∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ div( ®𝜔 ⊗ ®𝑢 · ®∇𝜙)d𝑠︸                                   ︷︷                                   ︸

W4

+
∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ ®∇𝜙 · div( ®𝜔 ⊗ ®𝑢)d𝑠︸                                  ︷︷                                  ︸

W5

, (5.5)

and we will estimate each one of the terms above.
• For the first term W1 we write,

|1𝑄𝑅3
W1 | =

����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ div

(
(𝜕𝑡𝜙 + 2Δ𝜙 − 𝜙) ®𝜔

)
d𝑠

����
+

����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ (®∇ (

𝜕𝑡𝜙 + 2Δ𝜙 − 𝜙
) )
· ®𝜔d𝑠

���� , (5.6)

since the convolution kernel of the semi-group 𝑒2(𝑡−𝑠)Δ is the usual 3D heat kernel 𝔤2𝑡 ,
thus by the decay properties of the heat kernel, by the properties of the test function 𝜙

(see (5.3)) and by the definition of the parabolic Riesz potentials L1 and L2 given in (2.2),
we can write the estimate���1𝑄𝑅3

W1

��� ≤ 𝐶1𝑄𝑅3

∫
R

∫
R3

|1𝑄𝜌𝑎
®𝜔(𝑠, 𝑦) |

( |𝑡 − 𝑠 | 1
2 + |𝑥 − 𝑦 |)4

d𝑦d𝑠

+ 𝐶1𝑄𝑅3

∫
R

∫
R3

|1𝑄𝜌𝑎
®𝜔(𝑠, 𝑦) |

( |𝑡 − 𝑠 | 1
2 + |𝑥 − 𝑦 |)3

d𝑦d𝑠

≤ 𝐶1𝑄𝑅3
(L1 ( |1𝑄𝜌𝑎

®𝜔 |)) (𝑡, 𝑥) + 𝐶1𝑄𝑅3
(L2 ( |1𝑄𝜌𝑎

®𝜔 |)) (𝑡, 𝑥),

(5.7)

and we have1𝑄𝑅3
W1


M

6
5 , 60

11
𝑡,𝑥

≤ 𝐶

1𝑄𝑅3

(
L1

(��1𝑄𝜌𝑎
®𝜔
��) )

M
6
5 , 60

11
𝑡,𝑥

+ 𝐶

1𝑄𝑅3

(
L2

(��1𝑄𝜌𝑎
®𝜔
��) )

M
6
5 , 60

11
𝑡,𝑥

.
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For the first term above, since 60
11 ≤ 15

2 , we set 𝑝 = 6
5 , 𝑞 = 9

2 and 𝜆 = 1
10 and by Lemma 2.2

we obtain 1𝑄𝑅3

(
L1

(��1𝑄𝜌𝑎
®𝜔
��) )

M
6
5 , 60

11
𝑡,𝑥

≤ 𝐶

1𝑄𝑅3
L1

(��1𝑄𝜌𝑎
®𝜔
��)

M
6
5 , 15

2
𝑡,𝑥

≤ 𝐶

L1

(��1𝑄𝜌𝑎
®𝜔
��)

M
6
𝜆5 , 9

2𝜆
𝑡,𝑥

,

since 6
5 < 6

𝜆5 and 15
2 < 9

2𝜆 . Thus, applying Lemma 2.3 (and Lemma 2.2), we haveL1

(��1𝑄𝜌𝑎
®𝜔
��)

M
6
𝜆5 , 9

2𝜆
𝑡,𝑥

≤ 𝐶
1𝑄𝜌𝑎

®𝜔

M

6
5 , 9

2
𝑡,𝑥

≤ 𝐶
1𝑄𝜌𝑎

®𝜔

𝐿6
𝑡,𝑥

< +∞,

since we have the control 1𝑄𝔯2
®𝜔 ∈ 𝐿6

𝑡 ,𝑥 (R × R3) given in (5.1) and we have by (5.2)
and (5.4) that 𝜌𝑎 < 𝑅2 < 𝔯2.

For the second term that we need to study, we fix 𝑝 = 6
5 , 𝑞 = 12

5 and 𝜆 = 1
25 , by

applying Lemma 2.2 and Lemma 2.3 we obtain1𝑄𝑅3

(
L2

(��1𝑄𝜌𝑎
®𝜔
��) )

M
6
5 , 60

11
𝑡,𝑥

≤ 𝐶

1𝑄𝑅3
L2

(��1𝑄𝜌𝑎
®𝜔
��)

M
6
5 , 15

2
𝑡,𝑥

≤
L2

(��1𝑄𝜌𝑎
®𝜔
��)

M
6
𝜆5 , 12

𝜆5
𝑡,𝑥

≤ 𝐶
1𝑄𝜌𝑎

®𝜔

M

6
5 , 12

5
𝑡,𝑥

≤ 𝐶
1𝑄𝜌𝑎

®𝜔

𝐿6
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

< +∞,

where we used the information (5.1) and the relationships (5.2)-(5.4). With these two
estimates at hand we conclude that ∥1𝑄𝑅3

W1∥
M

6
5 , 15

2
𝑡,𝑥

< +∞.

• For the term W2 of (5.5) we need to study, for all 1 ≤ 𝑖 ≤ 3, the quantities

I𝑖 =

����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖

(
(𝜕𝑖𝜙) div( ®𝜔)

)
d𝑠

���� ,
and we write

I𝑖 ≤
����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖

(
div((𝜕𝑖𝜙) ®𝜔)

)
d𝑠

����
+

����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖

(
[ ®∇(𝜕𝑖𝜙)] · ®𝜔

)
d𝑠

���� . (5.8)

174



Partial suitable solutions for the micropolar equations and regularity properties

We study the first term above and by the support properties of the function 𝜙 given in (5.3),
we have for 1 ≤ 𝑖, 𝑗 ≤ 3:����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖𝜕 𝑗

(
(𝜕𝑖𝜙) ®𝜔)

)
d𝑠

����
≤ 𝐶

∫
R

∫
R3

1𝑄𝑅3
(𝑡, 𝑥)1C(𝜌𝑏 ,𝜌𝑎 ) (𝑠, 𝑦) | ®𝜔(𝑠, 𝑦) |(

|𝑡 − 𝑠 | 1
2 + |𝑥 − 𝑦 |

)5 d𝑦d𝑠, (5.9)

where the set C(𝜌𝑏, 𝜌𝑎) is the corona defined by 𝑄𝜌𝑎 \ 𝑄𝜌𝑏 . Noting that (𝑡, 𝑥) ∈ 𝑄𝑅3

and that (𝑠, 𝑦) ∈ C(𝜌𝑏, 𝜌𝑎), since we have 𝑅3 < 𝜌𝑏 by (5.4), the convolution kernel
1𝑄𝑅3

(𝑡 ,𝑥 )1C(𝜌𝑏,𝜌𝑎 ) (𝑠,𝑦)

( |𝑡−𝑠 |
1
2 +|𝑥−𝑦 | )5

is bounded and we can write

1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖𝜕 𝑗

(
(𝜕𝑖𝜙) ®𝜔)

)
d𝑠


𝐿∞
𝑡,𝑥

≤ 𝐶
1C(𝜌𝑏 ,𝜌𝑎 ) ®𝜔


𝐿1
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

< +∞, (5.10)

(recall (5.2)-(5.4)), from which we deduce that1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖

(
div((𝜕𝑖𝜙) ®𝜔)

)
d𝑠


M

6
5 , 60

11
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

< +∞.

The second term of (5.8) has the same structure as the first term in (5.6), and thus by the
same arguments we can write1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕𝑖

(
[ ®∇(𝜕𝑖𝜙)] · ®𝜔

)
d𝑠


M

6
5 , 60

11
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

< +∞.

• We study now the term W3 defined in (5.5) and we write1𝑄𝑅3
W3


M

6
5 , 60

11
𝑡,𝑥

=

1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ div

(
div(𝜙 ®𝜔 ⊗ ®𝑢)

)
d𝑠


M

6
5 , 60

11
𝑡,𝑥

,

and by the maximal regularity of the heat kernel in Morrey spaces (the Theorem 7.3
of [16] can be generalized to parabolic Morrey spaces), we have1𝑄𝑅3

W3


M

6
5 , 60

11
𝑡,𝑥

≤ 𝐶
𝜙 ®𝜔 ⊗ ®𝑢


M

6
5 , 60

11
𝑡,𝑥

,
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now, using the Hölder inequalities for Morrey spaces stated in Lemma 2.1 (with 5
6 = 1

2 +
1
3

and 11
60 = 1

6 + 1
60 ) and the properties of the localizing function 𝜙, we obtain1𝑄𝑅3

W3


M

6
5 , 60

11
𝑡,𝑥

≤ 𝐶
1𝑄𝜌𝑎

®𝜔

M2,6

𝑡,𝑥

1𝑄𝜌𝑎
®𝑢

M6,60

𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

M6,6

𝑡,𝑥

1𝑄�̄�2
®𝑢

M6,60

𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

1𝑄�̄�2
®𝑢

M6,60

𝑡,𝑥

< +∞,

where in the last estimate above we used Lemma 2.2, the information available in (5.1)
and the relationships (5.2)–(5.4).

• For the term W4 given in (5.5) we have, following the same arguments given in (5.9):���1𝑄𝑅3
W4

��� = ����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ div

(
®𝜔 ⊗ ®𝑢 · ®∇𝜙

)
d𝑠

����
≤ 𝐶

∫
R

∫
R3

1𝑄𝑅3
(𝑡, 𝑥)1C(𝜌𝑏 ,𝜌𝑎 ) (𝑠, 𝑦) | ®𝜔 ⊗ ®𝑢(𝑠, 𝑦) |(

|𝑡 − 𝑠 | 1
2 + |𝑥 − 𝑦 |

)4 d𝑦d𝑠,

and thus, by the ideas given in (5.9)-(5.10) we can write
∫
R

∫
R3

1𝑄𝑅3
(𝑡, 𝑥)1C(𝜌𝑏 ,𝜌𝑎 ) | ®𝜔 ⊗ ®𝑢(𝑠, 𝑦) |(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)4 d𝑦d𝑠


𝐿∞
𝑡,𝑥

≤ 𝐶
1C(𝜌𝑏 ,𝜌𝑎 ) ®𝜔 ⊗ ®𝑢


𝐿1
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔 ⊗ ®𝑢


𝐿3
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

1𝑄𝔯1
®𝑢

𝐿6
𝑡,𝑥

< +∞,

where we applied the Hölder inequalities, Lemma 2.2 (in the Lebesgue space setting) and
the relationships (5.2)–(5.4). With these estimates at hand, we easily deduce that1𝑄𝑅3

W4


M6,60

𝑡,𝑥

< +∞.

• For the last term W5 of (5.5) we have���1𝑄𝑅3
W5

��� = ����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ ®∇𝜙 · div( ®𝜔 ⊗ ®𝑢)d𝑠

���� .
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Thus, for 1 ≤ 𝑖, 𝑗 , 𝑘, 𝑙 ≤ 3 we need to study the quantities

J𝑖, 𝑗 ,𝑘,𝑙 =

����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ (𝜕𝑖𝜙)𝜕 𝑗 (𝑤𝑘𝑢𝑙)d𝑠

����
≤

����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ𝜕 𝑗

(
(𝜕𝑖𝜙) (𝑤𝑘𝑢𝑙)

)
d𝑠

����
+

����1𝑄𝑅3

∫ 𝑡

0
𝑒2(𝑡−𝑠)Δ (𝜕 𝑗𝜕𝑖𝜙) (𝑤𝑘𝑢𝑙)d𝑠

���� ,
where we used the identity (𝜕𝑖𝜙)𝜕 𝑗 (𝑤𝑘𝑢𝑙) = 𝜕 𝑗 ((𝜕𝑖𝜙) (𝑤𝑘𝑢𝑙)) − (𝜕 𝑗𝜕𝑖𝜙) (𝑤𝑘𝑢𝑙). Now,
due to the properties of the heat kernel and the support properties of the function 𝜙, we
obtain the inequality

J𝑖, 𝑗 ,𝑘,𝑙 ≤ 𝐶

∫
R

∫
R3

1𝑄𝑅3
(𝑡, 𝑥)1C(𝜌𝑏 ,𝜌𝑎 ) |𝑤𝑘𝑢𝑙 (𝑠, 𝑦) |(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)4 d𝑦d𝑠

+ 𝐶

∫
R

∫
R3

1𝑄𝑅3
(𝑡, 𝑥)1C(𝜌𝑏 ,𝜌𝑎 ) |𝑤𝑘𝑢𝑙 (𝑠, 𝑦) |(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)3 d𝑦d𝑠.

Now, by the same arguments given in (5.9)-(5.10) we obtain
∫
R

∫
R3

1𝑄𝑅3
(𝑡, 𝑥)1C(𝜌𝑏 ,𝜌𝑎 ) |𝑤𝑘𝑢𝑙 (𝑠, 𝑦) |(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)4 d𝑦d𝑠


𝐿∞
𝑡,𝑥

+


∫
R

∫
R3

1𝑄𝑅3
(𝑡, 𝑥)1C(𝜌𝑏 ,𝜌𝑎 ) |𝑤𝑘𝑢𝑙 (𝑠, 𝑦) |(
|𝑡 − 𝑠 | 1

2 + |𝑥 − 𝑦 |
)3 d𝑦d𝑠


𝐿∞
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
𝑤𝑘𝑢𝑙


𝐿1
𝑡,𝑥

+ 𝐶

1𝑄𝔯2
𝑤𝑘𝑢𝑙


𝐿1
𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

1𝑄𝔯1
®𝑢

𝐿6
𝑡,𝑥

< +∞,

and with these estimates for 1 ≤ 𝑖, 𝑗 , 𝑘, 𝑙 ≤ 3, we easily deduce that1𝑄𝑅3
W5


M6,60

𝑡,𝑥

< +∞.

With all these controls, Proposition 5.1 is proven. □
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6. The end of the proof of Theorem 1.2

Proof. The key result for obtaining a gain of regularity is the following lemma coming
from the theory of parabolic equations (see [15, 17]).

Lemma 6.1. Let 𝜎 be a smooth homogeneous function over R3 \ {0}, of exponent 1 with
𝜎(𝐷) the Fourier multiplier associated. Consider a vector field ®Φ ∈ M𝔭0 ,𝔮0

𝑡 ,𝑥 (R×R3) and
a scalar function ℎ ∈ M𝔭0 ,𝔮1

𝑡 ,𝑥 (R × R3) such that 1 ≤ 𝔭0 ≤ 𝔮0, with 1
𝔮0

= 2−𝛼
5 , 1

𝔮1
= 1−𝛼

5 ,
for 0 < 𝛼 < 1. Then, the function ®𝑣 equal to 0 for 𝑡 ≤ 0 and

®𝑣(𝑡, 𝑥) =
∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ ( ®Φ(𝑠, ·) + 𝜎(𝐷)ℎ(𝑠, ·))d𝑠,

for 𝑡 > 0, is Hölder continuous of exponent 𝛼 with respect to the parabolic distance.

In order to apply this lemma to the proof of Theorem 1.2, we will first localize
the full micropolar equations (1.1) and then we will show that each term of the corre-
sponding Duhamel formula belongs either to the space M𝔭0 ,𝔮0

𝑡 ,𝑥 (R × R3) or to the space
M𝔭0 ,𝔮1

𝑡 ,𝑥 (R × R3).
We start by localizing the problem and for this we consider 𝜙 : R × R3 → R a test

function such that supp(𝜙) ⊂ ]− 1
4 ,

1
4 [ × 𝐵(0, 1

2 ) and 𝜙 ≡ 1 over ]− 1
16 ,

1
16 [ × 𝐵(0, 1

4 ). We
consider next a radius R > 0 such that

4R < 𝑅3 < 𝑅2 < 𝔯2 < 𝔯1 < 𝑅1 < 𝑅 < 1, (6.1)

where 𝑅3 is the radius of Proposition 5.1, 𝑅2 is the radius of Proposition 4.6, 𝔯1, 𝔯2 are the
radii from Theorem 4.1 and 𝑅1 is the radius obtained in Proposition 3.1. We then write

𝜂(𝑡, 𝑥) = 𝜙

( 𝑡 − 𝑡0

R2 ,
𝑥 − 𝑥0

R

)
, (6.2)

and we consider the variable ®U defined by the formula

®U = 𝜂( ®𝑢 + ®𝜔), (6.3)

then, by the properties of the auxiliar function 𝜂, we have the identity ®U = ®𝑢 + ®𝜔 over
a small neighborhood of the point (𝑡0, 𝑥0), the support of the variable ®U is contained
in the parabolic ball 𝑄R and moreover we also have ®U(0, 𝑥) = 0. Thus, if we study the
evolution of this variable, following the system (1.1), we have

𝜕𝑡 ®U = (𝜕𝑡𝜂) ( ®𝑢 + ®𝜔) + 𝜂Δ( ®𝑢 + ®𝜔) − 𝜂(( ®𝑢 · ®∇) ®𝑢) − 𝜂 ®∇𝑝 + 1
2
𝜂 ®∇ ∧ ®𝜔 + 𝜂 ®∇ div( ®𝜔)

− 𝜂 ®𝜔 − 𝜂(( ®𝑢 · ®∇) ®𝜔) + 1
2
𝜂 ®∇ ∧ ®𝑢.
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We use now the identity 𝜂Δ( ®𝑢 + ®𝜔) = Δ ®U −Δ𝜂( ®𝑢 + ®𝜔) −2
∑3

𝑖=1 (𝜕𝑖𝜂) (𝜕𝑖 ( ®𝑢 + ®𝜔)) to obtain
the equation

𝜕𝑡 ®U = Δ ®U + (𝜕𝑡𝜂 − Δ𝜂) ( ®𝑢 + ®𝜔) − 2
3∑︁
𝑖=1

(𝜕𝑖𝜂) (𝜕𝑖 ( ®𝑢 + ®𝜔)) − 𝜂(( ®𝑢 · ®∇) ®𝑢) − 𝜂 ®∇𝑝

+ 1
2
𝜂 ®∇ ∧ ®𝜔 + 𝜂 ®∇ div( ®𝜔) − 𝜂 ®𝜔 − 𝜂(( ®𝑢 · ®∇) ®𝜔) + 1

2
𝜂 ®∇ ∧ ®𝑢.

In the expression above, we need to rewrite six particular terms, indeed, since we have
the identities

𝜂 ®∇ div( ®𝜔) = ®∇(𝜂 div( ®𝜔)) − ( ®∇𝜂) div( ®𝜔),
3∑︁
𝑖=1

(𝜕𝑖𝜂) (𝜕𝑖 ( ®𝑢 + ®𝜔)) =
3∑︁
𝑖=1

𝜕𝑖 ((𝜕𝑖𝜂) ( ®𝑢 + ®𝜔)) −
3∑︁
𝑖=1

(𝜕𝑖𝜕𝑖𝜂) ( ®𝑢 + ®𝜔),

𝜂(( ®𝑢 · ®∇) ®𝑢) = div(𝜂®𝑢 ⊗ ®𝑢) − ®𝑢 ⊗ ®𝑢 · ®∇𝜂,

𝜂 ®∇ ∧ ®𝜔 = ®∇ ∧ (𝜂 ®𝜔) − ( ®∇𝜂) ∧ ®𝜔, and 𝜂 ®∇ ∧ ®𝑢 = ®∇ ∧ (𝜂®𝑢) − ( ®∇𝜂) ∧ ®𝑢,

and 𝜂(( ®𝑢 · ®∇) ®𝜔) = 𝜂 div( ®𝜔 ⊗ ®𝑢) = div(𝜂 ®𝜔 ⊗ ®𝑢) − ®𝜔 ⊗ ®𝑢 · ®∇𝜂,
we obtain

𝜕𝑡 ®U = Δ ®U + (𝜕𝑡𝜂 + Δ𝜂) ( ®𝑢 + ®𝜔) − 2
3∑︁
𝑖=1

𝜕𝑖 ((𝜕𝑖𝜂) ( ®𝑢 + ®𝜔)) − div(𝜂®𝑢 ⊗ ®𝑢)

+ ®𝑢 ⊗ ®𝑢 · ®∇𝜂 − 𝜂 ®∇𝑝 + 1
2
®∇ ∧ (𝜂 ®𝜔) − 1

2
( ®∇𝜂) ∧ ®𝜔 + ®∇(𝜂 div( ®𝜔)) − ( ®∇𝜂) div( ®𝜔)

− 𝜂 ®𝜔 − div(𝜂 ®𝜔 ⊗ ®𝑢) + ®𝜔 ⊗ ®𝑢 · ®∇𝜂 + 1
2
®∇ ∧ (𝜂®𝑢) − 1

2
( ®∇𝜂) ∧ ®𝑢.

We rewrite this equation in the following form:
𝜕𝑡 ®U = Δ ®U + ®A +

3∑︁
𝑖=1

𝜕𝑖 ®B𝑖 + ®∇C + ®∇ ∧ ®D + divE,

®U(0, 𝑥) = 0,
(6.4)

where the vector ®A is given by

®A = (𝜕𝑡𝜂 + Δ𝜂) ( ®𝑢 + ®𝜔) + ®𝑢 ⊗ ®𝑢 · ®∇𝜂 − 𝜂 ®∇𝑝 − 1
2
( ®∇𝜂) ∧ ®𝜔

− ( ®∇𝜂) div( ®𝜔) − 𝜂 ®𝜔 + ®𝜔 ⊗ ®𝑢 · ®∇𝜂, (6.5)

the vector ®B𝑖 (for 1 ≤ 𝑖 ≤ 3) is given by
®B𝑖 = 2(𝜕𝑖𝜂) ( ®𝑢 + ®𝜔), (6.6)
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the scalar function C is given by

C = 𝜂 div( ®𝜔), (6.7)

the vector ®D is given by

®D =
1
2
𝜂( ®𝜔 + ®𝑢), (6.8)

and finally, the tensor E is defined by the expression

E = −𝜂( ®𝑢 ⊗ ®𝑢 + ®𝜔 ⊗ ®𝑢). (6.9)

Thus, by the Duhamel formula, the solution of the equation (6.4) can be written in the
following manner:

®U(𝑡, 𝑥) =
∫ 𝑡

0
𝑒 (𝑡−𝑠)Δ

(
®A +

3∑︁
𝑖=1

𝜕𝑖 ®B𝑖 + ®∇C + ®∇ ∧ ®D + divE
)
𝑑𝑠, (6.10)

thus, in order to apply Lemma 6.1 to this system and obtain a parabolic gain of regularity,
we only need to prove that the quantities ®A, ®B𝑖 , C, ®D and E, defined in (6.5)-(6.9)
respectively, satisfy:

®A ∈ M𝔭0 ,𝔮0
𝑡 ,𝑥

(
R × R3) and ®B𝑖 , C, ®D,E ∈ M𝔭0 ,𝔮1

𝑡 ,𝑥

(
R × R3) , (6.11)

where 1 ≤ 𝔭0 ≤ 6
5 ≤ 𝔮0, with 1

𝔮0
= 2−𝛼

5 , 1
𝔮1

= 1−𝛼
5 , for some 0 < 𝛼 < 1

24 .
Let us start with the quantity ®A and we have

Lemma 6.2. For the term ®A defined in (6.5) we have

∥ ®A∥M𝔭0 ,𝔮0
𝑡,𝑥

< +∞.

Proof. By definition we have ®A

M𝔭0 ,𝔮0

𝑡,𝑥
≤

(𝜕𝑡𝜂 + Δ𝜂) ( ®𝑢 + ®𝜔)

M𝔭0 ,𝔮0

𝑡,𝑥︸                             ︷︷                             ︸
(1)

+
®𝑢 ⊗ ®𝑢 · ®∇𝜂


M𝔭0 ,𝔮0

𝑡,𝑥︸                 ︷︷                 ︸
(2)

+
𝜂 ®∇𝑝M𝔭0 ,𝔮0

𝑡,𝑥︸         ︷︷         ︸
(3)

+ 𝐶
( ®∇𝜂) ∧ ®𝜔


M𝔭0 ,𝔮0

𝑡,𝑥︸                ︷︷                ︸
(4)

+
( ®∇𝜂) div( ®𝜔)


M𝔭0 ,𝔮0

𝑡,𝑥︸                    ︷︷                    ︸
(5)

+ ∥𝜂 ®𝜔∥M𝔭0 ,𝔮0
𝑡,𝑥︸        ︷︷        ︸

(6)

+
 ®𝜔 ⊗ ®𝑢 · ®∇𝜂


M𝔭0 ,𝔮0

𝑡,𝑥︸                  ︷︷                  ︸
(7)

. (6.12)

Each term above is studied separately:
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• For the first term of (6.12), we note that since 𝔭0 ≤ 𝔮0 = 5
2−𝛼

and since 0 < 𝛼 < 1
24 ,

we have 𝔭0 ≤ 𝔮0 < 3 < 6, and thus by the support properties of the function 𝜂 as well as
by the properties of Morrey spaces given in the Lemma 2.2, we obtain

∥(𝜕𝑡𝜂 + Δ𝜂) ( ®𝑢 + ®𝜔)∥M𝔭0 ,𝔮0
𝑡,𝑥

≤ 𝐶∥1𝑄R ( ®𝑢 + ®𝜔)∥M𝔭0 ,𝔮0
𝑡,𝑥

≤ 𝐶∥1𝑄𝔯2
( ®𝑢 + ®𝜔)∥M6,6

𝑡,𝑥
= 𝐶∥1𝑄𝔯2

( ®𝑢 + ®𝜔)∥𝐿6
𝑡,𝑥

< +∞,

since we have the controls (5.1) and the relationships (6.1).
• The terms (2) and (7) of (6.12) can be treated in a similar manner. Indeed, since

0 < 𝛼 < 1
24 we have 𝔭0 ≤ 𝔮0 < 3 and by the same arguments as above we write for (2):®𝑢 ⊗ ®𝑢 · ®∇𝜂


M𝔭0 ,𝔮0

𝑡,𝑥
≤ 𝐶

1𝑄R ®𝑢 ⊗ ®𝑢

M𝔭0 ,𝔮0

𝑡,𝑥
≤ 𝐶

1𝑄𝔯1
®𝑢 ⊗ ®𝑢


M3,3

𝑡,𝑥

≤ 𝐶
1𝑄𝔯1

®𝑢 ⊗ ®𝑢

𝐿3
𝑡,𝑥

≤ 𝐶
1𝑄𝔯1

®𝑢

𝐿6
𝑡,𝑥

1𝑄𝔯1
®𝑢

𝐿6
𝑡,𝑥

< +∞,

where we used the Hölder inequality in the last estimate as well as the controls (5.1) and
the relationships (6.1). The same ideas apply for (7).

• For the term (3) of (6.12), we recall that by the equation (1.2) over the pressure we
have the expression 𝑝 =

∑3
𝑖, 𝑗=1

𝜕𝑖𝜕𝑗

(−Δ) (𝑢𝑖𝑢 𝑗 ). We consider now two auxiliary functions 𝜙
and 𝜓 satisfying the same properties stated in (4.3) and such that

𝜙 ≡ 1 over 𝑄𝑟𝑏 (𝑡0, 𝑥0), supp(𝜙) ⊂ 𝑄𝑟𝑏 (𝑡0, 𝑥0) and

𝜓 ≡ 1 over 𝑄𝑟𝑎 (𝑡0, 𝑥0), supp(𝜓) ⊂ 𝑄𝑅3 (𝑡0, 𝑥0),

where R < 𝑟𝑏 < 𝑟𝑎 < 𝑅3.
Thus, by definition of the auxiliary function 𝜙 we have the identity 1𝑄𝑅3

= 𝜙1𝑄𝑅3

(recall the relationships 6.1). Thus the term 𝜙®∇𝑝 = 𝜙
∑3

𝑖, 𝑗=1
®∇

(−Δ) 𝜕𝑖𝜕 𝑗 (𝑢𝑖𝑢 𝑗 ) can be
rewritten in the following manner

𝜙®∇𝑝 =

3∑︁
𝑖, 𝑗=1

𝜙
®∇𝜕𝑖𝜕 𝑗

(−Δ) (𝜓𝑢𝑖𝑢 𝑗 )︸                     ︷︷                     ︸
(𝑎)

−
3∑︁

𝑖, 𝑗=1

𝜙®∇𝜕𝑖
(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗︸                     ︷︷                     ︸

(𝑏)

−
3∑︁

𝑖, 𝑗=1

𝜙®∇𝜕 𝑗

(−Δ) (𝜕𝑖𝜓)𝑢𝑖𝑢 𝑗︸                     ︷︷                     ︸
(𝑐)

+ 2
3∑︁

𝑖, 𝑗=1
𝜙

®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )︸                            ︷︷                            ︸

(𝑑)

+ 𝜙
®∇
(
(Δ𝜓)𝑝

)
(−Δ)︸         ︷︷         ︸
(𝑒)

−2
3∑︁
𝑖=1

𝜙
®∇
(
𝜕𝑖 ((𝜕𝑖𝜓)𝑝)

)
(−Δ)︸                    ︷︷                    ︸

( 𝑓 )

(6.13)

and since 0 < 𝛼 < 1
24 we have 𝔭0 ≤ 𝔮0 = 5

2−𝛼
< 120

47 < 3 and we only need to prove that

each one of these terms belong to the Morrey space M
6
5 ,

120
47

𝑡 ,𝑥 (R × R3).
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∗ The term (𝑎) in (6.13) is treated as follows: since the Riesz transforms are
bounded in Morrey spaces we obtain𝜙 ®∇𝜕𝑖𝜕 𝑗

(−Δ) (𝜓𝑢𝑖𝑢 𝑗 )

M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

𝜕𝑖𝜕 𝑗
®∇

(−Δ) (𝜓𝑢𝑖𝑢 𝑗 )

M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

®∇(𝜓𝑢𝑖𝑢 𝑗 )

M

6
5 , 120

47
𝑡,𝑥

,

now, for 1 ≤ 𝑘 ≤ 3, using all the information available over ®𝑢 (see (5.1)), by
Lemma 2.2 and by the Hölder inequality in Morrey spaces, we have(𝜕𝑘𝜓)𝑢𝑖𝑢 𝑗


M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

1𝑄�̄�2
𝑢𝑖𝑢 𝑗


M

3
2 ,30
𝑡,𝑥

≤ 𝐶

1𝑄�̄�2
𝑢𝑖


M3,60

𝑡,𝑥

1𝑄�̄�2
𝑢 𝑗


M3,60

𝑡,𝑥

< +∞,

since 6
5 < 3

2 , 120
47 < 30 and 2

3 = 1
3 + 1

3 , 1
30 = 1

60 + 1
60 . By the same arguments

(recall the informations over ®𝑢 given in (5.1)) we have𝜓(𝜕𝑘𝑢𝑖)𝑢 𝑗


M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

1𝑄𝑅1
®∇ ⊗ ®𝑢


M

2, 120
45

𝑡,𝑥

1𝑄𝑅3
𝑢 𝑗


M3,60

𝑡,𝑥

≤ 𝐶

1𝑄𝑅1
®∇ ⊗ ®𝑢


M2,𝜏1

𝑡,𝑥

1𝑄𝑅3
𝑢 𝑗


M3,60

𝑡,𝑥

< +∞,𝜓𝑢𝑖 (𝜕𝑘𝑢 𝑗 )

M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

1𝑄𝑅3
𝑢𝑖


M3,60

𝑡,𝑥

1𝑄𝑅1
®∇ ⊗ ®𝑢


M

2, 120
45

𝑡,𝑥

≤ 𝐶

1𝑄𝑅3
𝑢𝑖


M3,60

𝑡,𝑥

1𝑄𝑅1
®∇ ⊗ ®𝑢


M2,𝜏1

𝑡,𝑥

< +∞,

since 5
6 = 1

2 +
1
3 and 47

120 = 45
120 +

1
60 and 120

45 < 𝜏1 = 30
11 < 20

7 . Thus we can deduce
that we have the estimate𝜙 ®∇𝜕𝑖𝜕 𝑗

(−Δ) (𝜓𝑢𝑖𝑢 𝑗 )

M

6
5 , 120

47
𝑡,𝑥

< +∞.

∗ The terms (𝑏) and (𝑐) of (6.13) can be treated in a similar manner and using the
information available in (5.1) we have:𝜙®∇𝜕𝑖(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗


M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

 ®∇𝜕𝑖
(−Δ) (𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗


M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶
(𝜕 𝑗𝜓)𝑢𝑖𝑢 𝑗


M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

1𝑄�̄�2
𝑢𝑖𝑢 𝑗


M

3
2 ,30
𝑡,𝑥

≤ 𝐶

1𝑄�̄�2
𝑢𝑖


M3,60

𝑡,𝑥

1𝑄�̄�2
𝑢 𝑗


M3,60

𝑡,𝑥

< +∞.
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∗ The term (𝑑) is treated as follows. By Lemma 2.2, since 6
5 < 3

2 and 120
47 < 15

4 , we
have𝜙 ®∇

(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )

M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )


M

3
2 , 15

4
𝑡,𝑥

.

Now, by the space inclusion 𝐿
3
2
𝑡 𝐿

∞
𝑥 ⊂ M

3
2 ,

15
4

𝑡 ,𝑥 we obtain𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )


M

3
2 , 15

4
𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )


𝐿

3
2
𝑡 𝐿∞

𝑥

Following the same ideas displayed in formulas (4.16)-(4.18), due to the support
properties of the auxiliary functions we obtain𝜙 ®∇

(−Δ) (𝜕𝑖𝜕 𝑗𝜓) (𝑢𝑖𝑢 𝑗 )

𝐿

3
2
𝑡 𝐿∞

𝑥

≤ 𝐶

1𝑄�̄�2
𝑢𝑖𝑢 𝑗


𝐿

3
2
𝑡,𝑥

≤ 𝐶

1𝑄�̄�2
®𝑢

M3,30

𝑡,𝑥

1𝑄�̄�2
®𝑢

M3,30

𝑡,𝑥

< +∞.

∗ The term (𝑒) of (6.13) follows the same ideas as previous one, and we have𝜙 ®∇
(
(Δ𝜓)𝑝

)
(−Δ)


M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(
(Δ𝜓)𝑝

)
(−Δ)


𝐿

3
2
𝑡 𝐿∞

𝑥

≤ 𝐶
1𝑄𝑅

𝑝

𝐿

3
2
𝑡,𝑥

< +∞,

since we have by hypothesis that 1𝑄𝑅
𝑝 ∈ 𝐿

3
2
𝑡 ,𝑥 (R × R3).

∗ The last term of (6.13) is estimated in a very similar manner:𝜙 ®∇
(
𝜕𝑖 ((𝜕𝑖𝜓)𝑝)

)
(−Δ)


M

6
5 , 120

47
𝑡,𝑥

≤ 𝐶

𝜙 ®∇
(
𝜕𝑖 ((𝜕𝑖𝜓)𝑝)

)
(−Δ)


𝐿

3
2
𝑡 𝐿∞

𝑥

≤ 𝐶
1𝑄𝑅

𝑝

𝐿

3
2
𝑡,𝑥

< +∞.

We have proven that all the terms of (6.13) belong to the Morrey space M𝔭0 ,𝔮0
𝑡 ,𝑥 and thus,

the term (3) of (6.12) too.
• The terms (4) and (6) of (6.12) are very similar. Indeed, for (4), using the properties

of the auxiliar function 𝜂 and with the Lemma 2.2 we write (recall that 𝔭0 ≤ 𝔮0 < 6 and
that we have the controls (5.1))( ®∇𝜂) ∧ ®𝜔


M𝔭0 ,𝔮0

𝑡,𝑥

≤ 𝐶
1𝑄R ®𝜔


M𝔭0 ,𝔮0

𝑡,𝑥
≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

< +∞.

For (6) we have by the same arguments:

∥𝜂 ®𝜔∥M𝔭0 ,𝔮0
𝑡,𝑥

≤ 𝐶
1𝑄R ®𝜔


M𝔭0 ,𝔮0

𝑡,𝑥
≤ 𝐶

1𝑄𝔯2
®𝜔

𝐿6
𝑡,𝑥

< +∞.

183



D. Chamorro & D. Llerena

• For the term (5) of (6.12), we need to study the quantity ∥( ®∇𝜂) div( ®𝜔)∥M𝔭0 ,𝔮0
𝑡,𝑥

, but
by the Proposition 5.1 we know that

1𝑄𝑅3
div( ®𝜔) ∈ M

6
5 ,

60
11

𝑡 ,𝑥

(
R × R3) .

Since 0 < 𝛼 < 1
24 , we have 𝔭0 ≤ 6

5 ≤ 𝔮0 = 5
2−𝛼

< 60
11 , and by the support properties of

the function 𝜂 (recall (6.1) and (6.2)) we have (by Lemma 2.2)( ®∇𝜂) div( ®𝜔)

M𝔭0 ,𝔮0

𝑡,𝑥

≤ 𝐶

1𝑄𝑅3
div( ®𝜔)


M

6
5 , 60

11
𝑡,𝑥

< +∞.

With all these estimates, we can conclude that ®A ∈ M𝔭0 ,𝔮0
𝑡 ,𝑥 (R × R3), and Lemma 6.2 is

proven. □

We study now the quantity ®B𝑖 defined in (6.6). Following (6.11), we shall obtain that
®B𝑖 ∈ M𝔭0 ,𝔮1

𝑡 ,𝑥 (R × R3) where 1 ≤ 𝔭0 ≤ 𝔮0, with 1
𝔮0

= 2−𝛼
5 , 1

𝔮1
= 1−𝛼

5 , for some 0 < 𝛼 < 1.
Since 0 < 𝛼 < 1

24 , we have 𝔮1 = 5
1−𝛼

< 6 and we thus write

∥ ®B𝑖 ∥M𝔭0 ,𝔮1
𝑡,𝑥

= ∥2(𝜕𝑖𝜂) ( ®𝑢 + ®𝜔)∥M𝔭0 ,𝔮1
𝑡,𝑥

≤ 𝐶∥1𝑄𝔯2
( ®𝑢 + ®𝜔)∥M𝔭0 ,𝔮1

𝑡,𝑥

≤ 𝐶∥1𝑄𝔯2
( ®𝑢 + ®𝜔)∥𝐿6

𝑡,𝑥
< +∞,

where we used the support properties of the test function 𝜂, the Lemma 2.2 and the
controls (5.1).

We thus obtain that ®B𝑖 ∈ M𝔭0 ,𝔮1
𝑡 ,𝑥 (R × R3).

For the termC given in (6.7) we have ∥C∥M𝔭0 ,𝔮1
𝑡,𝑥

= ∥𝜂 div( ®𝜔)∥M𝔭0 ,𝔮1
𝑡,𝑥

. Since 1 ≤ 𝔭0 ≤ 6
5

and 𝔮1 = 5
1−𝛼

< 60
11 (since 0 < 𝛼 < 1

24 ), by the support properties of the function 𝜂 and
by Lemma 2.2 we obtain

∥𝜂 div( ®𝜔)∥M𝔭0 ,𝔮1
𝑡,𝑥

≤ 𝐶

1𝑄𝑅3
div( ®𝜔)


M

6
5 , 60

11
𝑡,𝑥

< +∞.

With this estimate we obtain C ∈ M𝔭0 ,𝔮1
𝑡 ,𝑥 (R × R3).

The term ®D given in (6.8) can be treated just as the terms ®B𝑖 above. Indeed, using the
controls (5.1) we write:

∥ ®D∥M𝔭0 ,𝔮1
𝑡,𝑥

=

1
2
𝜂( ®𝜔 + ®𝑢)


M𝔭0 ,𝔮1

𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
( ®𝑢 + ®𝜔)


M𝔭0 ,𝔮1

𝑡,𝑥

≤ 𝐶

1𝑄𝔯2
( ®𝑢 + ®𝜔)


𝐿6
𝑡,𝑥

< +∞.

We have ®D ∈ M𝔭0 ,𝔮1
𝑡 ,𝑥 (R × R3).
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For the tensor E defined in (6.9), since 1 ≤ 𝔭0 ≤ 6
5 and 𝔮1 = 5

1−𝛼
< 60

11 we obtain, by
Lemma 2.2:

∥E∥M𝔭0 ,𝔮1
𝑡,𝑥

= ∥𝜂( ®𝑢 ⊗ ®𝑢 + ®𝜔 ⊗ ®𝑢)∥M𝔭0 ,𝔮1
𝑡,𝑥

≤ ∥𝜂®𝑢 ⊗ ®𝑢∥M𝔭0 ,𝔮1
𝑡,𝑥

+ ∥𝜂 ®𝜔 ⊗ ®𝑢∥M𝔭0 ,𝔮1
𝑡,𝑥

≤ 𝐶 ∥𝜂®𝑢 ⊗ ®𝑢∥
M

6
5 , 60

11
𝑡,𝑥

+ 𝐶 ∥𝜂 ®𝜔 ⊗ ®𝑢∥
M

6
5 , 60

11
𝑡,𝑥

and by the Hölder inequalities in Morrey spaces (see Lemma 2.1) with 5
6 = 1

2 + 1
3 and

11
60 = 1

6 + 1
60 , we can write :

∥E∥M𝔭0 ,𝔮1
𝑡,𝑥

≤ 𝐶∥𝜂®𝑢∥M2,6
𝑡,𝑥
∥𝜂®𝑢∥M3,60

𝑡,𝑥
+ 𝐶∥𝜂 ®𝜔∥M2,6

𝑡,𝑥
∥𝜂®𝑢∥M3,60

𝑡,𝑥

≤ 𝐶

1𝑄�̄�2
®𝑢

𝐿6
𝑡,𝑥

1𝑄�̄�2
®𝑢

M3,60

𝑡,𝑥

+ 𝐶

1𝑄�̄�2
®𝜔

𝐿6
𝑡,𝑥

1𝑄�̄�2
®𝑢

M3,60

𝑡,𝑥

< +∞.

We thus have E ∈ M𝔭0 ,𝔮1
𝑡 ,𝑥 (R × R3).

With all the previous computations we have proven all the information stated in (6.11),
which applied in the integral representation formula (6.10) allows us, with Lemma 6.1, to
conclude that ®U ∈ ¤C𝛼 (R×R3) with 0 < 𝛼 < 1

24 , and since by (6.3) we have ®U = ( ®𝑢 + ®𝜔)
over a small neighborhood of the point (𝑡0, 𝑥0), we deduce that ®𝑢 and ®𝜔 are also Hölder
regular and this finishes the proof of Theorem 1.2. □
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